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Abstract The ability to summarize a large number of

network patterns discovered from biomedical data provides

valuable information for use in many applications. We

show that several variants of the problem are all NP-hard,

and merging network patterns is a practical solution for

these applications. In this work, we propose an algorithmic

framework for merging network patterns. We have devel-

oped fast algorithms under this general framework which

supports several types of biomedical network data. In

addition, our empirical study demonstrates that our algo-

rithms are efficient in merging a large number of bio-

medical network patterns and can be configured for various

knowledge discovery purposes.

Keywords Network patterns � Summarization � Graph

theory � Cliques � Bicliques � Frequent itemset mining

1 Introduction

Biomedical data are frequently modeled in the form of

networks, i.e., graphs. For example, gene-coexpression

data, which show the correlation between genes, can be

modeled as a graph G = (V, E) where each vertex repre-

sents a gene and each edge represents the correlation

between two genes. Furthermore, we can also model the

disease–gene relationship data as a bipartite graph

G = (VA, VB, E) where the vertex sets VA and VB represent

the sets of diseases and genes, respectively, such that an

edge exists between d 2 VA and g 2 VB if and only if the

disease d and the gene g are related. In general, we can

roughly classify these networks constructed from such

biological data into two categories: ones which are mod-

eled as graphs with a single vertex set V and others which

are modeled as bipartite graphs using two vertex sets VA

and VB. Both types of graphs can be weighted or

unweighted. That is, the edge weights can be any real

numbers, or just binary values.

One of the most important tasks for the biomedical net-

works is to find significant patterns. Often, dense subgraphs

in these networks correspond to important biomedical

structures. For example, dense subgraphs in gene-coex-

pression networks often contain genes that have similar

biological functions with prognostic powers in patient

diagnosis (Uppalapati et al. 2010; Zhang et al. 2010). For

the disease–gene data, the dense subgraphs have been

successfully used in predicting unknown disease–gene

relations (Xiang et al. 2012b), an application comparable to

link prediction in social networks (Almansoori et al. 2012).

The definition of the density varies with respect to the

application and graph model. For an unweighted graph, the

density can be defined as the ratio of the edge count in the

subgraph to the number of its possible edges. For a weighted
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graph, the density can be defined as the ratio of the total

weight in the subgraph to the number of possible edges. It is

easy to see that cliques and bicliques of unweighted graphs

have a density of 1 for the above definitions.

In this paper, we will use d(G) to denote the density of a

network G, and we use Gi � G to denote that Gi is a

subgraph of G. Since there are often too many subgraph

patterns to focus on, summarizing a large number of pat-

terns into a small number of informative patterns is desir-

able for many applications. We formally define the basic

summarization problem as follows:

Problem 1 Let P ¼ fG1;G2; . . .;Gpg be a set of network

patterns of G such that Gi is a subgraph of G for all

1 B i B p. The summarization problem is defined as find-

ing another set of network patterns G0 ¼ fG01;G02; . . .;G0qg
with minimum cardinality q such that for each Gi 2 P; there

exists a G0j 2 G0 where Gi � G0j and d(G0j) C b.

The restriction on the density function d ensures that a

network pattern is a highly connected component. There are

several ways to measure the density of a network pattern. In

this work, we measure a network’s density based on its

matrix representation and edge weights are made nonneg-

ative. Thus, edge directions and signs (if any) are ignored.

Since both graphs and bipartite graphs can be represented as

a matrix, we consider A to be the set of rows, and B to be the

set of columns of a matrix M. To facilitate our measure-

ment, we consider every matrix entry (an edge weight) to be

normalized between 0 and 1, and every diagonal entry on a

symmetric matrix to be 1. Thus, the density of a bipartite

graph induced by VA � A and VB � B is:

dðGðVA;VBÞÞ ¼
P

vi2VA;vj2VB
Mðvi; vjÞ

jVAjjVBj

As a unified measurement, in this work the density of a graph

(i.e., a symmetric matrix) is defined in the same manner

except that VA and VB are required to be identical. The

unified measurement significantly simplifies our algorithm

design as we can always treat an input graph as a bipartite

graph (or a matrix). In an unweighted (bipartite) graph, an

edge always has a weight of 1. Thus, the unweighted

(bipartite) graph is a (bi) clique if and only if its density is 1.

In this work, we propose a general framework to sum-

marize network patterns for biomedical applications. Our

main contributions are:

• We provide theoretical analysis to illustrate that the

problem and several variations are NP-hard, and

subsequently we propose a subproblem and a general

algorithm framework for summarizing network patterns

in real biomedical applications (Sect. 3).

• We design two efficient merge algorithms to fit the

summarization framework. By carefully designing the

network pattern merge operation, we show that the time

complexity of our summarization framework is even

comparable to simple hierarchical clustering algorithms

in some circumstance (Sect. 4).

• We demonstrate that our algorithms are very efficient in

handling real datasets, and through batch processing, our

algorithms can summarize very large datasets (Sect. 5.1).

• Finally, by a comprehensive application study, we

demonstrate that our algorithms can be configured to

achieve various purposes in analyzing biomedical net-

work data. Our study includes mining network patterns

that are significant in patient prognosis, macro-level

network clustering, and visual analysis (Sect. 5.2).

2 Related work

There are many methods that can be used to obtain network

patterns. Our work, as compared to these methods, has several

advantages: (1) It can easily control the summarization scale

by adjusting the density threshold b, and it accepts various

network data formats. Thus, it can be applied to various

summarization scenarios (micro level or macro level).

(2) It can guarantee the density of each network pattern in the

final result. (3) Each network pattern in the original input will

be covered by at least one network pattern in the summarized

output. (4) It is highly scalable and can be applied to sum-

marize very large biomedical datasets. Finally, our work can

be applied to summarize network patterns obtained from

other methods. Thus it has wide applicability in biomedical

network analysis. In the following we discuss the difference

between related methods and our approach.

2.1 Network partition

These methods partition a network into several non-over-

lapping sub-networks. Clustering (Berkhin 2006), coclu-

stering (or biclustering) (Hartigan 1972; Mirkin 1996), and

graph partitioning techniques (e.g., Stoer 1997) are typical

examples. However, in many biomedical applications,

researchers are interested in finding small and highly

connected network patterns rather than network partitions.

These network patterns may connect to potential bio-

markers and lead to novel scientific discovery (Kutalik

et al. 2008; Mushlin et al. 2009; Ravetti 2008; Zhang et al.

2010). As a result, methods in this category are not suffi-

cient for these types of applications.

2.2 Clique or biclique enumeration

A clique (or biclique) is a fully connected network com-

ponent. Different from network partitions, two different

cliques of a graph may overlap. Listing all maximal cliques
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is a classical problem which has been well studied in the

past (Bron and Kerbosch 1973; Tsukiyama et al. 1977;

Makino 2004; Johnson et al. 1988). The task for mining

maximal bicliques was often accomplished by mining

closed itemsets (Du et al. 2008; Li et al. 2007; Xiang et al.

2012a). In addition to algorithms that list cliques or bicli-

ques, there are many algorithms focusing on identifying

quasi-cliques (Abello et al. 2002; Li et al. 2008; Seidman

1983; Seidman and Foster 1978) or quasi-bicliques (Geerts

et al. 2004; Jin et al. 2010). The quasi-cliques or quasi-

bicliques can be described as the dense components which

are close to cliques or bicliques with a small amount of

edges missing. However, the methods identifying dense

network patterns often produce more patterns than biolo-

gists can focus on. Moon and Moser (1965) proved that a

graph with n vertices can have up to 3n/3 maximal cliques if

n : 0 (mod 3). Thus, clique or biclique enumeration

methods alone are not good choices for analyzing bio-

medical data.

2.3 Pattern summarization

A few pattern summarization methods have been proposed

to tackle the pattern exploration problem in clique (or

biclique) enumeration and related problems. Our approach

in this work falls into this category. However, the past

pattern summarization methods have two major problems.

First, methods such as HYPER (Xiang et al. 2011) claim to

produce summarized patterns but still output too many

patterns for biological analysis. Second, available sum-

marization methods (Lucchese et al. 2010; Miettinen et al.

2008), HYPER? in (Xiang et al. 2011) to our knowledge

solve the problem heuristically and without a quality

(density) guarantee on individual network patterns in the

final output.

It is also worthwhile to note an additional stratification

of graph/network summarization work (e.g., Li et al. 2011)

that focuses on summarizing graph patterns over a set of

graphs. Our work, in contrast, centers on developing

summarization techniques over network patterns discov-

ered from a single graph. Although it is possible to extend

our approach to multiple graphs, we limit our context to

summarizing patterns from a single graph only in this

work.

2.4 Pattern growing

Some recent work (e.g. Xiang et al. 2012b; Ou and Zhang

2007) obtain network patterns from a weighted graph by a

pattern growing approach. Although technical details vary

slightly, their work flows are similar: Start a cluster with

one edge. In each iteration, add a new vertex to the cluster

that adds maximal weight to the cluster. Stop adding

vertices when the increased weight resulted from adding

the new vertex is less than a threshold. To reduce com-

putational time as well as the number of final patterns, a

covered edge (Xiang et al. 2012b) [or an edge with two

covered vertices (Ou 2007)] will not be selected again as a

start point for a new cluster. This simple greedy approach

can guarantee the density of the generated pattern. How-

ever, it is easy to show that it may miss an important dense

pattern as a result of being separately covered by several

other patterns. This issue can be avoided by dropping the

coverage check. However, if doing so, the algorithm may

generate too many patterns, and the worst case time com-

plexity is Oðn5Þ; too high for real graphs.

3 An algorithmic framework for summarizing network

patterns

Let us first show that Problem 1 is intractable.

Theorem 1 Problem 1 is NP-hard.

Proof We use a reduction from the well known minimum

clique cover problem, which is NP-hard (Karp 1972). The

problem is defined as follows: given an unweighted graph

G = (V, E), find a minimum number of cliques C ¼
fC1;C2; . . .;Ckg such that each edge e 2 E is covered by at

least one clique in C: The polynomial time reduction is

given below.

(1) Create a set of networks P where each network in P
corresponds to an edge in E. That is, each edge in E

with its endpoints is a network in P:
(2) b = 1.

According to this definition and that of Problem 1, P0 is

a clique cover for G. Hence, the solution for Problem 1,

which requires minimum jP0j; is also the solution for the

minimum clique cover problem described above. h

After proving Problem 1 is NP-hard, we consider a

simplified version. Since merging several networks in P
usually creates a larger one that covers these networks, we

focus on summarizing network patterns by merging. The

merge operation is defined as

NetMergeððVA1
;VB1

;E1Þ; . . .; ðVAk
;VBk

;EkÞÞ

¼ G
[k

i¼1

VAi
;
[k

i¼1

VBi

 !

where G
Sk

i¼1 VAi
;
Sk

i¼1 VBi

� �
is the (bipartite) graph

induced by the rows
Sk

i¼1 VAi
and columns

Sk
i¼1 VBi

of the

matrix M.

Let us define a problem similar to Problem 1 which

necessitates using the operation NETMERGE for network

pattern summarization.
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Problem 2 Let P ¼ fG1;G2; . . .;Gpg be a set of network

patterns of G such that Gi is a subgraph of G for all

1 B i B p. The summarization problem is defined as find-

ing another set of network patterns P0 ¼ fG01;G02; . . .;G0qg
with minimum cardinality q such that for each Gi 2 P; there

exists a G0j 2 P0 where Gi � G0j; dðG0jÞ� b; and

G0j ¼ NetMergeðGi1 ; . . .;GimÞ

is obtained by merging a set of patterns Gi‘ 2 P for

1 B ‘ B m.

Let us prove that the cardinalities of the solutions for

Problems 1 and 2 are equal in the following case.

Lemma 1 If b = 1 is applied for both Problems 1 and 2,

the summarized sets of their solutions have the same

cardinality.

Proof Let q and q0 be the cardinality of the sets obtained

by solving Problems 1 and 2, respectively, for the pattern

set P: Since the latter problem is a restricted version of the

former, q B q0.

Given a solution P0 ¼ fG01;G02; . . .;G0qg for Problem 1, a

solution with the same cardinality q can be constructed for

Problem 2 as follows: let CðG0iÞ ¼ fGj : Gj � G0ig be the

set of network patterns in P which are subgraphs of G0i.

Note that
Sq

i¼1 CðG0iÞ ¼ P: Then the summarized set

P00 ¼ fNetMergeðCðG01ÞÞ; . . .;NetMergeðCðG0qÞÞg

is a solution for Problem 2 with the same cardinality q

since merge operations cover any pattern in P and

dðNetMergeðCðG0iÞÞÞ ¼ 1 for all 1 B i B q. h

After Lemma 1, the following corollary is immediate:

Corollary 1 Problem 2 is NP-hard.

Since Problem 2 is intractable, let us consider a sim-

plified version. In this version, we remove a network pat-

tern from P after it is merged into a new network pattern.

Hence, the number of network patterns decreases after each

merge operation. This ‘‘merge and delete’’ strategy can be

useful in practice by leading us to more efficient solutions

for the summarization problem. This strategy also corre-

sponds to finding a non-overlapping partition of the given

network pattern set P: Note that here the non-overlapping

partition of P does not imply a non-overlapping partition of

G. A non-overlapping partition of P is denoted as

P ¼ fP1; . . .;Pkg where

• parts are pairwise disjoint, i.e., Pi \ Pj ¼ ; for all

1 B i \ j B k,

• each part Pi is a nonempty subset of P; i.e., Pi � P and

Pi 6¼ ; for 1 B i B k,

• union of k parts is equal to P; i.e.,
Sk

i¼1 Pi ¼ P:

We define a more restricted version of Problem 2 as

follows:

Problem 3 Let P ¼ fG1;G2; . . .;Gpg be a set of network

patterns of G such that Gi is a subgraph of G for all

1 B i B p. The summarization problem is defined as finding

another set of network patterns P0 ¼ fG01;G02; . . .;G0qg with

minimum cardinality q where for each G0j 2 P0; dðG0jÞ� b;

and there exists a partition P ¼ fP1; . . .;Pqg of P such that

G0j ¼ NetMergeðPjÞ.

Problem 3 is a restricted version of Problem 2 since each

network pattern in P can only be merged into one pattern

in P0: That is, a network pattern disappears after being

merged into a new network pattern. This problem is also

intractable.

Theorem 2 Problem 3 is NP-hard.

Proof We use the same reduction from the minimum

clique cover problem as in the proof of Theorem 1 to the

network summarization problem. That is, we create the

initial network pattern set P by constructing a network

pattern for each edge in E, and again we set b = 1.

Assume that P0 is the solution to this problem. Due to the

definition of d, each network pattern in P0 is a clique. If P0
corresponds to a solution with minimum cardinality for the

clique cover, we are done. Otherwise, there must exist a

solution fC1;C2; . . .;Ckg for the clique cover problem with

k \ q. Let Ei be the edge set of the clique Ci, and let G(Ei)

be the graph induced by endpoints of edges in Ei. We can

obtain a solution P00 ¼ fG001 ; . . .;G00kg for the summarization

problem where

G001 ¼ GðE1Þ;

G00i ¼ NetMerge GðfegÞ : e 2 Ei n
[i�1

j¼1

Ej

 !

for all 1 \ i B k. Note that each G00i is a clique since the

merge operation uses edges in the original graph G. This is

a contradiction since P0 and P00 are both solutions for

Problem 3 and jP00j\jP0j: h

After proving the NP-hardness of Problem 3, we look for

other solutions. Since a merge operation on k networks is

equivalent to k - 1 merge operations on 2 networks, it is

reasonable to solve Problem 3 by repetitively merging a set

of network pairs until a summarized network pattern set

with desired properties is obtained. The following is a

subproblem we need to solve repeatedly during this process.

Problem 3s (Subproblem of Problem 3) Let P ¼
fG1;G2; . . .;Gpg be a set of network patterns of G such that

Gi is a subgraph of G for all 1 B i B p. The problem

is defined as finding another set of network patterns
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P0 ¼ fG01;G02; . . .;G0qg with q \ p, where there exists a

partition P ¼ fP1; . . .;Pqg of P such that jPjj � 2;G0j ¼
NetMergeðPjÞ; and d(G0j) C b for all 1 B j B q.

A generic framework for an algorithm using this

approach is given in Algorithm 1. At each iteration of the

while loop in the algorithm, the MERGE operation constructs

a solution for Problem 3s by selecting a set of network

pairs and merging them simultaneously. MERGE takes two

inputs: the current summarized network pattern set P0 and

a queue Q which contains a set of triplets formed by a pair

of networks G0i, G0j, and the density of d(G0ij) where G0ij is

the network obtained by merging G0i and G0j. All network

pairs in Q are feasible. That is, d(G0ij) C b. When MERGE

chooses a triplet from Q; it removes the two corresponding

networks from P0 and inserts the one obtained by the

NETPATTERNMERGE operation, which includes the previ-

ously defined NETMERGE operation plus calculating the

density of the merged pattern.

MERGE returns the set of these new network patterns.

After MERGE returns, the framework updates Q by adding

all new feasible pairs into it. Note that when we remove a

pattern G0i from P0; the triplets in Q which have G0i as one

of the networks become obsolete. MERGE ignores such

triplets and removes them from Q upon visiting.

As mentioned above, MERGE in Algorithm 1 solves an

instance of Problem 3s. Note that Problem 3s does not have

an objective function. Here we discuss three objective

functions which can be optimized in polynomial time.

1. Minimize q: Choosing the largest possible M at each

iteration optimizes this objective function. Given a

pattern set P0; consider a graph G0 = (V0, E0) where

there exists a vertex v 2 V 0 for each network pattern in

P0; and an edge uv 2 E0 if the pair of network patterns

corresponding to u and v is feasible. A matching in G0 is
a set E00 of edges ðE00 � E0Þ such that each vertex in V0

is an endpoint of at most one edge in E00. A matching is

called maximum if it has the maximum possible

cardinality. The maximum number of feasible network

pairs in P0 that can be merged pairwise simultaneously

is equal to the cardinality of the maximum matching in

G0. There are several graph matching algorithms in the

literature. The first matching algorithm is proposed by

Edmonds with OðjV j4Þ complexity (Edmonds 1965).

Later, Micali and Vazirani 1980 proposed another

algorithm with Oð
ffiffiffiffiffiffi
jV j

p
jEjÞ complexity. The best

theoretical complexityOðjVj2:38Þ is obtained by Mucha

and Sankowski (2004) with a randomized algorithm

based on fast matrix multiplication.

2. Minimize q and then maximize
P

d(G0j): For this

objective, consider the graph G0 in the previous heuristic

but this time each edge uv has a weight w(uv) which is

equal to the density of network pattern obtained by

merging the corresponding patterns of u and v. Again,

the maximum matching in G0 has the same cardinality as

the maximum number of feasible network pattern pairs

in P0: Note that there can be more than one set M of

pairs having this cardinality. Hence, choosing the one

with maximum
P
ðG0i;G0jÞ2M

dðP0ijÞ value is promising to

maximize the overall density of the summarized network

patterns in the output. This problem is equivalent to

finding a maximum (minimum) weighted maximum

cardinality matching in G0. Note that this problem is

as hard as the maximum cardinality matching problem

described above. We refer the reader to (Duan et al.

2011) for a latest result and a brief survey about the

complexities of maximum weighted matching algo-

rithms. Since the number of initial network patterns is

huge in practice, we do not prefer to adopt this heuristic

considering the time complexity of the existing algo-

rithms for the maximum weighted matching problem.

3. Maximize
P

d(G0j) with q = p - 1: In this objective

function, we want to maximize
P

d(G0j) with only one

merge operation on 2 network patterns. To maximize

this objective function, one can implement the MERGE

operation by choosing one pair which achieves the

maximum density after the merge operation. Note that

on the contrary, the merge operations in the previous

objective functions were simultaneous. Compared with

simultaneous merging, this single merge operation is
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expected to perform better for maximizing the overall

density because it has a larger search space. For

example, in simultaneous merging, if network G1 and

G2 are merged, and G3 and G4 are merged in the same

iteration, then the possibility of merging G1 and G2

with G3 will not be considered. However, this is not

the case for the single merge operation. On the other

hand, the single operation can be more expensive since

the number of network patterns is reduced only one for

each execution of MERGE. The experimental results in

Sect. 5 confirm these predictions.

4 Fast algorithms for network summarization

In the previous section we discussed several problem formu-

lations for summarizing network patterns and provided a

general algorithm framework for Problem 3, a restricted ver-

sion of Problems 1 and 2. The framework iteratively solves

Problem 3s for which optimal solutions exist with the three

different objectives discussed in the previous section. Since

finding optimal solutions for the second objective function is

too expensive, we will focus on the other two functions.

For the first objective, using existing matching algo-

rithms for the MERGE operation in Algorithm 1 may not be

efficient considering their complexities. For example, if we

use the maximum matching algorithm of Micali and

Vazirani (Micali and Vazirani 1980), the overall com-

plexity of Algorithm 1 becomes Oðp3:5Þ where p is the

number of initial network patterns which is large in prac-

tice. If we use the algorithm of Mucha and Sankowski

(2004), it slightly reduces the worst case complexity with a

potential cost of the large memory consumption of the fast

matrix multiplication. Since minimizing q in the first

objective function does not lead to a global optimal result

for Problem 3, it may be a good idea to relax the problem

by using maximal matchings instead of maximum ones. A

matching in a graph G is maximal if there is no edges in G

that can be added to M. With this relaxation, we can obtain

an efficient implementation of the MERGE operation for the

first objective as shown in Algorithm 2.

MULTIMERGE, given in Algorithm 2, merges a maximal

set of disjoint network pairs from the current set P0: These

pairs are obtained from the triplets in Q: If both networks

of a triplet are in P0 then MULTIMERGE merges them and

replaces them in P0 with the one obtained after the merge

operation. But, if one of the networks is not in P0; the

triplet is ignored.

There are two main implementation choices for Q : the

first one is the heap implementation where the first triplet in

Q is always the one with the maximum density value. In

this case, the best possible merge with the maximum

density value will be realized each time and the add and

remove operations for Q take logarithmic time. On the

other hand, if Q is implemented as a simple queue, the

triplets will be processed with a FIFO (first in first out)

strategy and queue operations take constant time. The

following lemma gives the time complexity of the frame-

work given in Algorithm 1 for both cases.

Lemma 2 If MULTIMERGE is used for merging, and Q is

implemented as a min-heap, SUMNETWORK runs in

Oðp2 log pÞ � OðT Þ time where p ¼ jPj is the number of

initial network patterns and OðT Þ is the worst case time

complexity of NETPATTERNMERGE function. Furthermore, if

Q is implemented as an unordered list of triplets the time

complexity is Oðp2Þ � OðT Þ:

Proof Let us first show that throughout the execution, the

number of different possible triplets in Q is Oðp2Þ: Since

each merge operation reduces (i.e., delete 2 and add 1) the

size of the pattern set by one, there can be OðpÞ merge

operations. Hence, there are OðpÞ different network pat-

terns which are either added, deleted, or kept in P0: Each

pair of networks uniquely defines a triplet. That is, there are

Oðp2Þ triplets we can see throughout the execution of

Algorithm 1. Note that if a triplet is removed from Q; it

will never be added to Q again. Hence, the total cost for

queue updates is Oðp2 log p2Þ ¼ Oðp2 log pÞ if a min-heap

implementation is used. On the other hand, if a simple

queue is used with constant time add-remove operations,

the cost will be Oðp2Þ:

108 Y. Xiang et al.

123



For the last objective function, we implemented

SINGLEMERGE as shown in Algorithm 3. The implementa-

tion of SINGLEMERGE is almost the same as that of MULTI-

MERGE. The only difference is after selecting a triplet and

merging the corresponding network pair, SINGLEMERGE

returns. Hence, the following corollary is immediate.

Corollary 2 SUMNETWORK with SINGLEMERGE has the

same time complexity as SUMNETWORK with MULTIMERGE.

Quite interestingly, if we ignore the NETPATTERNMERGE

time OðT Þ; the running time of SUMNETWORK is compa-

rable to SLINK (Sibson 1973) and CLINK (Defays 1977),

two classic hierarchical clustering algorithms both with

Oðn2Þ running time. This is understandable because our

approach is analogous to ‘‘hierarchically clustering’’ net-

work patterns, and this process can be illustrated with a

hierarchical clustering tree as we will show in Sect. 5.

However, OðT Þ; the worst-case running time of NET-

PATTERNMERGE, equals OðjAjjBjÞ: Recalling |A| is the

number of columns (or number of vertices in part A) and |B|

is the number of rows (or number of vertices in part B), the

complexity OðjAjjBjÞ is prohibitively high.

To tackle this computational challenge, we propose a

very efficient way to realize the NETPATTERNMERGE func-

tion. Our idea was motivated by the fact that we can utilize

the prior knowledge to calculate the density for merging

two network patterns, as stated in the following lemma.

Lemma 3 Let Gi = G(Ai, Bi) and Gj = G(Aj, Bj) be two

bipartite subgraph patterns. Let A0 = Ai\Aj and B0 = Bi\Bj.

Then, we conclude that weight(NetPatternMerge(Gi, Gj)) =

(weight(Gi) ? weight(Gj) - weight(G(A0, B0)) ? weight

(G(Ai - A0, Bj - B0)) ? weight(G(Aj - A0, Bi - B0)), and

d(NetPatternMerge(Gi, Gj)) = weight(NetPatternMerge

(Gi, Gj))/(|Ai [ Aj||Bi [ Bj|), where G(X, Y) is a bipartite

subgraph induced by vertex sets X and Y, and

weight(G(X, Y)) is the total edge weight of the graph

G(X, Y).

Although the proof of Lemma 3 is quite straightforward

as shown in Fig. 1, it implies a huge reduction in the

NETPATTERNMERGE computation. That is, if we keep the

weight of each network pattern, then we do not need to

start from the beginning in calculating the weight and

density of a merged pattern. In order to calculate

weight(NetPatternMerge(Gi, Gj)), we only need to calcu-

late weight(G(A0, B0)), weight(G(Ai - A0, Bj - B0)), and

weight(G(Aj - A0, Bi - B0)), if weight(Gi) and weight(Gj)

are known. Calculating weight(G(A0, B0)) involves visiting

overlapped edges between Gi and Gj, while calculating

weight(G(Ai - A0, Bj - B0)) and weight(G(Aj - A0, Bi -

B0)) involving visit edges that have not been visited before.

Thus, in the case where no network patterns have

overlapped vertices, we have the following corollary.

Corollary 3 Given a set of network patterns P ¼
fG1;G2; . . .;Gpg of G such that no two network pat-

terns share a common vertex, SUMNETWORK runs in

Oðp2 log pÞ þ Oðn2Þ ifQ is implemented as a min-heap, or

Oðp2Þ þ Oðn2Þ if Q is implemented as an unordered list of

triplets, where n is the number of vertices in G.

Corollary 3 shows an impressive result: SUMNETWORK for

summarizing non-overlapping network patterns has time

complexity comparable to SLINK (Sibson 1973) and

CLINK (Defays 1977) for hierarchically clustering simple

data. However, when overlap occurs, Corollary 3 no longer

holds, and the analysis needs to be amended by adding the

total time for calculating the weight of the overlapping part

for every merge operation (i.e., weight(G(A0, B0)) in Fig. 1).

We observed that SUMNETWORK running time perfor-

mance is very acceptable for handling real large datasets.

By using batch processing, it can handle very large datasets

as discussed in Sect. 5.

5 Empirical study

In this section, we empirically study the proposed network

merging algorithms on two typical sets of data, an unweighted

bipartite graph (the gene-to-phenotype dataset (Robinson

et al. 2008, 2010) and a weighted graph (the gene coexpres-

sion data, a symmetric matrix, built on microarray dataset

GSE2034 (Carroll et al. 2006; Wang et al. 2005). Following

the two typical examples, it is easy to extend our algorithms to

handle the other two types of datasets, unweighted graphs

(i.e., symmetric (0,1) matrices) and weighted bipartite graphs.

Although MULTIMERGE and SINGLEMERGE are actually

the names of the algorithms devised for the subproblem in

Sect. 3, to facilitate our discussion, we will use them to

denote the SUMNETWORK algorithms equipped with them.

We implemented network merging algorithms in C??

and tested them on computer clusters equipped with

2.4 GHz AMD Opteron processors and a Linux 2.6 Kernel.

The survival test was implemented in Matlab and was

carried out on a mainstream Windows PC. In addition, we

also used the latest network visualization tool Gephi

(Bastian et al. 2009) (version 0.8.1-beta for windows), to

visualize network patterns.

5.1 Performance study on merging unweighted

bipartite network patterns

The gene-phenotype dataset (Robinson et al. 2008, 2010)1

is a typical unweighted bipartite graph where one set of

1 Publicly available at: http://human-phenotype-ontology.org. The

data for this work, downloaded on Feb 23, 2012, contains 1854 genes

and 5220 phenotypes.
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vertices are genes and the other are phenotypes. This type

of datasets can be represented as (0,1) matrices, and are

well known as transactional data (Han et al. 2011). We

revised HYPER (Xiang et al. 2011) code, which takes closed

itemsets generated by MAFIA (Burdick et al. 2005) as

input, to generate bipartite network patterns. We set

minimum support to be 0.05 % for MAFIA. Under this

minimum support level, MAFIA is supposed to generate all

closed itemsets, which correspond to all maximal bicliques

for the gene-phenotype dataset. Subsequently, our program

completed the conversion from closed itemsets to their

corresponding maximal bicliques.

To study the performance of MULTIMERGE and SINGLE-

MERGE, we created small sets of network patterns by

selecting the first k (k ranges from 1,000 to 10,000)

bipartite network patterns from the above output. In addi-

tion, we fixed b to be 90 and 70 %, two typical density

ratios, for MULTIMERGE and SINGLEMERGE.

We applied MULTIMERGE and SINGLEMERGE on these

network patterns. Figure 2 shows the running time of

MULTIMERGE and SINGLEMERGE. Figure 3 shows the num-

ber of summarized network patterns by MULTIMERGE and

SINGLEMERGE.

As expected, the running time in Fig. 2 and the number

of summarized network patterns in Fig. 3 increase as the

number of input network patterns increases. However, the

increase rates are not sharp. The time (between 2 and

6 min) for summarizing 10,000 network patterns is also

acceptable.

In addition, SINGLEMERGE (MULTIMERGE) with b = 0.7,

takes longer time and results in a smaller number of

summarized network patterns, than SINGLEMERGE (MULTI-

MERGE) with b = 0.9. This is quite understandable as a

smaller b implies more merge operations, resulting in more

compact network patterns as shown in Fig. 3.

Interestingly, we can see in Fig. 2, MULTIMERGE is

substantially faster than SINGLEMERGE, although their worst

case time complexities are the same, as indicated by

Corollary 2. This constant-factor difference is under-

standable as SINGLEMERGE tends to maintain a larger

number of records in Q; while MULTIMERGE clears out Q in

each iteration.

In Figs. 2 and 3, one can see that, in general, SINGLE-

MERGE produces a slightly smaller number of network

patterns than MULTIMERGE at the cost of a longer running

time. This suggests that the third objective function dis-

cussed in Sect. 3 for Problem 3s is a good heuristic for

Problem 3. If fast running time is more desirable than a

slightly more compact summarization result, MULTIMERGE

will be more preferable than SINGLEMERGE.

However, in this experiment when we continue

increasing input network patterns, SINGLEMERGE and

MULTIMERGE reach memory limitation before the running

time becomes unacceptably long. Thus, in order to sum-

marize the complete set of maximal bicliques, we use batch

processing, a strategy similar to what we have used for

Fig. 1 Merge network patterns
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handling large datasets in (Jin et al. 2010, 2012). In the

batch processing for this experiment, we separate the

complete set of maximal bicliques into subsets such that

each subset contains k bicliques or less. Then, we apply

SINGLEMERGE or MULTIMERGE separately on these subsets.

We can iteratively apply this approach on summarized

results until either the summarized network patterns are

compact enough (e.g., smaller than the batch size), or there

are only a few (or no) pattern number reductions between

two consecutive iterations.

For example, by applying the above batch processing of

SINGLEMERGE (b = 0.7, batch size k = 10,000), the com-

plete set of maximal biclique patterns of gene-phenotype

dataset (148,001 maximal bicliques) was summarized into

41,402 network patterns with total summarization time less

than 45 min. In the second round of summarization,

SINGLEMERGE was able to take all these 41,402 network

patterns on our computing platform and they were sum-

marized into 14,882 with total summarization time less

than 10 min. Among the 14,882 network patterns, we found

many interesting bipartite network patterns that may lead to

novel hypotheses between gene and phenotype relations. In

Table 1 we list three bipartite network pattern examples

that involve three common diseases.

5.2 Application study on merging weighted network

patterns

In the following we study our network merging approach

on weighted network patterns. Different from the above

study on unweighted bipartite patterns, we will focus on the

bioinformatics application work flow using our network

merging approach.

Our target is a gene coexpression network built on the

microarray dataset GSE2034 (Carroll et al. 2006; Wang

et al. 2005) by applying Spearman correlation on gene

expressions. To make our study less affected by noisy

information, we selected 7,446 gene symbols (and their

expressions) from 13,785 gene symbols in the GSE2034. A

gene is selected if it does not contain ‘///’ and has a unique

entry in the gene expression table. Thus, our gene coex-

pression network is a 7,446 9 7,446 symmetric matrix

with each entry value ranging between 0 and 1 (all values

were turned into absolute values).

In the following we will use some clique mining algo-

rithm to generate clique patterns for our summarization

study. For this purpose, we need to turn the graph into an

unweighted graph by setting up a threshold. By sorting

edge weights in ascending order as shown in Fig. 4, we

observe that the edge weight increase rate changes sharply

around 0.2–0.6. A majority of edges have weight less than

0.2, while a small portion of edges have weight more than

0.6. This suggests that 0.2–0.6 is a good range for choosing

a threshold to turn the gene coexpression network into an

unweighted graph. In this experiment we choose 0.6 as the

threshold.

There are a few maximal clique mining algorithms

available (e.g. Bron and Kerbosch 1973; Tsukiyama et al.

1977; Makino and Uno 2004; Johnson et al. 1988), among

which the Bron–Kerbosch algorithm (1973) is often

Table 1 Three bipartite network pattern examples selected from the result of applying batch processing of SINGLEMERGE on all maximal biclique

patterns of gene-phenotype datasets

Density Gene list Phenotype list

A network pattern

with breast

carcinoma

0.704545 APC, CASP8, CTNNB1, MET,

PDGFRL, PIK3CA, TP53, AXIN1

Abnormality of metabolism/homeostasis, autosomal dominant

inheritance, autosomal recessive inheritance, breast carcinoma,

conical teeth, decreased IgA, hepatocellular carcinoma,

heterogeneous, micronodular cirrhosis, somatic mutation,

subacute progressive viral hepatitis

A network pattern

with colon cancer

0.73 ALPL, AQP2, BRAF, BTD, CASR,

DGUOK, KRAS, MAP2K1,

MAP2K2, SMPD1

Autosomal dominant inheritance, colon cancer, constipation, failure

to thrive, feeding difficulties, muscular hypotonia, nystagmus,

seizures, splenomegaly, vomiting

A network pattern

with

osteoarthritis

0.727273 COL1A1, COL1A2, COL3A1,

COL5A1, FBN1, TNXB

Autosomal dominant inheritance, autosomal recessive inheritance,

bruising susceptibility, conical incisor, hyperextensible skin,

inguinal hernia, joint dislocation, joint laxity, mitral valve

prolapse, osteoarthritis, soft skin
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considered one of the best in practice. However, our

implementation suggested that it is not scalable enough to

handle this dataset in a reasonable time frame. Thus, we

resort to frequent itemset mining techniques again. By

treating the unweighted dataset as a transactional data, we

use MAFIA (minimum support 0.1 %) to obtain a set of

closed frequent itemsets and use our program to turn these

closed frequent itemsets into bicliques. Since this dataset is

actually a graph corresponding to a symmetric matrix, we

need to extract cliques from these bicliques. If the largest

clique in a biclique (the complete set of vertices that are in

common in both sets of a biclique) contains three or more

vertices, it is considered nontrivial and saved in our clique

mining results. Eventually, we obtained 633,724 nontrivial

cliques for the following study.

Then, we applied the batch processing of MULTIMERGE

(b = 0.7, batch size k = 10,000) on this large amount of

nontrivial cliques, and we surprisingly summarized them

into only 1,451 network patterns. We further applied

SINGLEMERGE on these patterns and summarized them into

1,130 network patterns. It is important to note that during

the summarization process, the density calculation is

based on the original weighted coexpression matrix. Thus,

edge weight information are fully considered in the

summarization process, and the cliques obtained above

can be regarded as ‘‘network backbones’’ guiding the

summarization.

We measure the biological significance of each sum-

marized pattern (that contains at least 10 genes) with

respect to breast cancer prognosis through survival tests as

described in the following. The expressions2 of genes in a

cluster are used as features to separate a given group of

patients into two subgroups by K-means algorithm (K = 2,

distance = cityblock, repeating 100 times). We use log-

rank test3 to determine the statistical significance (p value)

of patient survival time difference between these

subgroups.

The survival tests4 were conducted on two additional

datasets, the breast cancer dataset NKI (van de Vijver et al.

2002; van’t Veer et al. 2002) (295 patients) and GSE1456

(159 patients). Since many available gene-signatures are

not significant in subtype patient prognosis, especially for

the ER-negative subtype (Desmedt et al. 2008; Reyal et al.

2008; van’t Veer et al. 2002; Wirapati et al. 2008), we also

conduct survival tests on two subtypes of patients in the

NKI datasets, i.e., the lymph node positive (LN-positive)

subtype (144 patients) and the estrogen receptor negative

(ER-negative) subtype (69 patients), and ER-negative

subtype patients of GSE20345 (77 patients). In summary,

we conduct our survival tests on five cohorts of patients:

GSE1456, NKI, NKI LN-positive, NKI ER-negative,

GSE2034 ER-negative.

Among the 1,130 summarized network patterns, 242 are

significant (p \ 0.05) in at least one cohort survival test.

Among them, we have observed gene lists more significant

in NKI subtype (LN-positive, ER-negative) patient prog-

nosis than the well-known 70-gene signature (van’t Veer

et al. 2002). For example, Figs. 5 and 6 show two sum-

marized network patterns whose gene lists demonstrate

better LN-positive patient prognosis and ER-negative

patient prognosis, respectively, for the NKI dataset.

In order to understand the relationship between the 242

summarized network patterns, we continue merging them

using SINGLEMERGE. Since the process of SINGLEMERGE is

analogous to the hierarchical clustering, we visualized its

dendrogram in Fig. 7. We can obtain the macro clusters

from SINGLEMERGE by either specifying a density thresh-

old as we did in the above, or specifying the exact

number of final clusters (slightly revising SUMNETWORK).

By applying SINGLEMERGE (b = 0.4) on the 242 summa-

rized network patterns, we obtained 4 networks (listed in

Table 2).

We further queried the gene list of each network via

ToppGene6, and found that each network is highly enriched

with one or more gene ontology terms. The top enriched

gene ontology terms are listed in Table 2. It is interesting

to observe that the largest network is highly enriched with

immune system process, and the second largest network is

highly enriched with cell cycle process.

To further understand the macro relationship among the

four networks, we visualize them by Gephi (Bastian et al.

2009) , a state-of-the-art network visualization tool. Since

the gene coexpression network is fully connected, directly

visualizing the whole network is not helpful due to the

visual clutters caused by the excessive number of edges.

Thus, we use two parameters (e; �) to reduce visual clutters

as well as to highlight the four discovered network patterns.

An edge is visualized if and only if its weight is no less

than e: In addition, if a visualized edge connects two ver-

tices within a network (cluster), its original weight is used

for visualization, otherwise, � is used as the edge weight for

visualization.

2 If a gene name has multiple entries in the microarray, only an entry

with the maximum express level is considered. Gene names without

an entry (due to alias or other reasons) in the microarray will be

omitted.
3 Publicly available at: http://www.mathworks.com/matlabcentral/

fileexchange/20388.
4 For GSE1456 and GSE2034, there is not survival data but relapse

data. Therefore ‘‘no-relapse‘‘ is considered as survival for our

statistical study in this work.

5 All patients in GSE2034 are LN-Negative.
6 Website: http://toppgene.cchmc.org, visited on April 26, 2012,

‘‘correction’’ set to be ‘‘Bonferroni’’.
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We use ‘‘ForceAtlas 2’’7, a built-in layout of Gephi

0.8.1-beta, to visualize these networks and their interac-

tions. Since ForceAtlas 2 simulates repulsion and attraction

among network vertices based on topology and edge

information, it is a helpful layout tool to study network

interactions in our case. Figure 8 shows the visualization

result under parameters (e = 0.2, � ¼ 0:01). From Fig. 8

we can observe that network 2 (cyan) is highly connected

both within itself and with other networks. This suggests

Fig. 5 Left the Kaplan–Meier curves for the NKI LN-positive

patients which are separated into two subgroups by the 70-gene

signature. Right the Kaplan–Meier curves for the same group of

patients which are separated into two subgroups by applying

K-means on the gene-expressions of {MYBL2, MCM6, MCM2,

FOXM1, CCNB2, CDC20, UBE2C, SPAG5, EZH2, BUB1B,

DLGAP5, ZWINT, TRIP13, NDC80, PKMYT1, KIF11, EXO1,

TTK, MELK, CENPE, GINS1, KIF14, TPX2, PRC1, ASF1B,

TACC3, KIF4A, CEP55, DTL, HJURP, KIF20A, ORC6L, PBK,

KIF15, ASPM, CDCA8, KIF18B, RACGAP1} (this gene list belongs

to Network 3 in Table 2)

Fig. 6 Left the Kaplan–Meier curves for the NKI ER-negative

patients which are separated into two subgroups by the 70-gene

signature. Right the Kaplan–Meier curves for the same group

of patients which are separated into two subgroups by applying

K-means on the gene-expressions of {CAPNS1, PPP2R1A, PPP1CA,

RHOC, KDELR1, PLD3, ASNA1, CYBA, UBE2M, EIF2S3, BSG,

TXLNA, MGAT4B, SH3BGRL3} (this gene list belongs to Network

4 in Table 2)

7 Described on Gephi official blog: https://gephi.org/2011/forceatlas2-

the-new-version-of-our-home-brew-layout/, visited April 29, 2012.
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that immune system process could be a central biological

process that plays a very important role in breast carci-

noma. Interestingly, although network 1 has the highest

density value (determined by the summed edge weight and

its size) in Table 2, it looks the sparsest in Fig. 8. Our

intuition is further confirmed by the visualization shown in

Fig. 9 (e = 0.3, � ¼ 0:01). This suggests that compared

with the other three networks, the gene network enriched

by the extracellular matrix is more unevenly correlated

within itself.

6 Conclusion and future work

We showed that several variants of the network pattern

summarization problem such as Problems 1, 2, and 3 are all

NP-hard. To solve the problem efficiently, we proposed an

algorithmic framework which is based on optimal solutions

of a subproblem with respect to different objective func-

tions. We implemented novel algorithms for two of these

objective functions with an efficient merge operation. We

evaluated the performance of these algorithms through

extensive empirical study. The application study demon-

strates that our methods are suitable for multipurpose net-

work analysis in biomedical informatics. The proposed

algorithms are generic and can be applied to various bio-

medical datasets which can be modeled as weighted or

unweighted graphs or bipartite graphs. In the future, we

plan to use our algorithms in many biomedical applications

and perform in-depth analysis on the biomedical signifi-

cance of summarized patterns.

Fig. 7 The dendrogram of SINGLEMERGE on 242 summarized network

patterns

Table 2 Characters of the four networks

Density # of unique genes # of network patterns Toppgene enrichment (p value)

Network 1 (red) 0.509707 67 39 CC: extracellular matrix (1.113E-17)

Network 2 (cyan) 0.495775 153 135 BP: immune system process (5.433E-62)

Network 3 (green) 0.474597 80 38 BP: cell cycle process (9.662E-40)

Network 4 (magenta) 0.44619 66 30 BP: translational termination (2.368E-20),

CC: cytosolic ribosome (1.211E-22)

‘‘# of unique genes’’ is the number of genes obtained by merging all network patterns associated with this network (cluster)

CC cellular component, BP biological process

Fig. 9 The four network patterns visualized under parameters

(e = 0.3, � ¼ 0:01)

Fig. 8 The four network patterns visualized under parameters

(e = 0.2, � ¼ 0:01)
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Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S

(2008) The human phenotype ontology: a tool for annotating and

analyzing human hereditary disease. Am J Hum Genet

83(5):610–615

Robinson PN, Mundlos S (2010) The human phenotype ontology.

Clin Genet 77(6):525–534

Seidman SB (1983) Network structure and minimum degree* 1.

Social Netw 5(3):269–287

Seidman SB, Foster BL (1978) A graph-theoretic generalization of

the clique concept. J Math Sociol 6(1):139–154

Slink RS (1973) An optimally efficient algorithm for the single-link

cluster method. Comput J 16(1):30–34

Stoer M, Wagner F (1997) A simple min-cut algorithm. J ACM

44(4):585–591

Tsukiyama S, Ide M, Ariyoshi H, Shirakawa I (1977) A new

algorithm for generating all the maximal independent sets. SIAM

J Comput 6:505

Uppalapati P, Xiang Y, Huang K (2010) Predicting prognostic

markers for glioma using gene co-expression network analysis.

In: Proceedings of the first ACM international conference on

bioinformatics and computational biology, pp 546–551

van de Vijver MJ, He YD, van ’t Veer LJ et al (2002) A gene-

expression signature as a predictor of survival in breast cancer.

New Engl J Med 347(25):1999–2009

van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression

profiling predicts clinical outcome of breast cancer. Nature

415(6871):530–536

Wang Y, Klijn PGM, Zhang Y et al (2005) Gene-expression profiles

to predict distant metastasis of lymph-node-negative primary

breast cancer. Lancet 365(9460):671–679

Wirapati P, Sotiriou C, Kunkel S et al (2008) Meta-analysis of

gene expression profiles in breast cancer: toward a unified

Merging network patterns: a general framework to summarize biomedical network data 115

123

http://dx.doi.org/10.1007/s13721-012-0005-7
http://dx.doi.org/10.1007/s13721-012-0005-7


understanding of breast cancer subtyping and prognosis signa-

tures. Breast Cancer Res 10(4):R65

Xiang Y, Zhang CQ, Huang K (2012) Predicting glioblastoma

prognosis networks using weighted gene co-expression network

analysis on tcga data. BMC Bioinform 13(Suppl 2):S12

Xiang Y, Jin R, Fuhry D, Dragan FF (2011) Summarizing transac-

tional databases with overlapped hyperrectangles. Data Min

Knowl Discov 23(2):215–251

Xiang Y, Payne P, Huang K (2012) Transactional database transfor-

mation and its application in prioritizing human disease genes.

IEEE/ACM Trans Comput Biol Bioinform 9(1):294–304

Zhang J, Xiang Y, Ding L et al (2010) Using gene co-expression

network analysis to predict biomarkers for chronic lymphocytic

leukemia. BMC Bioinform 11(Suppl 9):S5

116 Y. Xiang et al.

123


	Merging network patterns: a general framework to summarize biomedical network data
	Abstract
	Introduction
	Related work
	Network partition
	Clique or biclique enumeration
	Pattern summarization
	Pattern growing

	An algorithmic framework for summarizing network patterns
	Fast algorithms for network summarization
	Empirical study
	Performance study on merging unweighted bipartite network patterns
	Application study on merging weighted network patterns

	Conclusion and future work
	Acknowledgments
	References


