
ORIGINAL ARTICLE

Threshold-based feature selection techniques for high-dimensional
bioinformatics data

Jason Van Hulse • Taghi M. Khoshgoftaar •

Amri Napolitano • Randall Wald

Received: 16 November 2011 / Revised: 12 March 2012 / Accepted: 12 March 2012 / Published online: 22 May 2012

� Springer-Verlag 2012

Abstract Analysis conducted for bioinformatics appli-

cations often requires the use of feature selection meth-

odologies to handle datasets with very high dimensionality.

We propose 11 new threshold-based feature selection

techniques and compare the performance of these new

techniques to that of six standard filter-based feature

selection procedures. Unlike other comparisons of fea-

ture selection techniques, we directly compare the feature

rankings produced by each technique using Kendall’s Tau

rank correlation, showing that the newly proposed tech-

niques exhibit substantially different behaviors than the

standard filter-based feature selection methods. Our

experiments consider 17 different bioinformatics datasets,

and the similarities of the feature selection techniques are

analyzed using the Frobenius norm. The feature selection

techniques are also compared by using Naive Bayes and

Support Vector Machine algorithms to learn from the

training datasets. The experimental results show that the

new procedures perform very well compared to the stan-

dard filters, and hence are useful feature selection meth-

odologies for the analysis of bioinformatics data.

Keywords Threshold-based feature selection �
Bioinformatics � Frobenius norm � Kendall’s Tau rank

correlation � Correlation matrix � Feature selection

1 Introduction

Data mining and machine learning techniques have become

increasingly important in the field of bioinformatics as the

amount of data collected and stored has grown dramati-

cally. As in other application domains that rely on data

mining techniques, there is often too much data for human

analysis—hundreds if not thousands of features are being

examined, and it is often very difficult to draw conclusions

through direct examination of the data. A variety of bio-

logical data sources are amenable to bioinformatic analy-

sis; for example, protein sequences (Radivojac et al. 2004)

and properties (Lee et al. 2007; Gupta et al. 2008), genetic

codes (Sun et al. 2006; Akbani 2005) and mass spectros-

copy results (Li et al. 2004). Of particular interest is the

problem of analyzing microarray data. Each microarray

consists of a so-called ‘‘gene chip’’ with thousands of

probes for different genes; a DNA or RNA sample is

placed on the chip, and each gene glows corresponding to

how active that gene was in the sample (Piatetsky-Shapiro

2003).

One common and pernicious problem often encountered

in bioinformatics datasets is the overabundance of features

or attributes. Feature selection methods are widely used to

reduce the number of features. Given a dataset D with a set

of features F ¼ ðX1; . . .;XmÞ; the objective of feature

selection is to select a subset of features F0 ¼ ðXj1 ; . . .;XjpÞ
such that p � m and F

0 satisfies the particular conditions

of the task at hand. In a classification problem, for exam-

ple, the objective may be to extract the set of features that
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maximize the classification accuracy of the learner. The

benefits of feature selection include faster model training,

reduced susceptibility to overfitting, offsetting the harmful

effects of the curse of dimensionality, and reducing storage,

memory, and processing requirements during data analysis

(Guyon and Elisseeff 2003). The obvious drawback of these

techniques, however, is the possibility that critical attributes

may be omitted, thereby hurting performance.

We propose a set of threshold-based feature selection

(TBFS) techniques which substantially extend the FAST

algorithm proposed by Chen and Wasikowski (2008).

FAST is based on the area under a ROC curve (AUC)

generated by moving the decision boundary of a single

feature classifier with thresholds placed using an even-bin

distribution. More specifically, each attribute is partitioned

into bins with an equal number of examples, and within

each bin, the true positive and false positive rates are cal-

culated. The area under the ROC curve is then computed

across all bins. TBFS pairs each attribute with the class,

normalizes the attribute to have a range between 0 and 1,

and classifies examples as either positive or negative at

each possible threshold. A variety of metrics x, which

provide the relative importance of the attribute vis-à-vis the

class, are then calculated. TBFS is much more general than

the procedure proposed by Chen and Wasikowski. FAST

calculates a ROC curve by binning the attribute, while

TBFS does not require discretization, making it more

precise and eliminating the often vexing question of how

wide the bins should be. Further, there are 11 different

versions of TBFS which are based on 11 different metrics

for feature ranking. Another useful property of TBFS is

that it can easily be extended to incorporate additional

metrics.

Feature selection methods are often considered in the

context of classification, but they are useful in other situ-

ations as well. In gene expression array studies, for

example, biologists might apply feature selection tech-

niques to identify which genes are most important.

Therefore, in addition to considering the resulting classi-

fication performance of the different filter-based feature

selection techniques we analyze, this study also directly

compares the attribute rankings produced by these methods

using the Kendall’s Tau rank correlation statistic (see

Sect. 6). By measuring the rank correlation between the

attribute rankings, it is easier to discern which techniques

produce similar results regardless of the ultimate use of the

data. For example, feature selection techniques A and B

may result in similar accuracy when used in conjunction

with classifier Z, but will the same results hold if classifiers

X or Y are used? In such a situation, it is not clear if feature

selection techniques A and B are truly similar for all

classifiers or only for classifier Z. In order to better

understand the true similarities among feature selection

techniques, the attribute rankings are directly compared to

one another. While other studies have considered the fea-

ture rankings produced by feature selection techniques (see

Sect. 2 for further discussion), to the best of our knowl-

edge, our study is unique in this respect.

In summary, the main contribution of this work, which

is a substantial expansion of the work published in IRI

2011 (Van Hulse et al. 2011), is as follows. First, the 11

versions of TBFS are described in detail. The correlation in

attribute rankings produced by these 11 versions are ana-

lyzed and compared to those produced by six commonly

used filter-based feature selection techniques using 17

different high-dimensional bioinformatics datasets. All 17

feature selection methods (Table 1) are also evaluated

using two different learning algorithms, Naive Bayes and

Support Vector Machines.

The remainder of this work is organized as follows.

Section 2 describes related work, while six common filter-

based feature selection techniques are presented in Sect. 3.

Our proposed TBFS methodology is presented in Sect. 4.

The datasets used in the experiments are described in Sect.

5, while Kendall’s Tau rank correlation is explained in

Sect. 6. Experimental results are provided in Sect. 7 fol-

lowed by conclusions and directions for future work in

Sect. 8.

2 Related work

Much of the research on microarray analysis has focused

on improving classification models used to categorize

unknown samples as ‘‘healthy’’ or ‘‘sick.’’ Since the data

have literally thousands of features, with commonly-used

sets having 2,000 (Alon et al. 1999) and 7,129 (Golub et al.

1999) features each, feature selection is a necessity. A

variety of techniques have been employed for the selection

step. Some previous researchers utilize the standard array

of feature ranking and subset evaluation filters and wrap-

pers, coupled with traditional data mining techniques; these

either analyze filters alone (Furey et al. 2000; Zhang et al.

2001; Xing et al. 2001; Kamal et al. 2009) or compare

filters and wrappers (Inza et al. 2004; Wang et al. 2005) or

filters, wrappers and principal component analysis (Model

2001). Others employ genetic algorithms (Li et al. 2001;

Jirapech-Umpai 2005) or minimum redundancy (Ding and

Peng 2003; Yu 2004; Peng et al. 2005) to find the optimal

subset of genes for classification purposes. And some

propose novel feature selection techniques specifically

designed for microarray analysis (Peddada et al. 2003;

Wang et al. 2005).

One common feature of previous research is that the

quality of the feature selection techniques is evaluated by

testing their ability to classify the data. The feature
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rankings themselves might undergo some ad hoc com-

parisons (Wang et al. 2005; Li et al. 2001; Peddada et al.

2003; Jirapech-Umpai 2005), but no systemic study

comparing feature selection algorithms on their own has

been conducted. The closest the literature comes to this

approach is in evaluating feature clustering techniques

(Datta 2003; Brown et al. 2000; Au et al. 2005); these

also treat genes as features while focusing specifically on

finding novel genes which are especially relevant to the

underlying biological problem. Kalousis et al. (2007)

measure the stability and robustness of feature selection

methods relative to perturbations of the training set.

They consider, among other things, Spearman’s rank

correlation between the feature ranking lists produced by

the same learner for different samples of the training

dataset. This work differs from ours in that we consider

the correlation between two different filters using the

same dataset, while (Kalousis et al. 2007) looks at the

correlation for a single filter over different samples of

the same dataset. Nonetheless, the idea of evaluating the

intrinsic feature ranking is the same. Stability of feature

selection techniques is also considered in other work

(Davis et al. 2006; Křı́žek et al. 2007; Kunchev 2007).

Saeys et al. (2008) utilizes an ensemble of feature

selection methods to improve stability of the selected

attribute set.

Previous work (Van Hulse et al. 2009) presented very

preliminary findings using 3 of the 11 techniques discussed

in this work. This work is a substantial extension of this

previous work since it not only proposes eight additional

TBFS techniques, but also dramatically expands the num-

ber of datasets in the empirical study from 5 to 17. Further,

this previous work was focused on feature selection with

imbalanced data, and in accordance with that objective we

examined the impact of four different data sampling

methods on the proposed techniques. In this work, though

some of the datasets are imbalanced (see Table 2), we do

not consider data sampling but instead concentrate on

exploring the relationships between the different filters.

Table 1 List of 17 Filter-based feature selection techniques

(including 11 new threshold-based procedures)

Abbreviation Name

Standard filter-based feature selection techniques

v2 v2 statistic

GR Gain ratio

IG Information gain

RF ReliefF

RFW ReliefF-weight by distance

SU Symmetric uncertainty

Threshold-based feature selection techniques

F F-measure

OR Odds ratio

Pow Power

PR Probability ratio

GI Gini Index

MI Mutual information

KS Kolmogorov–Smirnov statistic

Dev Deviance

GM Geometric mean

AUC Area under the ROC curve

PRC Area under the precision-recall curve

Table 2 Bioinformatics

datasets
Dataset name Abbreviation Attributes (#) Total (#) Positive (#) Positive(%)

ECML pancreas ECML 27,680 90 8 8.9

Central nervous system CNS 7,130 60 21 35.0

Colon Colon 2,001 62 22 35.5

DLBCL tumor Tum 7,130 77 19 24.7

Lymphoma Lymph 4,027 96 23 24.0

DLBCL DLB 4,027 47 23 48.9

Lung cancer LC 12,534 181 31 17.1

Acute lymphoblastic leukemia ALL 12,559 327 79 24.2

Prostate Pros 12,601 136 59 43.4

MLL leukemia MLL 12,583 72 20 27.8

Breast cancer Brst 24,482 97 46 47.4

All AML leukemia AAL 7,130 72 25 34.7

Translation initiation Tran 925 13,375 3,312 24.8

Ovarian cancer Ov 15,155 253 91 36.0

DLBCL NIH NIH 7,399 240 103 42.9

Lung Lung 12,601 203 65 32.0

Brain tumor Brain 27,679 90 23 25.6
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Finally, this previous work did not utilize classifiers to

compare the performances of the different filters.

3 Standard filter-based feature selection techniques

The standard filter-based feature ranking techniques con-

sidered in this work include chi-squared (Witten and Frank

2005), information gain (Hall and Holmes 2003; Quinla

1993; Witten and Frank 2005), gain ratio (Quinla 1993;

Witten 2005), two versions of ReliefF (Kononenk 1994;

Kira and Rendell 1992), and symmetric uncertainty (Hall

and Holmes 1999; Witten 2005). All of these feature

selection methods are available within Weka (Witten

2005). Since these methods are widely known, we provide

only a brief summary; the interested reader should consult

with the included references for further details.

The Chi-squared method (v2) utilizes the v2 statistic to

measure the strength of the relationship between each

independent variable and the class. Information gain (IG)

determines the significance of a feature based on the

amount by which the entropy of the class decreases when

considering that feature. Gain Ratio (GR) is a refinement of

IG, adjusting for features that have a large number of

values. GR attempts to maximize the information gain

of the feature while minimizing the number of values.

Symmetric uncertainty (SU) also adjusts IG to account for

attributes with more values, and normalizes its value to lie

in the range [0, 1]. These techniques utilize the method of

Fayyad and Irani (1992) to discretize continuous attributes,

and all four methods are bivariate, considering the rela-

tionship between each attribute and the class, excluding the

other independent variables.

Relief randomly samples an example from the data and

finds its nearest neighbor from the same and opposite class.

The values of the attributes of the nearest neighbors are

compared to the sampled instance and used to update rel-

evance scores for each attribute. This process is repeated

for m examples, as specified by the user. ReliefF (RF)

extends Relief by handling noise and multiclass data sets

(Kononenk 1994). RF is implemented within Weka (Witten

2005) with the ‘‘weight nearest neighbors by their dis-

tance’’ parameter set to false. ReliefF-W (RFW) is similar

to RF except the ‘‘weight nearest neighbors by their dis-

tance’’ parameter is set to true.

4 Threshold-based feature selection techniques

This section describes the TBFS method for feature

ranking. Similar to the v2, IG, GR and SU, TBFS is a

bivariate procedure; each attribute is evaluated against the

class, independent of all other features in the dataset. After

normalizing each attribute to have a range between 0 and 1,

simple classifiers are built for each threshold value t 2
½0; 1� according to two different classification rules. For

classification rule 1, examples with a normalized value

greater than t are classified P while examples with a nor-

malized value less than t are classified as N (assuming each

instance x is assigned to one of two classes cðxÞ 2 fP;Ng).
For classification rule 2, examples with a normalized value

greater than t are classified N while examples with a nor-

malized value less than t are classified as P. Two different

classification rules must be considered to account for the

fact that for some attributes, large values of the attribute

may have a greater correlation with the positive class,

while for other attributes, large values of the attribute may

have a greater correlation with the negative class. Metric x
is calculated using the formulas provided in Algorithm 1

either at each threshold t or across all thresholds for both

classification rules. Finally, the metric resulting from the

classification rule which provides the largest value is

used as the relevancy measure for that attribute relative to

metric x.

Many of the metrics x (e.g., AUC, PRC, GM, F, KS) are

primarily used to measure the performance of classification

models, using the posterior probabilities computed by such

models to classify examples as either negative or positive

depending on the classification threshold. The normalized

attribute values can be thought of as posterior probabilities,

e.g., pðP j xÞ ¼ X̂jðxÞ for classification rule 1, and the

metrics x are computed against this ‘‘posterior’’. Intui-

tively, attributes where positive and negative examples are

evenly distributed along the distribution of X produce weak

measures x and poor relevancy scores in a similar manner

that poor predictive models have positive and negative

examples evenly distributed along the distribution of the

posterior probability produced by the model. Note further

that TBFS can easily be extended to include additional

metrics. As mentioned previously, TBFS is a substantial

extension of the FAST algorithm (Chen and Wasikowski

2008). FAST only utilizes the area under the ROC curve,

and Chen and Wasikowski discretize Xj when computing

the AUC.

For additional information on the AUC, PRC, KS, GM,

and F metrics, see Seliya et al. (2009), Witten (2005),

Conove (1971). The F-measure uses the tunable parameter

b to weight precision (PRE) and recall or true positive rate

(TPR). In this work, b = 1 is used, and hence F is the

harmonic mean of recall and precision. The Gini index was

introduced by Breiman et al. (1984). Pow, OR and PR were

used by Forman (2003) in the context of feature selection

for text categorization. Additional information on deviance

can be found in Khoshgoftaar et al. (2002) and MI is

50 J. Van Hulse et al.

123



utilized in Battiti (1994). Additional derivations for the KS

metric, which is relatively less common than some of the

other metrics, and GI, whose formula in Algorithm 1

underwent a substantial transformation from what is nor-

mally described, are provided in the appendix (Sect. 8).

5 Datasets

The datasets utilized in our experiments are listed in

Table 2. All of the datasets come from the bioinformatics

application domain, and all but two (Translation and

Ovarian) are microarray expression datasets. Table 2

provides the number of attributes, number of total exam-

ples, number of positive examples and the percentage of

positive examples for each dataset. Note that all of the

datasets used in this work have a binary dependent

variable. Further note that these datasets exhibit a wide

distribution of class skew (i.e., the percentage of positive

examples).

For the ovarian cancer dataset (Petricoin III et al. 2002),

the researchers took serum samples from patients with and

without cancer and ran them through a mass spectroscopy

machine, giving them 15155 separate mass/charge values.

That is, all the proteins in the sample were ionized and

deflected through a magnetic field such that proteins with a

Fig. 1 Algorithm 1: Threshold-based feature selection algorithm

Threshold-based feature selection techniques 51

123



different ratio of mass to charge would behave differently

and thus be detected separately. Thus, the different mass/

charge values reflect the relevant abundance of different

proteins in each serum sample.

The Translation dataset (Pedersen and Nielsen 1997) is

based on a set of mRNA sequences for different genes

found in vertebrates and plants, each of which is annotated

with its translation initiation point (the ATG which repre-

sents the start of the gene). To generate features for a given

instance, the upstream and downstream parts of the

sequence (that is, the parts before and after the translation

initiation point) are searched for all 20 amino acids and the

stop codon, as well as for all two-amino-acid sequences

(and for the pairs which include the stop codon). The

number of times each amino acid or pair of amino acids is

found is the value for that feature.

6 Kendall’s Tau rank correlation

Kendall’s Tau rank correlation statistic (Conove 1971) is

used to measure the degree of similarity between the

attribute rankings of two techniques. Suppose the rankings

r1 and r2 are being compared. For each attribute j in the

dataset there is an ordered pair (r1(j), r2(j)) where r1(j) and

r2(j) are the rankings of attribute j produced by r1 and r2.

For each pair of attributes (j1, j2) the rankings (r1(j1), r2(j1))

and (r1(j2), r2(j2)) are compared and given a value of ?1 or

-1 depending on whether the two rankings are concordant

or discordant. Assuming that both r1 and r2 do not contain

tied ranks, a pair of attributes (j1, j2) is considered

concordant if r1(j1) [ r1(j2) and r2(j1) [ r2(j2) or r1(j1) \
r1(j2) and r2(j1) \ r2(j2). Otherwise, (j1, j2) are said to be

discordant. There are a total of
nðn�1Þ

2
pairs of attributes. If S

is the sum of the scores for each pair of attributes as

determined by their concordance or discordance, Kendall’s

Tau is calculated as s ¼ S= nðn�1Þ
2

: If all pairs are concor-

dant, then the two rankings are in complete agreement and

s = 1. If the two rankings are exactly opposite, (i.e.,

8 j; r2ðjÞ ¼ n� r1ðjÞ þ 1), then all pairs will be discordant

and s = -1. If s is close to zero, then the correlation

between the two rankings is very weak.

7 Empirical results

7.1 Correlation among feature ranking methods

Figure 1 presents the correlation matrix for the 17 feature

selection techniques using Kendall’s Tau rank correlation.

The entries above the diagonal represent s averaged over

all 17 datasets, while entries below the diagonal represent

the standard deviation of s over the same datasets. For

example, the average rank correlation between v2 and GR

is 0.92 with a standard deviation of 0.10. Though we

present some details for a few individual datasets below, it

is impractical and redundant to present a separate corre-

lation matrix for each dataset, so we chose to present

Fig. 1 Correlation matrix for 17 filter-based feature selection techniques
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summarized information in Fig. 1. If the mean correlation

is greater than 0.9, then the cell in Fig. 1 is in bold text. For

entries with a mean correlation between 0.5 and 0.9, then

cell background is highlighted.

Figure 1 is divided into four quadrants. The top-left

quadrant can be used to compare the six standard filter-

based feature selection techniques, while the bottom-right

quadrant compares the 11 new TBFS techniques to one

another. Among the standard filters there are clearly two

distinct groups—in the first group, GR, IG, v2 and SU are

all highly correlated, while in the second group, RF and

RFW are moderately correlated. The correlation among the

new TBFS techniques is generally moderate or low. PR and

GI are the two TBFS filters that are least correlated with the

nine other techniques, and therefore these two filters pro-

vide the most divergent attribute rankings compared to the

other filters. The six TBFS filters GM, AUC, PRC, KS, Dev

and MI form a cluster with average correlations between

0.5 and 0.9, though even among these techniques, there is

substantial divergence in the attribute rankings with cor-

relations often below 0.75. We conclude that while there is

a moderate degree of correlation among some of the 11

new TBFS techniques, each technique provides a different

interpretation of the relative value of the features.

The top-right and bottom-left quadrants can be used to

compare the six standard filter-based techniques to the 11

new TBFS techniques. The top-right quadrant is the mean

correlation over all 17 datasets, while the bottom-left

quadrant is the standard deviation of s over the 17 datasets.

It is important to understand if the information provided by

the 11 TBFS techniques is different than that provided by

the standard techniques—if they are highly correlated, then

there is no need to consider 11 new procedures for feature

selection. Notably, all 11 TBFS techniques exhibit very

low correlation with the standard techniques. Among the

66 pairwise correlations, none were greater than 0.5, and in

fact, the highest correlation was 0.36 (between PRC and

RF). GI and PR in particular were the least correlated to the

six standard techniques, with s\ 0.2.

While Fig. 1 presented the average correlations between

the 17 filter-based feature selection techniques, further

analysis is provided below to demonstrate how this corre-

lation matrix varies depending on the dataset. The below-

diagonal entries provide some information on variability by

showing the standard deviation of each individual corre-

lation, but this is incomplete. One option is to present all 17

correlation matrices individually, but this can be redundant

and difficult to analyze. Instead, we use the Frobenius (or

Hilbert–Schmidt) norm (Golub and Van Loan 1996) F to

measure the difference between correlation matrices gen-

erated for each dataset and the ‘‘average’’ correlation over

all 17 datasets (from Fig. 1). Let Cd be the 17 9 17 cor-

relation matrix for dataset d. Entry Ci,j
d is the Kendall’s Tau

rank correlation between filters fi and fj for dataset d. Let �C

represent the average correlation matrix over the 17 data-

sets, i.e., �Ci;j ¼ 1
17

P17
d¼1 Cd

i;j in Fig. 1.

The distance between correlation matrix Cd and �C using

the Frobenius norm F is calculated as:

F d ¼jjCd � �Cjj2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X17

i¼1

X17

j¼1

Cd
i;j � �Ci;j

� �2

v
u
u
t :

Since the correlation matrices are symmetric with 1 on

the diagonal entries, the Frobenius norm simplifies to

F d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
X17

i;j¼1;i\j

Cd
i;j � �Ci;j

� �2

v
u
u
t :

Table 3 presents the Frobenius norm for the correlation

matrix generated from each individual dataset, compared to

the average correlation from Fig. 1. The dataset which

generated the most dissimilar correlation matrix from the

mean, as measured by the Frobenius norm, is Translation,

with F ¼ 4:65: Figure 2 presents the correlation matrix for

this dataset. Note that in Fig. 2, the below-diagonal entries

are blank—since this figure considers only a single dataset,

there is no standard deviation of s. Comparing Figs. 1

and 2, there is substantially higher correlation between the

six standard filters and the 11 proposed TBFS filters in

Fig. 2. In particular, for this dataset, Pow, MI, KS, Dev,

GM, AUC and PRC almost all have a correlation of more

Table 3 Distance (Frobenius norm) from the mean by dataset

Dataset Frobenius norm distance

to the mean correlation matrix

ECML 3.60

CNS 2.20

Colon 1.31

Tum 1.22

Lymph 1.62

DLB 1.26

LC 2.72

ALL 1.45

Pros 1.35

MLL 1.57

Brst 2.03

AAL 0.87

Tran 4.65

Ov 3.88

NIH 4.14

Lung 2.13

Brain 2.24
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than 0.5 with v2, GR, IG and SU. On the other hand, the

correlation relationships among the six standard filters

is very similar to the average, though the pairwise

relationships between v2, GR and IG are somewhat less

strong than in the average case.

Figure 3 shows the correlation matrix among filtering

techniques for the Lung dataset. From Table 3, this par-

ticular dataset has a Frobenius norm of 2.13, which is very

close to the median (2.03) and average (2.25) values. The

correlation structure presented in this figure is more clo-

sely aligned with that of Fig. 1. There are no correlations

above 0.5 in the top right quadrant, though in general the

correlations tend to be higher than average. Similar rela-

tionships are observed for the six standard filters, and

generally speaking, patterns of correlation for the 11

TBFS techniques are similar to that of Fig. 1. Recall that

15 of the 17 datasets considered in this work are micro-

array expression datasets, with the exceptions being

Translation and Ovarian. Note that in Table 3, these

datasets generate two of the most divergent correlation

matrices from the group average (with the highest and

third-highest F of all datasets). One possible reason for

the divergence of the two non-microarray datasets from

the overall average could be because of how the filters

perform on the irrelevant features. On the microarray sets,

features represent genes which are active or inactive in a

given cell. If a gene is not relevant to the class, it implies

that this gene performs some other function in the cell

which is unrelated to the class. Thus, one would expect

this gene to be at equal levels in all instances, regardless

of their class. There will be some variation, and the gene’s

level might depend on some unrelated factor which might

vary significantly among examples; nonetheless, irrele-

vant features would be mostly constant (either low or

high) across all instances. For the non-microarray sets, the

features consist of either the presence of short (3 to 6

character) sequences in approximately 200 character long

strings (Translation) or mass/charge values which may or

may not correlate to an extant protein, let alone one

pertaining to the class (Ovarian). In each of these cases,

many of the irrelevant features will almost always have

values of 0; if there is no underlying reason for a given

sequence to be found in a string, or a given mass/charge

value to describe a protein, it is very unlikely that it will

be found in a given instance. Plus, even for the instances

which do randomly have hits, the distribution will not be

the same as for the microarray random variation. It is

possible that two filters which perform equally well on the

relevant features are only equivalent on the irrelevant

ones when they match one of these profiles (e.g., micro-

array or non-microarray irrelevant features); with the

other profile, new differences arise. Enough of these

differences, in both directions, would explain the large

values of the Frobenius norms.

We omit the presentation of the correlation matrix of the

dataset with the smallest Frobenius distance from the mean

correlation matrix (dataset AAL, with F ¼ 0:87) since it is

very similar to the mean correlation matrix already shown

in Fig. 1.

In Table 3, F varies between 0.87 and 4.65, with an

average value of 2.25 and a standard deviation of 1.15. To

gain a further understanding of what these distances rep-

resent, we can calculate the maximum Frobenius norm

Fmax as follows. Let

Fig. 2 Correlation matrix for the translation dataset
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Cmax
i;j ¼

1 if i ¼ j
1 if �Ci;j\0:5 and i 6¼ j
0 if �Ci;j� 0:5 and i 6¼ j

8
<

:

In other words, for entries on the diagonal, Cmax
i;j ¼ 1: For

off-diagonal elements Cmax
i;j ¼ arg maxðj x� �Ci;j jÞ; x 2

f0; 1g: Then

Fmax ¼ jjCmax � �Cjj2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X17

i¼1

X17

j¼1

Cmax
i;j � �Ci;j

� �2

v
u
u
t

¼ 14:22:

In other words, the maximum distance from the mean

correlation matrix �C is 14.22.1

We would also like to understand if the Frobenius norms

generated by our 17 datasets represent significant rela-

tionships, or are the correlations simply random. Forty

random correlation matrices were generated, where the

entries were between 0 and 1 with uniform distribution

(entries on the diagonal were set to 1, and the matrix was

symmetric, i.e., if entry i, j was randomly set to 0.63, then

entry j, i was also set to 0.63). Then we calculated the

Frobenius norm distance for each of these 40 random

matrices to the mean matrix generated by our 17 datasets
�C: Table 4 shows the Frobenius norms (vis-à-vis �C) for the

40 random matrices, along with the average and standard

deviation. Comparing this data to that of Table 3, all of the

randomly generated matrices are at substantially further

distances than all 17 of the correlation matrices, where the

largest Frobenius norm is 4.65. The distances for the ran-

dom matrices are generally 2 or 3 times greater than those

in Table 3.

We can also perform statistical tests to validate the

hypothesis that the mean Frobenius norm for the random

matrices F ran ¼ 0; in other words, that in actuality the

random matrices have a distance of 0 from �C and that the

data in Table 3 is simply due to random chance. Clearly

this hypothesis is rejected since the t-statistic is 6:97

0:36=
ffiffiffiffi
40
p ¼

123:00: This data suggests that the correlations among the

17 filter-based feature selection techniques is significantly

different than random—in other words, the variations in

correlations are not simply random but represent true

relationships among the techniques.

7.2 Classification results

This section compares the 17 feature selection techniques

using two different learners, Naive Bayes (NB) and

Support Vector Machines (SVM). For SVM, the com-

plexity constant c was changed from 1.0 to 5.0 and the

buildLogisticModels parameter was enabled. These

parameter changes were made after preliminary experi-

mentation showed that they generally improved the per-

formance of the SVM learner. The default parameters in

Weka were used for the NB learner. Both learners were

built in Weka using 10-fold cross validation. The dataset is

Fig. 3 Correlation matrix for the Lung dataset

1 More precisely, 14.22 is the largest distance for a correlation matrix

with non-negative entries. While some correlation matrices do have

negative entries, this is a relatively uncommon occurrence and we

hence exclude this possibility.
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partitioned into 10 disjoint, equal-sized subsets, and nine of

the partitions are combined to form the training data, while

the hold-out partition is used as test data. Each feature

selection method is applied to the training data, and a

classifier is built using the entire training dataset with a

reduced set of features. The process is repeated with each

partition as the test data. Further, to offset any anomalies

that might be due to the cross-validation process, the entire

procedure was repeated four times. The classification

results were aggregated across each run of cross validation,

and averaged over the four runs.

For these experiments, the ‘‘best’’ 25 features according

to each technique were selected for classifier construction.

Other values were attempted (e.g., 10, 50, 100, 1 %) but 25

generally performed well for many different datasets.

Generally speaking, as the number of features increased,

the relative performances of the filters converged as most

of the filters select most of the important features given a

large enough value for this parameter. Therefore, it is

generally more useful to compare techniques with a smaller

number of selected features, and since both NB and SVM

performed well with 25 selected features, we present those

results here.

The learners are evaluated using the area under the ROC

curve, denoted AROC. This should not be confused with

the TBFS filter which utilizes the area under the ROC

curve, which we denote as AUC. The principals are similar,

but the AROC uses the posterior probability calculated by

the learner (NB or SVM) to compute the true positive and

false positive rates across decision thresholds. The AROC

is a commonly used measure of learner performance

(Witten 2005).

Tables 5 and 6 present the results using the NB learner,

while Tables 7 and 8 are for the SVM learner. First, the

average AROC for each dataset is provided, followed by a

summary of the performance for each filter, categorizing

the datasets as ‘‘very easy’’, ‘‘easy’’, ‘‘moderate’’ and

‘‘difficult’’ to learn. Note that this categorization changes

slightly depending on the learner used. Averaged over all

datasets, the TBFS filter with GM obtained the highest

Table 4 Frobenius norm distances to �C for 40 randomly generated correlation matrices

6.23 6.93 7.43 6.43 7.08 6.64 7.18 6.80 7.25 6.88

6.39 6.96 7.44 6.54 7.09 6.65 7.18 6.82 7.30 6.92

6.40 6.97 7.56 6.59 7.12 6.77 7.18 6.84 7.37 7.38

6.42 7.07 7.60 6.59 7.17 6.78 7.24 6.88 7.37 7.41

Mean = 6.97, standard deviation = 0.36

Table 5 Classification results by dataset, NB learner

Filter LC Ov DLB ALL AAL MLL Lung Tum Lymph Brain Colon ECML Tran Pros Brst CNS NIH

v2 1 0.993 0.987 0.986 0.979 0.969 0.963 0.927 0.911 0.914 0.876 0.745 0.906 0.710 0.651 0.624 0.574

GR 0.996 0.995 0.989 0.978 0.975 0.922 0.821 0.915 0.912 0.817 0.846 0.876 0.722 0.694 0.638 0.600 0.578

IG 1 0.993 0.987 0.986 0.979 0.970 0.962 0.920 0.896 0.924 0.880 0.873 0.909 0.685 0.641 0.651 0.580

RF 0.987 0.988 0.991 0.985 0.968 0.963 0.960 0.968 0.851 0.766 0.844 0.873 0.764 0.664 0.733 0.573 0.573

RFW 0.987 0.989 0.988 0.986 0.969 0.973 0.879 0.982 0.864 0.546 0.857 0.809 0.756 0.713 0.762 0.607 0.580

SU 0.999 0.993 0.986 0.984 0.979 0.954 0.964 0.925 0.914 0.906 0.879 0.870 0.899 0.703 0.653 0.661 0.574

F 0.998 0.989 0.989 0.986 0.979 0.950 0.980 0.938 0.893 0.923 0.860 0.824 0.917 0.721 0.667 0.647 0.516

OR 0.998 0.994 0.989 0.985 0.981 0.950 0.940 0.936 0.912 0.918 0.871 0.773 0.747 0.686 0.661 0.571 0.555

Pow 0.990 0.992 0.998 0.981 0.956 0.906 0.912 0.926 0.905 0.835 0.843 0.863 0.827 0.679 0.650 0.562 0.519

PR 0.990 0.992 0.998 0.972 0.951 0.901 0.890 0.930 0.904 0.823 0.839 0.871 0.756 0.685 0.649 0.556 0.481

GI 0.992 0.993 0.984 0.973 0.975 0.906 0.891 0.928 0.900 0.836 0.839 0.853 0.758 0.679 0.649 0.554 0.496

MI 0.998 0.989 0.987 0.986 0.979 0.944 0.972 0.937 0.896 0.934 0.873 0.817 0.904 0.709 0.673 0.621 0.577

KS 1 0.988 0.987 0.987 0.979 0.957 0.983 0.934 0.888 0.923 0.863 0.942 0.916 0.746 0.686 0.634 0.564

Dev 0.999 0.989 0.983 0.986 0.979 0.940 0.970 0.934 0.875 0.908 0.879 0.860 0.899 0.729 0.674 0.603 0.537

GM 1 0.988 0.988 0.987 0.976 0.960 0.983 0.932 0.886 0.930 0.860 0.940 0.919 0.748 0.680 0.664 0.568

AUC 0.999 0.989 0.988 0.988 0.984 0.951 0.979 0.935 0.906 0.924 0.852 0.964 0.921 0.736 0.637 0.623 0.578

PRC 1 0.993 0.988 0.986 0.973 0.922 0.972 0.942 0.924 0.927 0.857 0.819 0.914 0.699 0.670 0.579 0.592

Avg 0.996 0.991 0.989 0.984 0.974 0.943 0.942 0.936 0.896 0.868 0.860 0.857 0.849 0.705 0.669 0.608 0.555

SD 0.005 0.002 0.004 0.005 0.009 0.024 0.047 0.016 0.019 0.098 0.014 0.058 0.078 0.025 0.033 0.037 0.033

Largest or smallest values for a column (or row) are shown in bold
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AROC (0.883) with the lowest variance for the NB

learner. For the SVM learner, the TBFS filter with AUC

obtained the highest AROC (0.893) with the second lowest

variance.

There is relatively little differentiation among filters for

the very easy datasets. In general, as the datasets become

harder to learn, the variation between techniques increases.

The optimal filter does vary greatly across datasets, but the

preferred filter should perform well in a wide variety of

situations and rarely perform very poorly. Therefore, we

seek a filter that obtains a high AROC with low variance.

For both the NB and SVM learners, the TBFS filters using

AUC, KS, GM and PRC generally exhibit these qualities.

Of the standard filters, for the SVM learner, IG obtains the

Table 6 Summarized

classification results, NB learner

Largest or smallest values for a

column (or row) are shown in

bold

Filter Very easy Easy Moderate Difficult Avg SD Range Min.

v2 0.989 0.953 0.870 0.640 0.866 0.145 0.426 0.574

GR 0.987 0.886 0.835 0.628 0.840 0.144 0.418 0.578

IG 0.989 0.951 0.896 0.639 0.873 0.140 0.420 0.580

RF 0.984 0.964 0.820 0.636 0.850 0.147 0.419 0.573

RFW 0.984 0.944 0.766 0.666 0.838 0.155 0.443 0.546

SU 0.988 0.948 0.894 0.648 0.873 0.137 0.426 0.574

F 0.988 0.956 0.883 0.638 0.869 0.146 0.482 0.516

OR 0.990 0.942 0.844 0.618 0.851 0.153 0.443 0.555

Pow 0.983 0.915 0.855 0.603 0.844 0.152 0.479 0.519

PR 0.981 0.907 0.839 0.593 0.835 0.157 0.517 0.481

GI 0.984 0.908 0.837 0.594 0.836 0.156 0.498 0.496

MI 0.988 0.951 0.885 0.645 0.870 0.139 0.422 0.577

KS 0.988 0.958 0.906 0.657 0.881 0.137 0.436 0.564

Dev 0.987 0.948 0.884 0.636 0.867 0.144 0.462 0.537

GM 0.988 0.958 0.907 0.665 0.883 0.134 0.431 0.568

AUC 0.990 0.955 0.913 0.644 0.880 0.143 0.422 0.578

PRC 0.988 0.946 0.888 0.635 0.868 0.144 0.421 0.579

Table 7 Classification results by dataset, SVM learner

Filter LC Ov DLB ALL AAL Lung MLL Tum Pros Tran Brain ECML Colon Lymph Brst CNS NIH

v2 0.993 0.993 0.989 0.985 0.974 0.978 0.968 0.900 0.936 0.945 0.900 0.769 0.856 0.862 0.712 0.612 0.562

GR 0.998 0.999 0.990 0.976 0.987 0.866 0.933 0.905 0.907 0.672 0.866 0.872 0.850 0.836 0.641 0.576 0.581

IG 0.996 0.992 0.993 0.988 0.975 0.978 0.969 0.896 0.934 0.946 0.917 0.868 0.860 0.873 0.671 0.612 0.582

RF 0.995 0.999 0.979 0.971 0.972 0.967 0.970 0.969 0.917 0.790 0.776 0.921 0.834 0.854 0.744 0.484 0.578

RFW 1 1 0.984 0.969 0.971 0.941 0.970 0.973 0.895 0.778 0.467 0.732 0.807 0.854 0.751 0.600 0.596

SU 0.997 0.994 0.990 0.982 0.974 0.972 0.971 0.923 0.932 0.931 0.896 0.817 0.852 0.874 0.671 0.612 0.583

F 0.996 0.993 0.996 0.987 0.974 0.974 0.980 0.925 0.916 0.954 0.901 0.829 0.854 0.827 0.680 0.589 0.539

OR 0.998 0.997 0.990 0.982 0.978 0.960 0.974 0.914 0.915 0.728 0.914 0.807 0.863 0.884 0.654 0.559 0.574

Pow 0.996 1 0.981 0.969 0.984 0.941 0.906 0.899 0.909 0.877 0.880 0.878 0.848 0.851 0.661 0.578 0.513

PR 0.998 1 0.981 0.960 0.976 0.943 0.909 0.882 0.878 0.793 0.879 0.850 0.857 0.850 0.651 0.556 0.562

GI 0.998 0.997 0.985 0.973 0.979 0.943 0.896 0.882 0.873 0.797 0.905 0.850 0.851 0.850 0.638 0.556 0.495

MI 1 0.994 0.993 0.987 0.975 0.974 0.980 0.916 0.909 0.943 0.903 0.805 0.858 0.833 0.697 0.621 0.575

KS 0.997 0.994 0.993 0.989 0.972 0.977 0.972 0.915 0.911 0.953 0.905 0.964 0.855 0.808 0.714 0.604 0.577

Dev 0.997 0.994 0.990 0.988 0.976 0.975 0.976 0.918 0.905 0.942 0.891 0.858 0.861 0.833 0.691 0.604 0.595

GM 0.998 0.995 0.996 0.993 0.975 0.979 0.984 0.912 0.907 0.956 0.903 0.958 0.848 0.820 0.713 0.596 0.564

AUC 0.997 0.995 0.996 0.988 0.976 0.978 0.975 0.925 0.902 0.954 0.905 0.941 0.863 0.863 0.722 0.604 0.589

PRC 0.995 0.995 0.989 0.986 0.972 0.969 0.964 0.918 0.916 0.950 0.892 0.796 0.853 0.868 0.751 0.621 0.598

Avg 0.997 0.996 0.989 0.981 0.976 0.960 0.959 0.916 0.910 0.877 0.865 0.854 0.851 0.849 0.692 0.587 0.569

SD 0.002 0.003 0.005 0.009 0.004 0.028 0.029 0.025 0.017 0.095 0.107 0.065 0.013 0.021 0.038 0.034 0.029

Largest or smallest values for a column (or row) are shown in bold
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highest average performance with the lowest volatility,

while SU is preferred for the NB learner. RFW was often

the best overall technique for some datasets, but for others,

it performed very poorly. From these results, we conclude

that the TBFS filter often performs better than the standard

filters with lower volatility, and in particular we recom-

mend the TBFS filter used with AUC or GM.

8 Conclusions

This work proposes 11 new threshold-based feature selection

techniques for ranking attributes based on the strength of the

relationship between the attribute and the class. Each attri-

bute is paired individually with the class and normalized so

that its values range from 0 to 1. A decision threshold t is then

used to categorize examples as either positive or negative

based on the value of the normalized attribute. As the deci-

sion threshold is varied from 0 to 1, the categorization of

examples changes. This is analogous to the decision

threshold adjustment for a posterior probability calculated by

a classifier. As t changes, a variety of metrics can be calcu-

lated, for example the false positive, true positive, false

negative and true negative rates. For 7 of the 11 metrics (GM,

F, OR, Pow, PR, MI and KS), the maximum value over all

possible decision thresholds is utilized. For two metrics (GI

and Dev) the minimum value is used. For the remaining two

metrics (AUC and PRC), the area under a curve is calculated.

Therefore, each feature in a dataset will have a ‘‘score’’,

representing the strength of the association with the class,

relative to each metric. Once these scores are obtained, the

attributes can be ranked from most predictive to least pre-

dictive using a single TBFS filter. For example, a practitioner

may choose to select the 10 % most predictive attributes as

determined by the AUC TBFS filter. This reduced dataset

can then be used for any type of domain-specific analysis,

e.g., classifier construction, clustering.

When proposing new feature ranking techniques, it is

important to understand how different the techniques are

from one another and from currently used techniques. If the

proposed techniques generate feature rankings that are

similar to the feature rankings of currently used feature

selection techniques, then these new techniques provide

little insight. To achieve this objective, Kendall’s Tau rank

correlation, a non-parametric measure of correlation

between two feature rankings, is used. Many studies only

construct classifiers after using the various feature selection

techniques to determine which technique is ‘‘best’’. Using

this approach alone has shortcomings, however—for

example, it is unclear which classifier(s) should be used. If

two feature selection techniques produce similar results

using a single classifier, it is unclear if it is because both

feature selection techniques identify the exact same set of

features or because the classifier is able to generalize well

from two different sets of features and in fact the underlying

sets of selected features are quite different. Will this pattern

hold if other classifiers are used? Further, the ultimate

objective of feature selection may be something besides

classification. For example, practitioners are often inter-

ested in knowing which features are most predictive (and

conversely, which are least predictive). Our experimental

analysis, therefore, combines both evaluation approaches.

Table 8 Summarized

classification results,

SVM learner

Largest or smallest values for a

column (or row) are shown in

bold

Filter Very easy Easy Moderate Difficult Avg SD Range Min.

v2 0.983 0.918 0.866 0.629 0.878 0.136 0.431 0.562

GR 0.964 0.906 0.819 0.599 0.850 0.145 0.423 0.576

IG 0.985 0.915 0.893 0.622 0.885 0.135 0.414 0.582

RF 0.979 0.943 0.835 0.602 0.866 0.151 0.515 0.484

RFW 0.976 0.934 0.728 0.649 0.840 0.165 0.533 0.467

SU 0.983 0.928 0.874 0.622 0.881 0.135 0.415 0.583

F 0.986 0.921 0.873 0.603 0.877 0.145 0.457 0.539

OR 0.983 0.915 0.839 0.596 0.864 0.148 0.439 0.559

Pow 0.968 0.904 0.867 0.584 0.863 0.144 0.487 0.513

PR 0.967 0.880 0.846 0.590 0.854 0.140 0.444 0.556

GI 0.967 0.877 0.851 0.563 0.851 0.152 0.503 0.495

MI 0.986 0.912 0.868 0.631 0.880 0.134 0.424 0.575

KS 0.985 0.913 0.897 0.632 0.888 0.135 0.421 0.577

Dev 0.985 0.912 0.877 0.630 0.882 0.132 0.401 0.595

GM 0.989 0.910 0.897 0.624 0.888 0.139 0.433 0.564

AUC 0.986 0.913 0.905 0.638 0.893 0.131 0.408 0.589

PRC 0.982 0.917 0.872 0.657 0.884 0.125 0.397 0.598
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In addition to comparing the feature rankings directly, the

classification results for two learners, Naive Bayes and

Support Vector Machines, are also presented.

The experimental results demonstrate that the newly

proposed techniques differ significantly from those of the

standard filter-based feature selection techniques used in

our study. The correlations between the 11 TBFS tech-

niques are generally low to moderate. In addition, some of

the TBFS filters (AUC, GM, KS, PRC) performed very

well when utilized with both the NB and SVM learners,

often outperforming the six standard filters. Therefore, we

conclude that these new procedures represent a valuable

addition to the repository of filter-based feature selection

techniques that are currently available to practitioners

analyzing high dimensional bioinformatics datasets.

The TBFS method can be easily extended to additional

metrics in future work. Experimental evaluation with

additional datasets, both in the bioinformatics domain and

in other high-dimensional domains such as text mining,

should also be considered. Future work should also eval-

uate the robustness and stability of the newly proposed

TBFS techniques, as done in previous work for other filters

(Kalousis et al. 2007; Křı́žek et al. 2007).

Appendix

Kolmogorov–Smirnov statistic

The Kolmogorov–Smirnov statistic (KS) (Conove 1971)

measures the maximum difference between the cumulative

distribution functions of examples in each class based on

the normalized attribute X̂j: The distribution function Fc(t)

for a class c is estimated by the proportion of examples x

from class c with X̂jðxÞ� t; 0� t� 1: In a two class

setting with c 2 fN;Pg we have

FPðtÞ ¼
jfx 2 DjðX̂jðxÞ� tÞ \ ðcðxÞ ¼ PÞgj

jfx 2 DjcðxÞ ¼ Pgj ;

FNðtÞ ¼
jfx 2 DjðX̂jðxÞ� tÞ \ ðcðxÞ ¼ NÞgj

jfx 2 DjcðxÞ ¼ Ngj :

KS is computed as

KS ¼ max
t2½0;1�

jFPðtÞ � FNðtÞj:

With respect to KS, an attribute provides the best perfor-

mance at a specific t value when the distance between the

two distribution functions is maximized. The larger the KS

value, the better the attribute is able to separate the two

classes, and hence the more significant the attribute is. An

attribute that perfectly separates examples of the two

classes obtains a KS of 1 while an attribute that is unable to

separate the two classes provides a KS of 0.

Alternatively, the KS can also be calculated as the

maximum difference between the curves generated by the

true positive and false positive rates (TPR(t) and FPR(t)) as

the decision threshold changes from 0 to 1. FP(t) can be

further defined as follows:

FPðtÞ ¼
jfx 2 DjðX̂jðxÞ� tÞ \ ðcðxÞ ¼ PÞgj

jfx 2 DjcðxÞ ¼ Pgj

¼ jfx 2 DjðĉtðxÞ ¼ NÞ \ ðcðxÞ ¼ PÞgj
jfx 2 DjcðxÞ ¼ Pgj

¼ FNðtÞ
jfx 2 DjcðxÞ ¼ Pgj ¼ FNRðtÞ ¼ 1� TPRðtÞ:

Similarly, it can be shown that FN(t) = 1 - FPR(t), and it

therefore follows that

KS ¼ max
t2½0;1�

jTPRðtÞ � FPRðtÞj:

Gini index

The Gini index (GI) was first introduced by Brieman et al.

(1984) within the CART algorithm. For a given threshold

t, let St ¼ fx j X̂jðxÞ[ tg and �St ¼ fx j X̂jðxÞ� tg: Then

the Gini index is calculated as:

GI¼ min
t2½0;1�

1� P2ðTPðtÞ j StÞ þP2ðFPðtÞ j StÞ
� �� �

þ 1� P2ðTNðtÞ j �StÞ þP2ðFNðtÞ j �StÞ
� �� �

¼ min
t2½0;1�

1� TPðtÞ
TPðtÞ þ FPðtÞ

	 
2

þ FPðtÞ
TPðtÞ þ FPðtÞ

	 
2
 !" #

þ 1� TNðtÞ
TNðtÞ þ FNðtÞ

	 
2

þ FNðtÞ
TNðtÞ þ FNðtÞ

	 
2
 !" #

¼ min
t2½0;1�

1� PREðtÞ2þ ð1� PREðtÞÞ2
� �h i

þ 1� NPVðtÞ2þ ð1�NPVðtÞÞ2
� �h i

¼ min
t2½0;1�

2PREðtÞð1� PREðtÞÞ þ 2NPVðtÞð1�NPVðtÞÞ½ �:

NPV or negative predicted value represents the percentage

of examples predicted to be negative that are actually

negative (Weiss 2003) and is very similar to the preci-

sion—in fact, it is often thought of as the precision of

instances predicted to be in the negative class. The Gini

index for the attribute is then the minimum Gini index at all

decision thresholds t 2 ½0; 1�:

References

Akbani R, Kwek S (2005) Adapting support vector machines to

predict translation initiation sites in the human genome.

pp 143–145

Threshold-based feature selection techniques 59

123



Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine

AJ (1999) Broad patterns of gene expression revealed by

clustering analysis of tumor and normal colon tissues probed

by oligonucleotide arrays. Proc Nal Acad Sci USA 96(12):

6745–6750

Au W-H, Chan KCC, Wong AKC, Wang Y (2005) Attribute

clustering for grouping, selection, and classification of gene

expression data. IEEE/ACM Trans Comput Biol Bioinform

2(2):83–101

Battiti R (1994) Using mutual information for selecting features in

supervised neural net learning. IEEE Trans Neural Netw 5(4):

537–550

Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and

regression trees. Chapman and Hall/CRC Press, Boca Raton, FL

Brown MPS, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey

TS, Ares M, Haussler (2000) Knowledge-based analysis of

microarray gene expression data by using support vector

machines. Proc Natl Acad Sci USA 97(1):262–267

Chen X-w, Wasikowski M (2008) Fast: a ROC-based feature

selection metric for small samples and imbalanced data classi-

fication problems. In: Proceedings of 14th ACM SIGKDD

international conference on knowledge discovery and data

mining KDD ’08, pp 124–132, ACM, New York, NY, USA

Conover WJ (1971) Practical nonparametric statistics, 2nd edn.

Wiley, New York

Datta S, Datta S (2003) Comparisons and validation of statistical

clustering techniques for microarray gene expression data.

Bioinformatics 19(4):459–466

Davis CA, Gerick F, Hintermair V, Friedel CC, Fundel K, Küffner R,
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