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Abstract
Purpose of Review  Enormous progress has been made in understanding the genetic architecture of obesity and the correla-
tion of epigenetic marks with obesity and related traits. This review highlights current research and its challenges in genetics 
and epigenetics of obesity.
Recent Findings  Recent progress in genetics of polygenic traits, particularly represented by genome-wide association stud-
ies, led to the discovery of hundreds of genetic variants associated with obesity, which allows constructing polygenic risk 
scores (PGS). In addition, epigenome-wide association studies helped identifying novel targets and methylation sites being 
important in the pathophysiology of obesity and which are essential for the generation of methylation risk scores (MRS). 
Despite their great potential for predicting the individual risk for obesity, the use of PGS and MRS remains challenging.
Summary  Future research will likely discover more loci being involved in obesity, which will contribute to better under-
standing of the complex etiology of human obesity. The ultimate goal from a clinical perspective will be generating highly 
robust and accurate prediction scores allowing clinicians to predict obesity as well as individual responses to body weight 
loss-specific life-style interventions.

Keywords  Obesity · Genetic variants · Epigenetic marks · Polygenic risk scores · Methylation risk scores

Introduction

Obesity rates are steadily increasing [1] and represent a major 
public health thread worldwide. Being an important cause for 
concomitant metabolic co-morbidities such as type 2 diabetes, 
dyslipidemia, cardiometabolic diseases including coronary 
artery diseases, stroke and hypertension as well as for some 
types of cancers [2], obesity substantially reduces life expec-
tancy [3]. As summarised by the World Obesity Atlas 2023 
[4], about 988 million people (aged > 5 years) worldwide were 
affected with obesity (BMI ≥ 30 kg/m2) in 2020, which is esti-
mated to dramatically increase by 2035 to 1.914 billion. This 
corresponds to a proportional increase of the population with 
obesity from 14% in 2020 to 24% in 2035, clearly illustrating 
the need to prevent and treat obesity.

Obesity is a multifactorial disease being governed by both 
genetics and environmental factors originating from a rather 
“obesogenic environment” such as sedentary lifestyle with 
reduced energy expenditure and high calorie diet intake. The 
existence of a genetic background in obesity is undisputable 
and first evidence was provided by family [5–8], twin [9–11] 
and adoption [12] studies that have clearly estimated herit-
ability rates for BMI between 40 and 70%. Genome-wide 
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association studies (GWAS) have to a large extent contrib-
uted to an improved understanding of the genetic architec-
ture of common obesity and have provided hundreds of 
novel risk variants [13–15]. However, although significant 
advances have been made in describing the mechanistic cir-
cuitry for a least some of these genetic variants [16, 17], 
identifying novel risk variants in general precedes the bio-
logical and functional understanding of how these variants 
act in a certain target tissue in order to increase body weight. 
Furthermore, the variability of BMI attributed to genetic 
variation is still poorly explained [15]. The major challenge 
here is a combination of genetics with environmental factors 
such as energy intake, physical activity, smoking, but also 
gene–gene interactions. These interactions may introduce 
additional inter-individual variability, illustrating the highly 
dynamic and complex etiology underlying the pathophysiol-
ogy of obesity.

Epigenetic analyses have therefore been largely acceler-
ated during the last years with epigenome-wide association 
studies (EWAS) dominating the field. Numerous genes 
and novel CpG sites were identified conferring changes in 
methylation profiles in obesity [18]. However, causal inter-
ferences in obesity are still under debate, yet a few studies 
implicate a causal role of obesity in inducing changes in 
methylation levels [19•, 20].

To translate the bench-side generated knowledge into 
a clinical day life and to generate a useful tool helping to 
predict obesity (e.g. based on BMI changes), significant 
effort was put in designing polygenic risk scores and more 
recently, also methylation risk scores. These scores repre-
sent a weighted combination of several genetic variants or 
methylated CpG sites at many different positions across the 
human genome. However, so far, the use of such scores is 
rather limited as reliable prediction is not yet possible or 
to a substantial part inaccurate. Taken together, enormous 
progress has been made in understanding the genetic archi-
tecture of obesity and the correlation of epigenetic marks 
with obesity and related traits. This review aims at high-
lighting current research and its challenges in genetics and 
epigenetics of obesity.

Genetic Background of Common  
Polygenic Obesity

Lessons from monogenic obesity have significantly con-
tributed to our general knowledge on genetics and physi-
ology of body weight regulation. However, non-syndromic 
monogenic obesity affects only about 5% of the population 
with obesity [21]. About 95% of the individuals with obe-
sity develop common polygenic obesity, which is multifac-
torial and assessing the heritability of polygenic obesity is 
still one of the major challenges, despite recent advances in 

genetics of obesity. Genome-wide strategies including link-
age and genome-wide association studies (GWAS), which 
are hypothesis-free per se have been of paramount impor-
tance in discovering novel genes involved in the complex 
etiology of human obesity.

Identifying Novel Genetic Markers by Using Genome 
Wide Approaches—Linkage Analyses

Genome-wide linkage analyses allow testing for co-segregation 
of polymorphic genetic markers with phenotypic traits/disease 
in families, trios or sibling studies. The approach proved to be 
enormously efficient in discovering genetic variants in mono-
genic forms of obesity. However, when employed to discovery 
efforts for underlying genetic markers in polygenic forms of 
obesity, linkage analyses had only a marginal impact, as most 
of the identified susceptibility loci for obesity could not be rep-
licated and confirmed in subsequent studies or fine mapped to 
identify the causal variants affecting the disease. This is most 
likely to be attributed to small sample sizes in the performed 
linkage analyses as well as to the poor coverage of genetic vari-
ation in tested genomes. One of the very few promising genes 
discovered in a linkage study was the ectonucleotide pyrophos-
phatase/phosphodiesterase 1 gene (ENPP1), located on chro-
mosome 6q. The gene was initially discovered to be related to 
childhood obesity and associated traits by genome-wide linkage 
analyses [22] and one of its haplotypes further replicated in 
independent childhood cohorts as well as adults [23, 24]. It is 
of note however, that despite some inconsistencies in replica-
tion efforts, a large meta-analysis including 24,324 individuals 
clearly supported the potential role of the ENPP1 Q121 variant 
in the pathophysiology of obesity [25].

Identifying Novel Genetic Markers by Using Genome 
Wide Approaches—GWA Studies

Whilst the above-described approaches like candidate gene 
and genome-wide linkage studies showed only marginal 
success in discoveries of susceptibility genes for common 
polygenic obesity, prominent advances in molecular biol-
ogy, including high-throughput genotyping techniques, have 
enabled researchers to use GWAS to identify novel genetic 
loci associated with human obesity. This has indeed led 
to a dramatic increase of until then unknown genetic vari-
ants associated with obesity. Started with the discovery of 
genetic variants in the fat mass and obesity-associated gene 
(FTO) reported in 2007 [26, 27], so far, more than 1000 
loci carrying variants including single nucleotide polymor-
phisms (SNPs) significantly associated with measures of 
obesity like BMI have been identified in meta-analyses of 
large-scale GWAS. These efforts were mostly coordinated 
within international consortia such as GIANT (the Genetic 
Investigation of ANthropometric Traits) [13, 15], which 
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predominantly included populations of European ancestry. 
However, a number of well-powered studies including popu-
lations of Asian [28, 29], Hispanic [30] and African [31] 
ancestries contributed to new discoveries or replication of 
already reported obesity susceptibility loci. These popula-
tions helped to increase the size of available cohorts and so 
the statistical power of the GWAS. Moreover, based on their 
specific demographic and evolutionary characteristics, they 
were particularly valuable in identifying genetic variants 
with larger effect sizes specific for the respective popula-
tion. One of these ethnic groups is the Greenlandic popula-
tion, which played a crucial role in identification of obesity-
associated polymorphisms in ADCY3 [32, 33], a gene which 
may play a role in the regulation of human body weight [34].

The GWAS findings indicate that even with hundreds of 
obesity-associated loci identified to date, they only explain 
about 6% of the variation of BMI [15]. Although the remain-
ing variability of BMI remains one of the major challenges 

of the future research efforts, genome-wide strategies have 
clearly demonstrated their enormous potential in discover-
ing novel disease susceptibility loci (Fig. 1). In the context 
of obesity, they showed that most of the identified loci har-
bour genes involved in pathways affecting neuro-circuits of 
appetite and satiety regulation (BDNF, MC4R and NEGR) 
[35–37], energy and lipid metabolism (FTO, RPTOR and 
MAP2K5 [13, 27, 38], insulin secretion and action (TCF7L2, 
IRS1) [13, 38] as well as adipogenesis [14]. Furthermore, 
GWAS also suggested that many of the identified obesity-
associated genes are common also for other metabolic dis-
eases such as diabetes, hypertension, and coronary artery 
disease, which has been supported in gene ontology analy-
ses (GO) highlighting gene clusters with common shared 
metabolic pathways for these diseases [39]. Another impor-
tant takeaway from GWAS is the fact that numerous com-
mon polymorphisms associated with polygenic obesity 
in ethnically diverse population have been found in genes 

Fig. 1   Genetics and epigenetics of obesity. The figure illustrates that 
single nucleotide polymorphisms are genetic risk variants identified 
by GWAS and CpG sites being differentially methylated in obesity. 
To screen for the most frequently replicated genes close to identi-
fied SNPs and CpGs for associations with BMI, we accessed the 
GWAS (BMI in adults and children) and EWAS catalogue (BMI in 
adults), respectively. SNP and CpG associations with more than one 
annotation were handled as individual gene count. Only hits with a 
P < 1 × 10−8 were included. Associations were analysed for replica-
tion frequencies and blotted using the wordcloud package in R (ver-
sion 4.2.0, https://​blog.​fells​tat.​com/?​cat=​11). Most replicated GWAS 
hits for BMI: Word cloud presenting the most often replicated gene 
hits for genome-wide association of SNPs with BMI in adults and 

children (GWAS catalogue accessed 20.03.2023 [44]). All genes are 
replicated at least fifteen times. Gene name size and colour inten-
sity (light green to dark blue) are indicating the replication strength 
(from least [15 times] to most [56 times]). Long-non-coding RNAs 
were excluded. Most replicated EWAS hits for BMI: Word cloud pre-
senting the most often replicated gene hits for epigenome-wide asso-
ciation studies with site-specific DNA methylation marks for BMI 
in adults (EWAS catalogue accessed (08.03.2023 [18]). All genes 
are replicated at least three times. Gene name size and colour inten-
sity (light blue to dark purple) are indicating the replication strength 
(from least [three times] to most [nine times]). The upper panel of the 
figure was generated by using BioRender.com

https://blog.fellstat.com/?cat=11
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like PCSK1 [40–42], MC4R [43••] and POMC, known to 
carry rare loss of function variants leading to non-syndromic 
monogenic obesity. Although the GWAS are an excellent tool 
to uncover variants associated with complex non-Mendelian 
traits and diseases, understanding the underlying mechanisms 
behind these associations remains challenging. The major-
ity of genetic variants associated with obesity map within 
non-coding regions without any obvious biological function, 
may however carry regulatory elements essential in molecu-
lar processes such as gene regulation. Finding the respective 
target gene of the associated variants appears often difficult 
since they may be located in distant chromosomal regions, 
which need to be assessed in subsequent follow up studies. 
For instance, despite the relatively large effect of the FTO 
SNPs on BMI with 0.35 kg/m2 per allele or 1 kg for a person 
who is 1.7 m tall reported in 2007 [27], it took until 2014 
to explain the regulatory circuitry and mechanistic chains 
behind the associations between FTO variants and obesity. 
Claussnitzer et al. not only showed that the intronic BMI-
associated FTO SNP maps within an enhancer element for 
ARID5B, but could also demonstrate that ARID5B regulates 
the expression of IRX3 and IRX5, which finally affect adi-
pogenesis, lipid accumulation and thermogenesis [16].This 
study impressively demonstrated that comprehensive and 
well-designed functional studies are essential to elucidate 
molecular pathways underlying the observed associations of 
genetic loci with obesity.

Genome‑Wide Association Studies and Polygenic 
Risk Scores in Children

The major part of research efforts in polygenic obesity has 
been focused on adult cohorts [45], whereas similar studies 
in childhood obesity are rather sparse [46] and are mainly 
concentrating on replication of findings achieved in adults. 
It is of note however, that most of the loci identified in adults 
also associate with obesity in children suggesting the impact 
of genetic variants across the entire lifespan [47, 48]. Exem-
plarily, polymorphisms in FTO and MC4R have been shown 
to be significantly associated with childhood and adoles-
cent obesity in populations from diverse ethnic backgrounds 
[49–56]. Nevertheless, effects of some SNPs appear to be 
more pronounced in children and diminish later in life as 
has been shown for the associations of variants in TMEM18, 
GNDPA2, MC4R, NEGR1, BDNF and KTCD15 with early-
onset obesity [57], and particularly for INSIG2 variants 
[58–60]. Interestingly, some studies reported that diabetes 
susceptibility alleles in the HHEX-IDE locus were associ-
ated with increased BMI in children, which may underpin 
the well-acknowledged association between childhood obe-
sity and T2D later in adults [61].

In the context of childhood obesity, polygenic risk scores 
(PGS), which represent a simple model to determine genetic 

risk based on multiple genetic variants at different positions 
in the genome, may render an important tool in translation 
towards precision medicine. PGSs calculated in early life 
would enable detection and stratification of individuals with 
different degrees of obesity risk, and thus, the specific time 
windows for targeted individualised therapies could be devel-
oped [62]. Unfortunately, to date, PGSs are mainly calculated 
from GWAS performed in adults, which might cast doubts on 
their informative value for paediatrics. However, as shown by 
Khera et al. (2019), these doubts do not seem to be justified 
by the recently generated data [63••]. Here, the authors suc-
cessfully demonstrated that a polygenic predictor based on 2.1 
million known obesity variants is not only associated with a 
13 kg increase in body weight in adulthood, but also at birth 
(+0.06 kg) and at 8 years of age (+3.5 kg) [63••]. Moreover, 
this study indicated that PGSs derived from adult data may 
have a comparable strong association with BMI in children. 
The predictive potential of PGSs in discriminating weight dif-
ferences in this study was promising and could even be further 
refined by considering other non-genetic factors such as mater-
nal BMI [64]. However, using this PGS in order to predict 
future obesity in the UK Biobank has been rather disappoint-
ing, showing a high proportion of unreliability making it less 
useful in clinical utility regarding disease prediction [45]. This 
clearly sheds light on the difficulties in using genetic informa-
tion for common polygenic obesity and to translate it into a 
clinical prediction tool that can be a game changer in clini-
cal day life and decision making. This is currently unrealistic 
although, it seems conceivable that the performance of PGSs 
can be increased by combining it with other factors such as 
environmental or epigenetic indicators to function more accu-
rately [45]. Indeed, it is well-acknowledged that genetic profil-
ing is gaining general popularity in extensive research endeav-
ours, such as within large-scale biobanks linked to healthcare 
and clinical trials. As a result, it is more and more common 
for patients and their doctors to encounter PRS during clinical 
interactions, such as those related, e.g. to cardiovascular condi-
tions [65], severe liver disease [66] and other human patholo-
gies. Thus, refined and robust scores providing more accurate 
prediction of obesity in the future will undoubtedly become 
important measures in clinical settings potentially conferring 
also a predictive value for risk of developing obesity-related 
co-morbidities such as cardiovascular diseases, liver disease 
and several types of cancers.

The Importance of Epigenetic Mechanisms

In the context of the complex etiology of human obesity, 
epigenetic mechanisms based on, e.g. DNA methylation or 
histone modifications and gene-environment interactions 
are important to be considered in order to better understand 
the role of genetics in the development of this multifactorial 
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disease. Despite large-scale GWAS and a simultaneously ris-
ing number of studies addressing gene-environment inter-
actions, these studies remain challenging and their findings 
are often population-specific and not ubiquitously applicable 
and straightforward. Environmental factors such as physical 
activity, smoking and dietary components are acting as modi-
fiers of the genetic predisposition to obesity manifestation. 
This clearly highlights obesity as a preventable disease and 
further indicates a highly beneficial potential of treatment 
strategies based on lifestyle interventions. A recent review 
reported the majority of SNP-environment interactions in 
association with alcohol consumption, smoking and physi-
cal activity [67]. However, among them were also robustly 
replicated associations as reported for the FTO locus which 
effects could be attenuated by increased physical activity, but 
exaggerated by non-healthy fried food consumption [68–70]. 
There is no doubt that the steadily increasing number of 
large-scale studies including cohorts such as the UK Biobank 
and similar large-scale efforts will lead to the discovery of 
new and more robust gene-environment interactions in the 
future, usable for more precise treatment opportunities. Nev-
ertheless, the underlying causative mechanisms behind the 
observed associations remain unknown for most of the genes.

Epigenome‑Wide Association Studies in Obesity

Epigenetic mechanisms such as DNA methylation or modi-
fication of histone core proteins are suggested to mediate 
gene-environment interactions and therefore may play a sub-
stantial role in susceptibility for obesity. DNA methylation is 
the most stable, easy to measure and best studied epigenetic 
mark and has been extensively studied over the last years in 
relation to obesity.

Genome wide DNA methylation patterns are widely 
used for EWAS aiming to uncover DNA methylation marks 
correlating with clinical variables of obesity or fat distri-
bution. Thus, a rapid rise of well-powered EWAS (includ-
ing multi-omics approaches) and partly large case–control 
studies in twins, family settings or independent subjects 
started almost one decade ago and discovered novel targets 
being involved in epigenetic dysregulation in obesity. In 
the present review, we summarised 45 genome-wide meth-
ylation studies including work mostly conducted in Cauca-
sian subjects and performed in DNA samples originating 
from whole blood, isolated blood cells or adipose tissue, 
(Table 1). Importantly, although DNA methylation analyses 
truly identify novel candidate CpG sites and genes, addi-
tional information such as on genetic variation, gene expres-
sion, proteome/metabolome is warranted to understand the 
causative mechanistic circuitry underlying the correlation 
with disease relevant clinical traits. For instance, genetic 
variants may modulate the methylation at specific CpG 
sites potentially inducing co-methylation patterns at nearby 

sites, eventually translating into changes in clinical traits and 
suggesting a genotype–phenotype correlation. Therefore, a 
rising number of studies focus on multi-omics epigenetic 
associations with obesity or related traits, mainly promoted 
by the latest advances in high-throughput technologies and 
analytical approaches promoting (Table 1).

Although the most powerful EWAS reported recognisable 
sample sizes with more than 5000 subjects in the discovery 
cohort [20], the effect sizes are highly variable ranging from 
6 to 40 kg/m2 change in BMI per unit increase in blood DNA 
methylation. In general, sample sizes in EWAS studies are 
often much smaller than in GWAS analyses (Table 1), with 
the smaller cohorts mainly estimating methylation differ-
ences between individuals with and without obesity/meta-
bolic syndrome. Studies with lower sample sizes also report 
smaller effect sizes such as 0.8–3.6% BMI increase per 0.1 
increase in methylation ß-values [73]. Interestingly, Vehmei-
jer et al. demonstrated an increasing effect size with age by 
meta-analysing 187 methylation loci, previously reported to 
show cross-sectional association to BMI in adults, in chil-
dren with an age between 2 and 18 years [114]. However, 
most studies are still of explorative nature focussing on the 
identification of novel candidate sites and genes rather than 
evaluating whether methylation changes are cause or conse-
quence of obesity (Table 1).

To generate an overview about genes reported to show 
associations between methylation level of specific CpG 
sites and BMI, we used data from the EWAS catalogue (all 
P < 1 × 10−8; EWAS catalogue accessed 08.03.2023, [18]) 
and performed a word-cloud analysis using gene IDs in R 
(wordcloud package, R version 4.2.0). Based on this analy-
sis, we estimated the most replicated genes originating from 
EWAS for BMI (Fig. 1). All genes included were replicated 
at least in three studies with ABCG1 (ATP-binding Cassette 
Sub-family G Member 1) being the mostly replicated gene 
locus followed by CPT1A (Carnitin Palmitoyltransferase 
1), SREBF1 (Sterol Regulatory Element Binding Transcrip-
tion Factor 1), SBNO2 (Strawberry Notch Homolog 2) and 
SOCS3 (Suppressor of Cytokine Signaling 3). Among them 
ABCG1 [78, 91, 96, 98] and CPT1A [76, 78, 87, 90, 99] 
were described across different ethnicities such as Cauca-
sian, African American, Africans and Asians (Table 1). Of 
note, some larger cohorts such as LOLIPOP (London Life 
Sciences Prospective Population [115]) or KORA (Coopera-
tive Health Research in the Region of Augsburg [116]) are 
more frequently used as replication cohorts.

Several studies support the functional role of, e.g.  
ABCG1 and CPT1A in obesity. Wahl et al. [20] for instance 
reported an association of the BMI genetic risk score with 
the ABCG1 methylation being consistent with other studies 
reporting effects of overweight and weight-loss on methyla-
tion, expression or protein activity [20, 117, 118]. In general, 
ABCG1 is involved in mitochondrial cholesterol efflux, 
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thus promoting cellular efflux to HDL. Its silencing leads 
to massive lipid accumulation in tissues of high fat and high 
cholesterol fed mice and in 3T3L1 adipocytes [119–121]. In 
line with this, ABCG1 and, e.g. SREBF1 methylation levels 
are also known to correlate with T2D [115, 122–124], postu-
lating direct or indirect effects on metabolic consequences of 
obesity. Similar to ABCG1, CPT1A is involved in mitochon-
drial fatty acid oxidation and ROS production by regulating 
the entry of long-chain fatty acids into the mitochondrial 
matrix [125] and thereby also contributing to the activa-
tion of inflammasomes [126]. Furthermore, high-fat diet 
(+/− fructose) fed mice revealed a decreased CTP1a activity 
and thus a decreased fat metabolism, whereas knockdown 
of the fructose metabolism enhanced CPT1a activity [127]. 
Taken together, EWAS studies have extensively helped to 
discover CpG sites whose differential methylation levels cor-
relate with important clinical traits of obesity and fat distri-
bution, thus clearly illustrating the importance of epigenetic 
marks in obesity and its potential dysregulation in disease. 
However, despite these efforts and multiple novel candidate 
genes identified during the last years, the precise mecha-
nistic circuitry of those genes in the human pathophysiol-
ogy of obesity and relevant metabolic traits is still not well 
understood. Furthermore, although recent studies support 
the role of methylation changes in obesity, to what extent 
whole blood methylation profiles can mirror their patterns 
in target tissues remains under discussion. In addition, the 
majority of studies included in this review used array based 
approaches for genome-wide association studies, providing 
a limited overview of 1.7–3% of all CpG positions in the 
genome, illustrating that a large part of the remaining sites 
is undiscovered among these studies [128].

Ethnicity Specific Findings and Meta‑analyses

Although most genome wide DNA methylation analyses 
were conducted in cohorts with Caucasian ancestry (Table 1), 
recent studies focussed more on the homo- or heterogeneity 
between the ethnic groups. For instance, a EWAS performed 
in an Arab population confirmed seven previously identified 
BMI loci but reported higher effect sizes compared to their 
replication cohort from the UK [87]. However, it has to be 
acknowledged that the reported association of these loci did 
not reach genome-wide significance level in the Arab discov-
ery cohort. In line with this, previously reported associations 
between, e.g. CPT1A methylation and BMI have been con-
firmed across multiple ethnicities such as Caucasian, African  
American, African, Asian and Arab [76, 78, 87, 90, 99]. 
Moreover, a recently published multi-ethnic study in Asians 
was able to replicate 110 BMI-associated loci, which were 
previously reported for Europeans, South Asians and Afri-
can Americans with a high consistency of the effect direc-
tions. Although they reported a great homogeneity across 

the different Asian ethnicities, they also demonstrated hetero-
geneity across several loci, where for instance the effects are 
mainly driven by the Chinese subjects [108•]. Another study, 
taking into account a longitudinal setting, discovered a total 
of 287 novel CpG sites correlating with BMI (266 in white 
participants, 21 in black individuals). Importantly, a major 
take home message from this report is that, based on the lon-
gitudinal design, the authors concluded that obesity seems to 
precede changes in methylation, underlining, in line with Wahl 
et al. [20] that obesity may rather be cause than consequence 
of epigenetic changes [19•].

In a very recent study, representing the largest meta-anal-
ysis so far, Do et al. [113•] performed an EWAS in more 
than 17,000 individuals to detect CpG sites associated with 
BMI of European (Caucasian), African and Asian subjects. 
Following this approach, the study confirmed 553 previously 
reported loci but also identified 685 novel sites, which were 
successfully replicated. Interestingly, only five CpG sites 
were reported showing an interaction with BMI by race/
ethnicity among individuals with a European or African 
ancestry. Importantly, in an attempt to assess the value of 
such CpG sites in predicting BMI, the study demonstrated 
that 397 of those identified CpG positions explained 32% of 
BMI variability illustrating that a methylome-based predic-
tion of BMI in this study performed relatively good [113•].

The Utility of Methylation Risk Scores in Predicting 
Disease Risk

Similar to genetic analyses, the concept of polygenic risks 
scores can be transferred to CpG methylation data and can 
be used to construct methylation risk scores (MRS). Such 
MRSs may prove useful tools in predicting disease risk or 
assessing exposure to specific environmental factors in the 
future. It is noteworthy, however, that in addition to meth-
odological challenges in constructing weighted MRSs, all 
EWAS findings, and thereby MRSs are highly sensitive to 
potential confounders such as age, gender, ethnicity and 
also technological differences in assessing DNA methyla-
tion [129]. In line with Do et al. [113•], who reported 32% 
of the variability in BMI accounted for by an MRS, also 
others, such as Hamilton and colleagues [130], observed 
that an MRS correlates with adverse health outcomes and 
accounts for 10% of the variance in BMI. This is similar 
to observations in adult women where DNA methylation 
scores roughly explained 10% BMI variance in the popula-
tion, whilst much less variance was explained in children 
(1–2%) and young adolescents (3%) [131]. Furthermore, 
the same study concluded that MRS is a poor marker for 
future BMI prediction, illustrating the challenges in using 
MRSs as a meaningful prediction tool in clinical day life so 
far. However, it has been shown that epigenetic predictors 
based on DNA methylation at CpG sites are valuable tools in 
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predicting mortality and exposure to certain environmental 
factors such as to smoking [132]. This is largely corroborated  
by a recent study showing that MRSs performed better in 
adult individuals than polygenic risk scores in explaining 
variance in smoking and BMI [133]. Taken together, there is 
a potential that MRSs can evolve into useful tools for clinical 
decision making in the future, although until now there are 
still conflicting results published. Of note, by increasing the 
sample sizes, taking into account potential confounders and 
combining MRSs with polygenic risk scores in the future 
might help to overcome current obstacles.

Conclusion

Enormous advances have been made during the last years in 
identifying genetic and epigenetic loci being involved in the 
pathophysiology of obesity and related clinical traits. GWAS 
and EWAS approaches are both by nature hypothesis-free 
strategies that have proven excellent tools in discovering 
such novel susceptibility loci and sites. Although for most 
of the genetic risk variants still the mechanistic circuitry 
needs to be investigated, important progress has been made 
for a number of important players.. The use of polygenic 
risk scores in predicting future BMI or obesity is still in its 
infancy as a relatively frequent mis-prediction is complicat-
ing effective use in clinical settings. Likewise, numerous 
epigenetic studies have identified novel candidate CpGs 
and genes conferring changes in DNA methylation. Mul-
tiple genes also provide a plausible functional implication 
in related clinical traits. Construction of methylation risk 
scores has proven successful for predicting exposure to spe-
cific environmental factors such as smoking, but again, its 
utility in clinical day life is limited for prediction of disease 
risk. At this stage of research, it seems unlikely so far to use 
either polygenic or methylation risk scores as a valid clini-
cal prediction tool in the near future. However, by further 
refining the scores, increasing sample sizes and improving 
weighting statistic, taking into account typical confounders 
and combining potentially polygenic risk scores with meth-
ylation risk scores may prove successful instruments useful 
in clinical settings such as predicting future BMI and obesity 
or predicting successful weight loss in the future.
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