Skip to main content

Advertisement

Log in

Role of GLP-1 Receptor Agonists in Pediatric Obesity: Benefits, Risks, and Approaches to Patient Selection

  • Invited Commentary
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Effective treatments for pediatric obesity are limited. Glucagon-like peptide-1 receptor (GLP-1R) agonists have emerged as therapeutic agents for obesity in adults and have shown benefits outside of weight loss. Here we explore the evidence for GLP-1R agonist use in pediatric obesity.

Recent Findings

Emerging evidence suggests that GLP-1R agonists have a role in pediatric obesity treatment. A recently published, randomized, placebo-controlled trial found a greater reduction in BMI z-score (− 0.22 SDs) in adolescents receiving liraglutide compared with placebo. As in adults, gastrointestinal adverse effects were commonly seen.

Summary

GLP-1R agonists appear to perform favorably compared with other approved pharmacological agents for pediatric obesity. However, heterogeneity in weight loss response, cost, side effects, and need for injections may limit their use in many pediatric patients. Rather than broadly applying this therapy if it is approved, we suggest careful patient selection and monitoring by clinicians pending further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes. 2011;35(7):891–8. https://doi.org/10.1038/ijo.2010.222.

    Article  CAS  Google Scholar 

  2. Kumar S, Kelly AS. Review of childhood obesity: from epidemiology, etiology, and comorbidities to clinical assessment and treatment. Mayo Clin Proc. 2017;92(2):251–65. https://doi.org/10.1016/j.mayocp.2016.09.017.

    Article  PubMed  Google Scholar 

  3. Kalarchian MA, Levine MD, Arslanian SA, Ewing LJ, Houck PR, Cheng Y, et al. Family-based treatment of severe pediatric obesity: randomized, controlled trial. Pediatrics. 2009;124(4):1060–8. https://doi.org/10.1542/peds.2008-3727.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Force USPST, Grossman DC, Bibbins-Domingo K, Curry SJ, Barry MJ, Davidson KW, et al. Screening for obesity in children and adolescents: US preventive services task Force recommendation statement. JAMA. 2017;317(23):2417–26. https://doi.org/10.1001/jama.2017.6803.

    Article  Google Scholar 

  5. Ells LJ, Rees K, Brown T, Mead E, Al-Khudairy L, Azevedo L, et al. Interventions for treating children and adolescents with overweight and obesity: an overview of Cochrane reviews. Int J Obes. 2018;42(11):1823–33. https://doi.org/10.1038/s41366-018-0230-y.

    Article  Google Scholar 

  6. Srivastava G, Fox CK, Kelly AS, Jastreboff AM, Browne AF, Browne NT, et al. Clinical considerations regarding the use of obesity pharmacotherapy in adolescents with obesity. Obesity (Silver Spring). 2019;27(2):190–204. https://doi.org/10.1002/oby.22385.

    Article  Google Scholar 

  7. Sadeghi A, Mousavi SM, Mokhtari T, Parohan M, Milajerdi A. Metformin therapy reduces obesity indices in children and adolescents: a systematic review and meta-analysis of randomized clinical trials. Child Obes. 2020;16(3):174–91. https://doi.org/10.1089/chi.2019.0040.

    Article  PubMed  Google Scholar 

  8. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of Liraglutide in weight management. N Engl J Med. 2015;373(1):11–22. https://doi.org/10.1056/NEJMoa1411892.

    Article  CAS  PubMed  Google Scholar 

  9. Drucker DJ. The ascending GLP-1 road from clinical safety to reduction of cardiovascular complications. Diabetes. 2018;67(9):1710–9. https://doi.org/10.2337/dbi18-0008.

    Article  CAS  PubMed  Google Scholar 

  10. Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387(10019):679–90. https://doi.org/10.1016/S0140-6736(15)00803-X.

    Article  CAS  PubMed  Google Scholar 

  11. Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like Peptide-1. Cell Metab. 2018;27(4):740–56. https://doi.org/10.1016/j.cmet.2018.03.001.

    Article  CAS  PubMed  Google Scholar 

  12. Hou S, Li C, Huan Y, Liu S, Liu Q, Sun S, et al. Effects of E2HSA, a long-acting glucagon like Peptide-1 receptor agonist, on glycemic control and Beta cell function in spontaneous diabetic db/db mice. J Diabetes Res. 2015;2015:817839–17. https://doi.org/10.1155/2015/817839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao L, Zhu C, Lu M, Chen C, Nie X, Abudukerimu B, et al. The key role of a glucagon-like peptide-1 receptor agonist in body fat redistribution. J Endocrinol. 2019;240(2):271–86. https://doi.org/10.1530/JOE-18-0374.

    Article  CAS  PubMed  Google Scholar 

  14. • Nauck MA, Meier JJ. Incretin hormones: Their role in health and disease. Diabetes Obes Metab. 2018;20(Suppl 1):5–21. https://doi.org/10.1111/dom.13129Review describing the role of incretin hormones in health, obesity, and type 2 diabetes.

    Article  CAS  PubMed  Google Scholar 

  15. • Muller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019;30:72–130. https://doi.org/10.1016/j.molmet.2019.09.010Comprehensive review of the hormone GLP-1 including its effects on multiple aspects of human health and the use of GLP-1 R agonists in type 2 diabetes and obesity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farr OM, Sofopoulos M, Tsoukas MA, Dincer F, Thakkar B, Sahin-Efe A, et al. GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: a crossover, randomised, placebo-controlled trial. Diabetologia. 2016;59(5):954–65. https://doi.org/10.1007/s00125-016-3874-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sisley S, Gutierrez-Aguilar R, Scott M, D'Alessio DA, Sandoval DA, Seeley RJ. Neuronal GLP1R mediates liraglutide's anorectic but not glucose-lowering effect. J Clin Invest. 2014;124(6):2456–63. https://doi.org/10.1172/JCI72434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Calanna S, Christensen M, Holst JJ, Laferrere B, Gluud LL, Vilsboll T, et al. Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies. Diabetologia. 2013;56(5):965–72. https://doi.org/10.1007/s00125-013-2841-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Faerch K, Torekov SS, Vistisen D, Johansen NB, Witte DR, Jonsson A, et al. GLP-1 response to Oral glucose is reduced in Prediabetes, screen-detected type 2 diabetes, and obesity and influenced by sex: the ADDITION-PRO study. Diabetes. 2015;64(7):2513–25. https://doi.org/10.2337/db14-1751.

    Article  CAS  PubMed  Google Scholar 

  20. Matikainen N, Bogl LH, Hakkarainen A, Lundbom J, Lundbom N, Kaprio J, et al. GLP-1 responses are heritable and blunted in acquired obesity with high liver fat and insulin resistance. Diabetes Care. 2014;37(1):242–51. https://doi.org/10.2337/dc13-1283.

    Article  CAS  PubMed  Google Scholar 

  21. Higgins V, Asgari S, Hamilton JK, Wolska A, Remaley AT, Hartmann B, et al. Postprandial Dyslipidemia, Hyperinsulinemia, and Impaired Gut Peptides/Bile Acids in Adolescents with Obesity. J Clin Endocrinol Metab. 2020;105(4). https://doi.org/10.1210/clinem/dgz261.

  22. Larraufie P, Roberts GP, McGavigan AK, Kay RG, Li J, Leiter A, et al. Important role of the GLP-1 Axis for glucose homeostasis after bariatric surgery. Cell Rep. 2019;26(6):1399–408 e6. https://doi.org/10.1016/j.celrep.2019.01.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guida C, Stephen SD, Watson M, Dempster N, Larraufie P, Marjot T, et al. PYY plays a key role in the resolution of diabetes following bariatric surgery in humans. EBioMedicine. 2019;40:67–76. https://doi.org/10.1016/j.ebiom.2018.12.040.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Boland BB, Mumphrey MB, Hao Z, Townsend RL, Gill B, Oldham S, et al. Combined loss of GLP-1R and Y2R does not alter progression of high-fat diet-induced obesity or response to RYGB surgery in mice. Mol Metab. 2019;25:64–72. https://doi.org/10.1016/j.molmet.2019.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Svane MS, Jorgensen NB, Bojsen-Moller KN, Dirksen C, Nielsen S, Kristiansen VB, et al. Peptide YY and glucagon-like peptide-1 contribute to decreased food intake after Roux-en-Y gastric bypass surgery. Int J Obes. 2016;40(11):1699–706. https://doi.org/10.1038/ijo.2016.121.

    Article  CAS  Google Scholar 

  26. Vetter ML, Wadden TA, Teff KL, Khan ZF, Carvajal R, Ritter S, et al. GLP-1 plays a limited role in improved glycemia shortly after Roux-en-Y gastric bypass: a comparison with intensive lifestyle modification. Diabetes. 2015;64(2):434–46. https://doi.org/10.2337/db14-0558.

    Article  CAS  PubMed  Google Scholar 

  27. Garvey WT, Birkenfeld AL, Dicker D, Mingrone G, Pedersen SD, Satylganova A, et al. Efficacy and safety of Liraglutide 3.0 mg in individuals with overweight or obesity and type 2 diabetes treated with basal insulin: the SCALE insulin randomized controlled trial. Diabetes Care. 2020;43(5):1085–93. https://doi.org/10.2337/dc19-1745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wadden TA, Hollander P, Klein S, Niswender K, Woo V, Hale PM, et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE maintenance randomized study. Int J Obes. 2013;37(11):1443–51. https://doi.org/10.1038/ijo.2013.120.

    Article  CAS  Google Scholar 

  29. Wadden TA, Tronieri JS, Sugimoto D, Lund MT, Auerbach P, Jensen C, et al. Liraglutide 3.0 mg and intensive behavioral therapy (IBT) for obesity in primary Care: The SCALE IBT randomized controlled trial. Obesity (Silver Spring). 2020;28(3):529–36. https://doi.org/10.1002/oby.22726.

    Article  CAS  PubMed Central  Google Scholar 

  30. • O'Neil PM, Birkenfeld AL, McGowan B, Mosenzon O, Pedersen SD, Wharton S, et al. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet. 2018;392(10148):637–49. https://doi.org/10.1016/S0140-6736(18)31773-2Randomized placebo-controlled study comparing semaglutide with liraglutide and placebo in 957 non-diabetic, obese adults that showed greater weight loss with semaglutide compared with liraglutide.

    Article  CAS  PubMed  Google Scholar 

  31. Han Y, Li Y, He B. GLP-1 receptor agonists versus metformin in PCOS: a systematic review and meta-analysis. Reprod BioMed Online. 2019;39(2):332–42. https://doi.org/10.1016/j.rbmo.2019.04.017.

    Article  CAS  PubMed  Google Scholar 

  32. Wang FF, Wu Y, Zhu YH, Ding T, Batterham RL, Qu F, et al. Pharmacologic therapy to induce weight loss in women who have obesity/overweight with polycystic ovary syndrome: a systematic review and network meta-analysis. Obes Rev. 2018;19(10):1424–45. https://doi.org/10.1111/obr.12720.

    Article  PubMed  Google Scholar 

  33. Bettge K, Kahle M. Abd El Aziz MS, Meier JJ, Nauck MA. Occurrence of nausea, vomiting and diarrhoea reported as adverse events in clinical trials studying glucagon-like peptide-1 receptor agonists: a systematic analysis of published clinical trials. Diabetes Obes Metab. 2017;19(3):336–47. https://doi.org/10.1111/dom.12824.

    Article  CAS  PubMed  Google Scholar 

  34. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22. https://doi.org/10.1056/NEJMoa1603827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nreu B, Dicembrini I, Tinti F, Mannucci E, Monami M. Cholelithiasis in patients treated with glucagon-like Peptide-1 receptor: an updated meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2020;161:108087. https://doi.org/10.1016/j.diabres.2020.108087.

    Article  CAS  PubMed  Google Scholar 

  36. Faillie JL, Yu OH, Yin H, Hillaire-Buys D, Barkun A, Azoulay L. Association of bile duct and gallbladder diseases with the use of Incretin-based drugs in patients with type 2 diabetes mellitus. JAMA Intern Med. 2016;176(10):1474–81. https://doi.org/10.1001/jamainternmed.2016.1531.

    Article  PubMed  Google Scholar 

  37. Egan AG, Blind E, Dunder K, de Graeff PA, Hummer BT, Bourcier T, et al. Pancreatic safety of incretin-based drugs—FDA and EMA assessment. N Engl J Med. 2014;370(9):794–7. https://doi.org/10.1056/NEJMp1314078.

    Article  CAS  PubMed  Google Scholar 

  38. Bjerre Knudsen L, Madsen LW, Andersen S, Almholt K, de Boer AS, Drucker DJ, et al. Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology. 2010;151(4):1473–86. https://doi.org/10.1210/en.2009-1272.

    Article  CAS  PubMed  Google Scholar 

  39. Waser B, Blank A, Karamitopoulou E, Perren A, Reubi JC. Glucagon-like-peptide-1 receptor expression in normal and diseased human thyroid and pancreas. Mod Pathol. 2015;28(3):391–402. https://doi.org/10.1038/modpathol.2014.113.

    Article  CAS  PubMed  Google Scholar 

  40. Buse JB, Bain SC, Mann JFE, Nauck MA, Nissen SE, Pocock S, et al. Cardiovascular risk reduction with Liraglutide: an exploratory mediation analysis of the LEADER trial. Diabetes Care. 2020;43:1546–52. https://doi.org/10.2337/dc19-2251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. le Roux CW, Astrup A, Fujioka K, Greenway F, Lau DCW, Van Gaal L, et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet. 2017;389(10077):1399–409. https://doi.org/10.1016/S0140-6736(17)30069-7.

    Article  CAS  PubMed  Google Scholar 

  42. •• Tamborlane WV, Barrientos-Perez M, Fainberg U, Frimer-Larsen H, Hafez M, Hale PM, et al. Liraglutide in children and adolescents with type 2 diabetes. N Engl J Med. 2019;381(7):637–46. https://doi.org/10.1056/NEJMoa1903822Randomized, placebo-controlled study of liraglutide 1.8 mg in 135 children ages 10–16 with type 2 diabetes that found that treatment with liraglutide resulted in a 1.3% reduction in HbA1c compared with placebo. Study served as the basis for FDA approval of liraglutide in children with type 2 diabetes.

    Article  CAS  PubMed  Google Scholar 

  43. Ford AL, Hunt LP, Cooper A, Shield JP. What reduction in BMI SDS is required in obese adolescents to improve body composition and cardiometabolic health? Arch Dis Child. 2010;95(4):256–61. https://doi.org/10.1136/adc.2009.165340.

    Article  PubMed  Google Scholar 

  44. Freedman DS, Butte NF, Taveras EM, Goodman AB, Ogden CL, Blanck HM. The limitations of transforming very high body mass indexes into z-scores among 8.7 million 2- to 4-year-old children. J Pediatr. 2017;188:50–6 e1. https://doi.org/10.1016/j.jpeds.2017.03.039.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Freedman DS, Butte NF, Taveras EM, Lundeen EA, Blanck HM, Goodman AB, et al. BMI z-scores are a poor indicator of adiposity among 2- to 19-year-olds with very high BMIs, NHANES 1999-2000 to 2013-2014. Obesity (Silver Spring). 2017;25(4):739–46. https://doi.org/10.1002/oby.21782.

    Article  Google Scholar 

  46. Kelly AS, Rudser KD, Nathan BM, Fox CK, Metzig AM, Coombes BJ, et al. The effect of glucagon-like peptide-1 receptor agonist therapy on body mass index in adolescents with severe obesity: a randomized, placebo-controlled, clinical trial. JAMA Pediatr. 2013;167(4):355–60. https://doi.org/10.1001/jamapediatrics.2013.1045.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kelly AS, Metzig AM, Rudser KD, Fitch AK, Fox CK, Nathan BM, et al. Exenatide as a weight-loss therapy in extreme pediatric obesity: a randomized, controlled pilot study. Obesity (Silver Spring). 2012;20(2):364–70. https://doi.org/10.1038/oby.2011.337.

    Article  CAS  Google Scholar 

  48. • Weghuber D, Forslund A, Ahlstrom H, Alderborn A, Bergstrom K, Brunner S, et al. A 6-month randomized, double-blind, placebo-controlled trial of weekly exenatide in adolescents with obesity. Pediatr Obes. 2020:e12624. https://doi.org/10.1111/ijpo.12624Randomized, placebo-controlled study of once-weekly exenatide in 44 non-diabetic, obese children ages 10–18, which found a 2.3% decrease in BMI with exenatide compared with placebo.

  49. Mastrandrea LD, Witten L, Carlsson Petri KC, Hale PM, Hedman HK, Riesenberg RA. Liraglutide effects in a paediatric (7-11 y) population with obesity: a randomized, double-blind, placebo-controlled, short-term trial to assess safety, tolerability, pharmacokinetics, and pharmacodynamics. Pediatr Obes. 2019;14(5):e12495. https://doi.org/10.1111/ijpo.12495.

    Article  PubMed  PubMed Central  Google Scholar 

  50. •• Kelly AS, Auerbach P, Barrientos-Perez M, Gies I, Hale PM, Marcus C, et al. A randomized, controlled trial of liraglutide for adolescents with obesity. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa1916038Randomized, placebo-controlled study of liraglutide 3 mg in 251 children ages 12–17 with obesity that found a 4.6% reduction in BMI in the liraglutide group compared with placebo.

  51. Nathan BM, Rudser KD, Abuzzahab MJ, Fox CK, Coombes BJ, Bomberg EM, et al. Predictors of weight-loss response with glucagon-like peptide-1 receptor agonist treatment among adolescents with severe obesity. Clin Obes. 2016;6(1):73–8. https://doi.org/10.1111/cob.12128.

    Article  CAS  PubMed  Google Scholar 

  52. Shoemaker AH, Chung ST, Fleischman A. Pediatric Endocrine Society obesity special interest G. trends in pediatric obesity management, a survey from the Pediatric Endocrine Society Obesity Committee. J Pediatr Endocrinol Metab. 2020;33(4):469–72. https://doi.org/10.1515/jpem-2019-0546.

    Article  PubMed  Google Scholar 

  53. Yanovski JA, Krakoff J, Salaita CG, McDuffie JR, Kozlosky M, Sebring NG, et al. Effects of metformin on body weight and body composition in obese insulin-resistant children: a randomized clinical trial. Diabetes. 2011;60(2):477–85. https://doi.org/10.2337/db10-1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Styne DM, Arslanian SA, Connor EL, Farooqi IS, Murad MH, Silverstein JH, et al. Pediatric obesity-assessment, treatment, and prevention: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2017;102(3):709–57. https://doi.org/10.1210/jc.2016-2573.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Freemark M, Bursey D. The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics. 2001;107(4):E55. https://doi.org/10.1542/peds.107.4.e55.

    Article  CAS  PubMed  Google Scholar 

  56. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. https://doi.org/10.1056/NEJMoa012512.

    Article  CAS  PubMed  Google Scholar 

  57. Chanoine JP, Hampl S, Jensen C, Boldrin M, Hauptman J. Effect of orlistat on weight and body composition in obese adolescents: a randomized controlled trial. JAMA. 2005;293(23):2873–83. https://doi.org/10.1001/jama.293.23.2873.

    Article  CAS  PubMed  Google Scholar 

  58. Maahs D, de Serna DG, Kolotkin RL, Ralston S, Sandate J, Qualls C, et al. Randomized, double-blind, placebo-controlled trial of orlistat for weight loss in adolescents. Endocr Pract. 2006;12(1):18–28. https://doi.org/10.4158/EP.12.1.18.

    Article  PubMed  Google Scholar 

  59. Ryder JR, Kaizer A, Rudser KD, Gross A, Kelly AS, Fox CK. Effect of phentermine on weight reduction in a pediatric weight management clinic. Int J Obes. 2017;41(1):90–3. https://doi.org/10.1038/ijo.2016.185.

    Article  CAS  Google Scholar 

  60. Aroda VR, Edelstein SL, Goldberg RB, Knowler WC, Marcovina SM, Orchard TJ, et al. Long-term metformin use and vitamin B12 deficiency in the diabetes prevention program outcomes study. J Clin Endocrinol Metab. 2016;101(4):1754–61. https://doi.org/10.1210/jc.2015-3754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee M, Lauren BN, Zhan T, Choi J, Klebanoff M, Abu Dayyeh B, et al. The cost-effectiveness of pharmacotherapy and lifestyle intervention in the treatment of obesity. Obes Sci Pract. 2020;6(2):162–70. https://doi.org/10.1002/osp4.390.

    Article  PubMed  Google Scholar 

  62. Johansen P, Sandberg A, Capehorn M. A relative cost of control analysis of once-weekly Semaglutide versus Exenatide extended-release, Dulaglutide and Liraglutide in the UK. Adv Ther. 2020;37(3):1248–59. https://doi.org/10.1007/s12325-020-01242-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the critical reviews and insights of Sarah Armstrong MD, Nancie MacIver MD PhD, and Lisa Rasbach PhD CPNP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura C. Page.

Ethics declarations

Conflict of Interest

Laura C. Page has nothing to disclose. Michael Freemark reports that he is an investigator on a study of the treatment of monogenic obesity sponsored by Rhythm Inc. He also serves as a member of a DSMB on a separate Rhythm, Inc. sponsored trial.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Childhood Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Page, L.C., Freemark, M. Role of GLP-1 Receptor Agonists in Pediatric Obesity: Benefits, Risks, and Approaches to Patient Selection. Curr Obes Rep 9, 391–401 (2020). https://doi.org/10.1007/s13679-020-00409-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-020-00409-7

Keywords

Navigation