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Abstract
A significant growth of the railway transportation demand is forecasted in the next 
decades which needs an increase of network capacity. Where possible, infrastructure 
upgrading can provide extra capacity; although in some cases, this is not enough to 
satisfy the entire transportation demand even if optimised timetabling is performed. 
We propose a heuristic model to develop a stable timetable which maximises the 
satisfaction of transportation demand in  situations where network capacity is lim-
ited. In case the demand cannot be fully satisfied, the model relaxes the given line 
plan and timetable design parameters. The aim is to keep as many train services as 
possible and reduce the level of service minimally. We develop a mixed integer lin-
ear programming (MILP) model for minimising the cycle time to find an optimised 
stable timetable for the given line plan. The heuristic iteratively solves the MILP 
model and applies relaxation measures. We tested the model on the Dutch network. 
The results showed that the model can generate stable timetables by removing train 
services from the critical circuit, and also, higher transportation demand can be sat-
isfied by additionally relaxing timetable design parameters.

Keywords Timetabling · Periodic event scheduling problem (PESP) · Instability · 
Minimum cycle time

1 Introduction

A significant increase in the demand of passenger and freight transportation is 
expected to load railway networks in the near future. In this context, infrastructure 
managers strive to find operational and/or infrastructural solutions to allow higher traf-
fic volumes running on the network to satisfy the forecasted transportation demand. 
The set of train services designed to meet such expected transportation demand is 
called the target line plan. To meet the demand, railway planners have the objective to 
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design a timetable that possibly runs all trains of the target line plan within a scheduled 
cycle time T, usually coinciding with one hour. In railway planning, it is usual to have 
train services repeating every cycle T in a so-called periodic timetable. Network capac-
ity is, however, not always sufficient and infrastructure upgrades are often necessary 
to accommodate a denser train service plan. The possibility of installing additional 
tracks, platforms and/or flyovers in bottleneck areas such as stations and junctions, is 
mostly restricted by budget constraints and the lack of physical space, especially for 
stations and junctions located in densely built urban areas. A more convenient and 
sustainable alternative would instead be upgrading the conventional signalling system 
with technologies suitable for running high-capacity high-speed (HCHS) railway traf-
fic, such as the European Train Control System (ETCS) (Stanley 2011). For instance, 
the UK railway infrastructure manager Network Rail is currently opting for these types 
of improvements with the delivery of the Digital Railway programme Digital Rail-
way Programme (2016). The Digital Railway aims at deploying advanced technolo-
gies in the area of control, command and signalling (e.g. optimal timetabling tools, 
driver advisory systems, traffic management systems, automatic train operation, ETCS 
signalling) to meet a 40% increase in transportation demand forecasted to load the UK 
network within the next 30 years.

Installation of advanced control and signalling systems, however, is not going 
to be sufficient if train services are not planned effectively to maximise the utili-
sation of the additional capacity enabled by these new technologies. In this con-
text, enhanced timetabling models are necessary to be applied to lay out the target 
line plan smoothly on the network under the control of advanced HCHS control 
and signalling technologies. In case the target line plan is incompatible with the 
residual capacity of the network (i.e. not all planned train services can actually 
run on the network within cycle time T), such timetabling models shall be able 
to fit in as many train lines as possible while providing efficient train operations 
and a mitigation of delay propagation. In other words, timetabling shall focus on 
maximising utilisation of infrastructure capacity while providing robustness to 
stochastic disturbances. We define the minimum cycle time � as the minimum 
amount of time over which all train events (i.e. arrivals, departures, passings) in 
the target line plan can be scheduled without conflicts. According to Heidergott 
et  al. (2005) and Goverde (2007), network-level capacity occupation (stability) 
of a periodic timetable can be expressed by the minimum cycle time � of the 
timetable. A timetable that satisfies the condition 𝜆 < T  is called structurally sta-
ble Goverde (2007). Planners always aim to identify a stable timetable which can 
accommodate the entire target line plan with the scheduled cycle time so as to 
satisfy the forecasted demand. Instead, the question is how to tackle scheduling 
problems when a stable timetable cannot be found because the increased demand 
is higher than the additional capacity gained with the deployed enhanced control 
and signalling systems. In such a situation, additional timetabling solutions and/
or measures shall be considered so as to minimise penalties for partially satisfy-
ing the transportation demand, i.e. minimise deviations from the target line plan. 
Therefore, is it necessary to cancel some of the train services in the target plan? If 
needed, how to cancel services while minimising the impact on level of service?
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In this paper, we propose a mathematical model for resolving timetable instability 
� ≥ T  caused by an overly ambitious target line plan. In particular, the model finds 
an optimised stable timetable (structure) that satisfies the transportation demand as 
much as possible. To do so, a heuristic approach has been developed that integrates 
an optimisation model and relaxation rules to minimise necessary corrections to the 
target line plan. A timetable structure is defined as an ordered sequence of train event 
times on a railway network during a basic period that provides feasible operations 
with respect to the minimum process times (e.g. running, dwell, turnaround times). 
In essence, it can be represented by a compressed timetable with T = � . We design a 
mixed integer linear programming (MILP) model for solving a timetabling problem 
that minimises the cycle time � for a given line plan. This MILP model finds an opti-
mal timetable structure, which uses the network capacity minimally. If the optimal 
timetable structure is unstable, 𝜆 > T  , then the line plan is relaxed. Three relaxation 
measures are proposed to adjust the target line plan and timetable design parame-
ters. The latter include relaxing regularity constraints and relaxing train-related con-
straints, and the former reducing line frequencies. The iterations between the mini-
mal cycle time optimisation and relaxations are repeated until the optimised stable 
timetable structure has been found. When a stable timetable (structure) is obtained, 
time allowances can be optimally allocated to maximise robustness versus stochas-
tic disturbances. An application of the proposed approach is performed for a part 
of the Dutch railway network and for a forecasted increased transportation demand. 
Results show that the presented model produces a stable timetable that minimise 
impacts on the transportation demand to satisfy.

The main contribution of the paper is that it presents the first timetabling model 
that tackles timetable instability of periodic timetables in (over)saturated networks. 
We do not assume that all train lines from the given line plan can be scheduled. This 
makes the model more general, provides more flexibility to find a stable solution and 
allows a wider application in railway timetable planning. In particular, the model 
could be used in dense networks where the capacity use (i.e. minimum cycle time) 
is already becoming critical, � ≈ T  ; also, the model could evaluate infrastructure 
improvements projects. Second, the proposed procedure for computing an initial 
solution and stronger upper bound for � in MILP significantly reduced its compu-
tation time. Third, natural measures to relax the given line plan were successfully 
implemented and contributed to creating stable timetable structures. Fourth, the 
algorithm for resolving instability shows the importance of relaxing train lines that 
are part of the critical circuit (consisting of the critical events and processes defining 
the minimum cycle time � ) opposed to relaxing random train lines. These extensions 
to timetabling model make it a very useful support tool for timetable planning in 
areas with high demand and/or scarce infrastructure capacity and can help in finding 
a maximal set of train lines and corresponding frequencies that satisfies (most of) 
the transportation demand.

In Sect. 2, we give a literature review on timetabling models and stability-related 
research. Section  3 introduces the periodic event scheduling problem (PESP) and 
the PESP-based model for minimising cycle time, PESP-� . Section 4 defines first the 
assumptions and priority rules and then, the heuristic algorithm for resolving insta-
bility and improvements for PESP-� . Section 5 gives the computation results of the 
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proposed heuristic for two test scenarios on the Dutch network. Finally, Sect. 6 gives 
conclusions and main observations.

2  Literature review

A target line plan defines a set of requested train lines with its origin and destina-
tion, stopping stations and its frequency in number of train services per scheduled 
cycle time. A timetable consists of event times such as arrival and departure times 
in stations and processes between events like running, dwelling and transfer times. 
Process times also include infrastructure constraints (i.e. headways) between events 
that guarantee safe operations. In periodic timetabling, a cycle time T is given and 
all events are selected in the interval between 0 and T.

Timetable feasibility is the ability that a timetable exists for a given line plan 
without violating any train- and passenger- and safety constraints. Timetable stabil-
ity is the ability of a timetable to absorb initial and primary delays, so that delayed 
trains return to their scheduled train paths without rescheduling. Timetable effi-
ciency is the ability to run trains as fast as possible and thus allocate only limited 
running and dwell time supplements.

Aiming at timetabling efficiency may create a significant speed difference 
between train lines of different types. For example, if two train lines, a fast and slow 
(e.g. intercity and local), on a corridor are scheduled with minimal time supple-
ments, then the speed difference between the two will be significant and the two 
trains together would need more infrastructure capacity. On the other hand, if a 
faster train is allowed to run slower and thus, allow a more homogeneous service, 
then less capacity will be used (Hansen and Pachl 2014).

Figure 1 shows the influence of heterogeneity on the minimum cycle time. It gives 
the minimum cycle times of two train lines with a frequency of two in a period of 
length T running in the same direction over a single track. The dashed line is the first 
train repeated in the next period. Figure 1a, b represents heterogeneous (more homo-
geneous) services with minimum cycle time �ht ( �ho ). The running time difference 
between train services in Fig. 1a is evident, while the running times of the fast services 
in Fig. 1b are extended and more similar to the one of the slower services. Clearly, �ho 
is smaller than �ht due to smaller necessary headways between train services.

Periodic railway timetabling problems are often presented as a periodic event 
scheduling problem (PESP) introduced by Serafini and Ukovich (1989). Afterwards, 
a significant amount of research has been assigned to solving timetabling based on 
PESP. For solving PESP, Schrijver and Steenbeek (1994) applied constraint pro-
gramming to find a feasible timetable, while Kümmling et  al. (2015) used SAT 
solvers to the same problem. By adding an objective function to the PESP formu-
lation, the timetabling problem can be solved using mixed integer programming 
(MIP) techniques as elaborated in Peeters (2003). Other papers that further devel-
oped PESP-based models for timetabling are Caimi et al. (2011), Kroon and Peeters 
(2003), Kroon et al. (2013), Liebchen (2009), Nachtigall (1993) and Nachtigall and 
Opitz (2008). In addition, Cacchiani and Toth (2012) give an overview of railway 
timetabling models.
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Most of the models for solving timetabling problems (PESP) assume that it is possi-
ble to schedule all services from the line plan. Only recently, Kümmling et al. (2015), 
Polinder (2015) and Bešinović et  al. (2016) presented approaches for solving prob-
lems of local infeasibility in periodic timetabling problems. Polinder (2015) resolves 
conflicts reported in the planning model DONS Schrijver and Steenbeek (1994) by 
relaxing neighbouring processes. Kümmling et al. (2015) proposed a similar approach 
to support the planning model TAKT (Kümmling et al. 2015). Differently, Bešinović 
et al. (2016) proposed an iterative micro–macro approach for designing (microscopi-
cally) conflict-free, stable and robust timetables. The macro-model computes a timeta-
ble, which is evaluated on microscopic conflict-freeness and (local) stability. Here, sta-
bility is defined at the local (station or corridor) level as a minimum necessary amount 
of buffer times. Still, Kümmling et  al. (2015), Polinder (2015) and Bešinović et  al. 
(2016) assume that all train services will be possible to schedule after applying small 
adjustments to the process times. Thus, more general timetabling models for dealing 
with potential instability should be considered.

The idea of minimising the cycle time for measuring stability was introduced 
by Bergmann (1975) for a single-track line and homogeneous fleet. Heydar et  al. 
(2013) extended this model to a single-track unidirectional line that adheres to a 
cyclic timetable and considered two types of trains. The objective was to minimise 
the capacity occupation and minimise the total dwelling time of local trains at all 
stations. Petering et al. (2015) extended the model of Heydar et al. (2013) to allow 
selection of stop platforms in a station and schedule train overtakings. Sparing and 
Goverde (2017) developed an extension to the PESP model that minimises the cycle 
time and train running times which is applicable to both lines and networks. Zhang 
and Nie (2016) further expanded Sparing and Goverde (2017) by adding flexible 
overtaking constraints and heuristics to speed up the computations. In addition, 
authors analysed the effect of some timetable design parameters on the minimum 

Fig. 1  Effect of speed on the minimum cycle time
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cycle time. Output of these models is an (near) optimal timetable structure, i.e. a 
compressed timetable and not a final one.

To translate a timetable structure to an actual timetable, Bešinović and Goverde 
(2016) proposed a two-stage model for computing a stable and robust timetable. In 
particular, the first stage solved the minimal cycle time problem, while the second 
stage distributed time allowances to improve the timetable robustness. In addition, 
several objective functions were proposed and tested for the second stage.

The concept of timetable stability is often unrecognised in the literature on rail-
way timetabling which is partly due to the common assumption that a given line 
plan naturally provides a stable timetable structure. Therefore, it is crucial to make a 
distinction between timetable stability and timetable feasibility. In general, a model 
for minimising the cycle time � finds an optimal timetable structure to a given input. 
Such timetable structure is unstable if 𝜆 > T  . If � = T  , the timetable is called criti-
cal (Goverde 2007). Any T-feasible timetable (i.e. feasible with cycle time T) satis-
fies � ≤ T  , so it may be stable or critical. � is the smallest T for which a timetable 
(structure) is T-feasible. Each periodic timetabling problem becomes T-feasible for 
a sufficiently large T. To make a timetable that can be operated, � has to be smaller 
than desired T which could be done only by relaxing certain input constraints. In this 
paper, we extend the approach of Sparing and Goverde (2017) and define a more 
general approach to resolve timetable instability and design optimised stable time-
tables. Finally, we limit ourselves to finding an optimised stable timetable structure, 
while the final timetable can be generated by applying the approach from Bešinović 
and Goverde (2016).

3  Model formulation

3.1  Periodic event scheduling problem (PESP)

The timetabling approach is based on a periodic event-activity network (PEAN) rep-
resented by a weighted directed graph N = (E,A, T , l, u) , which is associated with a 
target line plan Q. A train line q ∈ Q defines a requested periodic train service char-
acterised by its origin and destination, stopping pattern and frequency fq within a 
given scheduled cycle time T. The set E of events consists of periodic arrival, depar-
ture and pass-through events for each train line in Q in each station along its route. 
This means that if an event i is scheduled at time �i then it will also occur at times 
�i + k ⋅ T  for k = 1, 2,… For each event, we determine the event time in the basic 
period �i ∈ [0, T).

Set A represents processes (i, j) ∈ A , where i and j are two consecutive events and 
can interpret various rules and restrictions. Running times are the times needed for a 
train to run between two timetabling points. A lower bound lij for the running time rep-
resents the nominal running time, which is the minimum running time increased by 
a certain percentage to satisfy stochastic train behaviour. The upper bound uij is the 
maximum running time extension with respect to the passenger quality of service. The 
set of running processes is denoted as Arun . Dwell times are the durations of a train stop 
in a station. The minimum represent a time needed to board and alight the train, while 
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the upper bound uij limits the waiting time for passengers. The set of dwell processes is 
denoted as Adwell . A passenger connection is a transfer of passengers from a feeder to a 
connecting train in a station. The minimum transfer time lij defines the necessary time 
to alight from the first train, walk to the departure platform, and board the second train. 
A set of connection processes is denoted as Aconn . Safety constraints between two trains 
based on the given signalling system are defined as Ainfra . Formally, these constraints 
can be written as:

The binary variable zij represents a modulo parameter that determines the order of 
events i and j within a period T for given bounds [lij, uij] and equals 1 if 𝜋j < 𝜋i or 
0, otherwise. This binary property of zij holds assuming lij ≤ uij , 0 ≤ lij < T  and 
0 ≤ uij − lij < T  . This constraint can also be written as �j − �i ∈ [lij, uij]T.

We also define subsets of events and processes for each train line Eq and Aq , respec-
tively. Each train line q ∈ Q with fq = 1 consists of a sequence of process times 
a = (i, j) , where i and j are two consecutive events. For fq > 1 , the train line q consists 
of fq train services. In that case, events and processes of a train line q are replicated 
fq times and qk depicts the kth repetition of the train service in a basic period where 
k = {1,… , fq} . Subsets of events i assigned to the train service qk are defined as Eqk

 
and subsets of processes (i, j) as Aqk

 . To secure the regular train services of the same 
line, meaning that services qk are equally separated in time, we introduce regularity 
constraints Areg . These constraints are defined between services of one line, where i and 
j are events of two following services. The time separation between two consecutive 
services is equal to T∕fq and can be written as:

Here, i and j are events of two consecutive services of the same train line. Figure 2 
gives a small example of a periodic event-activity network with two trains stopping 
at a station.

PESP is originally a feasibility problem, and we adopt the common mathematical 
formulation as:

�j − �i + zijT ∈ [lij, uij], ∀(i, j) ∈ A= Arun ∪ Adwell ∪ Aconnection ∪ Ainfra.

𝜋j − 𝜋i + zijT = T∕fq, ∀q ∈ Q ∶ fq > 1, (i, j) ∈ Areg.

(1)(PESP) lij ≤ �j − �i + zijT ≤ uij, ∀(i, j) ∈ A

(2)0 ≤ �i ≤ T − 1, ∀i ∈ E

Fig. 2  An extract of a periodic event-activity network for two trains arriving (a) at and departing (d) 
from a station with running (dashed line), dwell (solid), transfer (dotted) and headway (dash-dotted) con-
straints
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Constraint (1) defines bounds on the process times. Constraint (2) gives the perio-
dicity of the events and schedules them in the interval [0, T). Constraint (3) defines 
the modulo constraint as a binary decision variable.

3.2  PESP for minimising cycle time

We aim at finding the optimal timetable structure over N by minimising the cycle time 
� . To find the optimal timetable structure over N, we introduce the timetabling model 
that minimises the cycle time �.

The difference between minimum and scheduled cycle time defines the available 
time allowances (time supplements and buffers). Therefore, the computed optimal 
timetable structure gives the train orders that use the infrastructure in the most optimal 
way and leave the most time allowance. Note that time allowances may be negative if 
𝜆 > T . This means that although the model finds the optimal structure for the given 
line plan, it cannot be scheduled within the scheduled cycle time T, and thus, the time-
table structure is unstable. The allocation of time allowances plays an important role 
in designing robust timetables and may depend on typical types of delays occurring in 
the network, e.g. primary delays caused by extra running/dwelling times and second-
ary delays propagated from other delayed trains. For distributing time allowances in a 
defined timetable structure, we refer to Sparing and Goverde (2017) and Bešinović and 
Goverde (2016).

The problem of finding the optimal timetable structure is formulated based on PESP 
and consists of solving the problem of minimising the cycle time. In addition, minimi-
sation of journey times is used as a secondary objective term to prevent an excessive 
extension of journey times. The new MILP formulation of minimising the cycle time is 
then the following:

subject to

(3)zij ∈ {0, 1}, ∀(i, j) ∈ A

(4)(PESP − �) Minimise � +
∑

(i,j)∈Arun∪Adwell

�ij(�j − �i + yij)

(5)lij ≤ �j − �i + yij ≤ uij, ∀(i, j) ∈ A

(6)�j − �i + yij = �∕fq, ∀(i, j) ∈ Areg,∀q ∈ Q

(7)0 ≤ �i ≤ � − 1, ∀i ∈ E

(8)0 ≤ � ≤ �max,

(9)0 ≤ yij ≤ �, ∀(i, j) ∈ A
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The objective function (4) represents minimising the cycle time and total journey 
times. Here, �ij defines a process-dependent weight that may differ for running and 
dwell processes. The weights are defined in such a way that the sum of weighted 
journey times is significantly smaller than � to maintain the first term of the objec-
tive function dominant. In addition, the weights can reflect the practitioner’s needs 
to prioritise running versus dwelling processes. Constraint (5) defines bounds on the 
process times. Constraint (6) synchronises train services of train lines. Constraint 
(7) sets the events in a periodic interval [0, �) . Constraint (8) defines � to be strictly 
positive and smaller than a given upper bound �max . Since the scheduled cycle time 
T from (1) to (2) is substituted with a decision variable � , the constraint (1) would 
become nonlinear because of the new nonlinear term zij� . Hence, this is linearised 
by introducing new variables yij = zij� and constraints (9)–(11) according to Sparing 
and Goverde (2017). Here, �max is a suitable upper bound for the objective value � . 
In the remainder of the paper, we refer to the model for minimising cycle time as 
PESP-� . The output of PESP-� is the minimum cycle time � and the optimal time-
table structure (�, z) where �i are event times for all i ∈ E and zij modulo parameters 
for each arc (i, j) ∈ A.

3.3  Critical circuit

As mentioned before, � is a network stability measure. To identify processes that 
restrict having a smaller � , we introduce additional terms. A circuit is a closed 
sequence of events in N. We focus only at elementary circuits, i.e. circuits in which 
each vertex (i.e. events) has exactly one incoming and outgoing arc. Note that we con-
sider directed circuits. We refer to a circuit that builds the minimum cycle time as to a 
critical circuit C

�
 . Determining the critical circuit is performed by the function getCrit-

icalCircuit, which consists of three steps: (1) find all strongly connected components 
using a depth-first search algorithm, (2) compute all circuit times and corresponding 
cycle means (i.e. the sum of all processes in a circuit divided by the number of periods 
needed to perform all processes) over all components, and (3) assign the circuit with 
the biggest cycle mean as the critical circuit. Such computed biggest cycle mean cor-
responds to the minimum cycle time � . Alternatively, the critical circuit can be com-
puted using the policy iteration algorithm (Goverde 2007, 2010).

To determine the most constraining events in the network, we compute and ana-
lyse the critical circuit C

�
 . If an event i is in C

�
 , we refer to it as a critical event and 

include it in the set E
�
 . Events on the critical circuit identify the critical processes 

A
�
 in the network. In addition, we make a set of critical services Q

�
 where qk is in Q

�
 

if it has at least one event in E
�
 . The corresponding processes in the critical circuit 

(10)yij ≥ � − �max(1 − zij), ∀(i, j) ∈ A

(11)yij ≤ zij�max, ∀(i, j) ∈ A

(12)zij ∈ {0, 1}, ∀(i, j) ∈ A
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can be running, dwell, connection, regularity or headway processes. Figure 3 gives 
an example of a critical circuit that comprises six arrival and departure events over 
four train lines.

To obtain a stable timetable, the timetable must be operated with a scheduled 
cycle time T > 𝜆 . To tackle instability of the timetable, i.e. reduce � , we need to make 
changes (at least) on the critical circuit C

�
 and in particular, relax critical lines. Other-

wise, relaxing a random train line, that is not being part of the critical circuit may not 
affect the stability of the whole system, and the value of � would stay unchanged. For 
example, removing a train service in a low-dense network area, the events of which 
are not part of the critical circuit may result in unchanged (in)stability of the timetable.

4  Resolving timetable instability

4.1  Assumptions and priority rules

When relaxing the target line plan Q, we want to choose a most suitable train line 
(one or more) q ∈ Q

�
 to relax, which affects transportation demand the least. Thus, 

after discussions with planners, we introduce a set of priority rules and assump-
tions that allows to incorporate the unsatisfied demand implicitly. Such rules 
suggest which train line should be adjusted first and are based on the train line 
characteristics.

Before generating the rules, we make the underlying assumptions. First, all train 
lines of the same service type (i.e. stopping pattern) have the same passenger capac-
ity between two stops and are treated as equally important. Second, as a consequence 
of the previous, overall transport capacity of a train line differs when changing the 
number of stations, i.e. a longer train line of the same service type transports more 
passengers; hence, it is more important to maintain train lines that stop at more sta-
tions. Third, intercity long-distance trains have higher capacity than regional trains. 
Fourth, each train line should be maintained in the timetable, meaning that the fre-
quency for any given line q ∈ Q may be relaxed at most to fq = 1.

We select four train line characteristics for determining their priorities: the cov-
ered distance from origin to destination, line type, number of stops and line fre-
quency. In general, the goal is to relax the train line that would affect less passengers 
in the network. Hence, we define four lexicographic rules that should be followed 

Fig. 3  Example of a critical cir-
cuit including three arrival (a) 
and three departure (d) events of 
three different train lines. (Line 
types are the same as in Fig. 2)
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in the given order: first, choose the line type with less passenger demand; second, 
choose a line that covers the shortest distance; third, choose the line that has the 
least number of stops, and fourth, choose a line with the highest frequency. Finally, 
if two (or more) lines have all criteria equal, then the one is selected randomly.

These assumptions and priority rules could be easily extended or substituted 
with realistic passenger loads, representing either current or expected transportation 
demand. In addition, these assumptions should be adjusted to the concerned case 
study. For example, some shorter services may be crowded and almost impossible to 
be substituted by alternative transport systems. So, cancelling certain train lines may 
be forbidden given the passenger demand. However, such data were not available 
and thus out of the scope for this research. Note that priority of a line q is translated 
to corresponding train services qk.

4.2  Measures for resolving timetable instability

Relaxation measures that are considered in this paper are relaxing the given target 
line plan and timetable design parameters. A target line plan represents a transport 
demand; however, it may happen that not all services can run due to limited avail-
able infrastructure. Also, a desired level of service (LoS) is determined by a given 
set of timetable design parameters (i.e. a given amount of transfer times, a maximum 
rate of running and dwell time supplements). Hence, apart from relaxing line fre-
quencies, relaxing timetable design parameters can provide a smaller � for the same 
size of the line plan. Even more, relaxing timetable design parameters may enable 
more demand to be satisfied. In practice, planners strive to accept all train service 
requests from railway undertakings since each additionally scheduled train brings 
additional profit to the infrastructure manager. Thus, the infrastructure manager may 
tend to sacrifice the LoS to some extent to schedule as many trains as possible. In 
particular, we propose the following measures: relax train line frequency M1, relax 
regularity constraints M2, and relax train-related constraints M3.

Measure M1 Measure M1 reduces the frequency of a train line while at least one 
service of each train line is maintained. Using M1 essentially lowers the total number 
of trains in the network and provides more possibility to fit remaining trains in the 
timetable. It is important to tackle train lines that exist on the critical circuit and not 
a random one. Otherwise, if a random train service has been selected, then it may 
happen that the critical circuit remains the same and does not affect the cycle time 
� . Since the target line plan represents the transportation demand, we want to ensure 
that the least number of train services is removed and thus have a limited unsatisfied 
demand. In practice, the critical circuit C

�
 typically includes (one or more) events from 

multiple train lines. We choose to remove one train service at a time.
In each iteration, the frequency of the train line with the lowest priority is 

decreased by one train service per scheduled cycle time T and the periodic event-
activity network N is rebuilt. In particular, we first choose a critical service from 
Q

�
 with the lowest priority based on the defined rules and refer to it as qcrit . Then, 

all events and processes of qcrit , i ∈ Eqcrit
 and (i, j) ∈ Aqcrit

 , are removed from E and 
A, respectively. Additional constraints like headways, connections and regularities 
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related to qcrit are also removed from A. Finally, the train line frequency is updated 
(i.e. reduced) in the priority list.

Measure M2 The first timetable design parameter, regularity, initially restricts 
the separation of train services of a line exactly to T∕fq . However, by allowing 
some degree of freedom to these constraints, we may achieve a better timetable 
stability. Thus, measure M2 introduces a relaxation parameter S, which is defined 
as a certain tolerance time that relaxes the regularity constraints. Constraints (6) are 
extended to:

Measure M3 The second timetable design parameter that can influence timetable 
stability is the maximum allowed running time supplement rate. For a train run-
ning between events i and j, a running time bound uij represents the sum of technical 
minimal running time and the maximum time supplements, where the latter is often 
defined as a certain rate of the former. In essence, uij prevents that excessive time is 
scheduled which could lead to inefficient service. Both lij and uij are computed by 
given timetable design parameters and their values are decided by timetable plan-
ners which may have a significant impact on � . Based on Fig. 1, more homogenised 
transport services may lead to smaller necessary headways between train services. 
Thus, allowing more time supplements to fast trains may result in a smaller mini-
mum cycle time for the whole network. To provide more flexibility and use more 
time supplements when needed, we increase available running time supplements 
(measure M3). Thus, we introduce the relaxation parameter for running time supple-
ments W and apply it to all upper bounds on Arun . The parameter W ≥ 1 presents the 
multiplication factor for maximum allowed running times. Constraints (5) become:

In summary, measure M1 implies that the total number of train services will be 
reduced and transport demand may not be completely satisfied. Measures M2 and 
M3 suggest slight reduction in the expected LoS by relaxing planning rules. The lat-
ter two measures are always more acceptable and easier to implement than reducing 
the line frequencies. Based on the experts experience, we determined a quantitative 
value of three proposed measures and applied them when developing the algorithm 
for resolving timetable instability. In particular, it is preferable to relax first regular-
ity constraints, then running time constraints and if no other options, then eventually 
train line frequencies.

4.3  Algorithm for resolving � ≥ T

Minimising cycle time is an NP-hard problem (Sparing and Goverde 2017) and solv-
ing PESP-� once for the given line plan may result in high and even unacceptable run-
ning times. Hence, Sparing and Goverde (2017) proposed an algorithm to dynamically 
adjust bounds on � during the optimisation run to speed up the computation times. 
Even with these improvements, the computation times for bigger instances were sev-
eral hours. In our paper, the considered problem has an additional degree of freedom 

T∕fq − S ≤ �j − �i + yij ≤ T∕fq + S, ∀(i, j) ∈ Areg,∀q ∈ Q.

lij ≤ �j − �i + yij ≤ uij ⋅W, ∀(i, j) ∈ Arun.
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being that it is unknown whether the given line plan even provides a stable solution. 
And if not, the model would need to be extended with additional decision variables 
and constraints to allow defined relaxation measures. These extensions could make a 
PESP-� significantly more complex and possibly unsolvable even for small instances. 
Another difficulty may arise regarding dynamical reassigning priorities of train lines. 
Therefore, we propose a heuristic approach that iteratively solves PESP-� and applies 
the most appropriate relaxation measure. Algorithm 1 gives the workflow of the pro-
posed heuristic for resolving instability and finding a stable timetable structure. Note 
that in each iteration an (intermediate) solution of PESP-� given by (4)–(12) is optimal 
for a given instance. In general, the output of PESP-� can be referred to as an optimal 
timetable structure, and only if 𝜆 < T as an optimal stable timetable structure. In our 
case, due to a heuristic nature of applying relaxation measures, we refer to the solution 
of Algorithm 1 as an optimised stable timetable structure.

The algorithm takes as an input the target line plan Q, the train events and pro-
cess times and corresponding headways represented as N, scheduled cycle time T, and 
parameters for S and W such as minimum and maximum values and relaxation steps. It 
also initialises � to an infinitely large value, and S and W to the minimum values. The 
output of the algorithm is the optimised stable timetable structure (�, z, �) and statis-
tics on applied measures such as individual use of each measure and their final values. 
In general, let us consider one line plan Q, determined by the total number of services 
as a search neighbourhood, then the Algorithm 1 first uses M1 as long as the solution 
is far from a stable solution and seeks good (and relaxed) neighbourhoods. Once it 
reaches a potentially promising neighbourhood, it delves into this area and searches 
nearby solutions (i.e. the same line plan) by relaxing on M2 and M3. If a stable solu-
tion is found, then the algorithm terminates; otherwise, it continues the search in the 
new neighbourhood with a further relaxed line plan. It is also more important to pre-
serve running time constraints over the regularity constraints. Thus, we always relax 
on M2 first, and M3 second. Applying relaxation measures in a relatively strict manner 
closely replicates their priorities determined by planning experts.

In each iteration, PESP-� is solved first and the solution (�, z, �) is obtained. 
Then, the choice of applied measure has been made based on the size of � . If � is not 
significantly bigger than T, but still hold � ≥ T  , then regularity or train running is 
relaxed in a strictly defined order. The algorithm first relaxes regularity constraints 
M2 and applies it in subsequent iterations until S reaches Smax . Once S = Smax , then 
the algorithm relaxes running constraints M3 and it may be also repeated in sev-
eral consecutive iterations until W reaches Wmax . If 𝜆 ≫ T  , then neither relaxations 
on regularity nor train running times can provide a stable solution, and the algo-
rithm opts for the measure M1. Section 5.2 gives empirical experiments to quantify 
𝜆 ≫ T  for the given network and to determine a cycle time threshold that enables 
to obtain stable solutions when applying M2 and M3. The critical circuit C

�
 is com-

puted by getCriticalCircuit for (�, z, �) and, respectively, sets of critical events and 
critical lines are determined, Ecrit and Qcrit . Then, we choose a train service with 
the lowest priority qcrit and remove the corresponding events and processes from N. 
If S and/or W reached their maximum values, then we reset them to the minimum 
ones. This allows the algorithm to use again one of these two measures in following 
iterations. Algorithm 1 terminates when 𝜆 < T  is found.
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Algorithm  1 incorporates a hot-start procedure for PESP-� in each iteration to 
improve its computational efficiency. In the first iteration, the upper bound for the 
minimum cycle time �max is set to infinity, while in every other iteration, �max takes 
the value of � from the previous iteration. Since a current iteration includes some 
relaxation of the input (compared to the previous iteration), it holds that a solution 
from previous iteration is feasible in the current. Exceptionally, when the algorithm 
returns from exploring M2 or M3, i.e. reached their maximum values, to using M1 
again, an initial solution (�, z) and � for PESP-� is assigned from the last iteration 
in which measure M1 has been previously applied. This is to prevent obtaining an 
infeasible solution after resetting S and W to stricter (non-relaxed) values. Thus, 
using the computed solution in the previous iteration as the initial/starting one in 
the current iteration makes the PESP-� model more computationally efficient. For 
example, in the ith iteration, M1 is used and the solution (�i, zi) and �i is gener-
ated. Then, in subsequent iterations, measures M2 and M3 are applied until jth itera-
tion in which regularity and running times constraints are being relaxed maximally, 
S = Smax and W = Wmax , and the corresponding solution becomes (�j, zj) and �j . 
Note that solutions of ith and jth iteration have the same number of trains (i.e. the 
same number of events and processes), and �i ≥ �

j while S and W for jth are relaxed. 
Then, in the j + 1 th iteration, the algorithm uses (�i, zi) and �i as a starting solution, 
while S and W are reset to Smin and Wmin , respectively.
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4.4  Computing the initial solution for Algorithm 1

The defined PESP-� model within Algorithm 1 performed well and reported small 
computation times in initial tests on instances of a few train lines. However, after 
applying PESP-� on real-life instances tested in Sect. 5 (e.g. over 20 train services 
with frequency 2 and T  =  1800 s), the model had difficulties to find a feasible 
solution within a reasonable time. To speed up computation times of PESP-� , we 
develop a procedure to find an initial solution for PESP-� and a good upper bound 
�max by solving the original PESP model with a fixed scheduled cycle time T. PESP 
is solved multiple times and each time with an increased value of T until a solution 
is found. Algorithm 2 describes the procedure for computing the initial solution for 
Algorithm 1. The input for Algorithm 2 is the line plan Q, periodic event activity 
network N, an initial value for the scheduled cycle time T, and the incremental step 
for the scheduled cycle time �T . The output is a feasible solution for a certain Tf  . If 
a feasible solution was not found in the first iteration of PESP, Tf  is increased for �T 
and the model is rerun. Algorithm 2 stops when a feasible solution is found. The 
obtained Tf  from the last iteration is used to strengthen the upper bound on � in Con-
straint (7), i.e. �max ← Tf  . This new �max together with the initial solution (�feas, zfeas) 
notably reduce computation times of PESP-�.

5  Experimental results

5.1  Scenarios

We evaluate the capabilities of the model for resolving timetable instability on a 
highly utilised railway network in the central Netherlands. The considered net-
work is bounded by the four main stations Utrecht (Ut), Eindhoven (Ehv), Tilburg 
(Tb) and Nijmegen (Nm), with a fifth main station ’s-Hertogenbosch (Ht) in the 
middle and 20 additional smaller stations and stops. Four corridors connect Ht to 
the other main stations. Figure 4 depicts the passenger line plan of this network 
with 20 train lines.

For the experiment scenarios, we consider variants of target line plans with dif-
ferent numbers of train lines ranging from 14 to 30 and with frequencies between 
1 and 2 train services per scheduled cycle time T. The scheduled cycle time equals 
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T = 1800 s for all cases, with an exception of a test case for describing the effect of 
relaxation measures (Sect. 5.2), then T = 1200 s. The real-life scenario serves as a 
representative scenario that reflects the current demand on the network with 20 train 
lines all with frequency 1 and T = 1800 s. Weights �ij for all processes equal 10−5 . 
We do not consider station capacity. Following empirical experiments with 𝜆 ≫ T  , 
we determined the cycle time threshold that allows reaching stable solutions apply-
ing measures M2 and M3, see Sect.  5.3. We adopt cycle time threshold equal to 
1.12 ⋅ T  . Thus, while 𝜆 > 1.12 ⋅ T  , then measure M1 is always used. In a different 
network, this cycle time threshold may take a different value. The maximum num-
ber of iterations for Algorithm 1 is set to 40 iterations. The maximum CPU time 
for solving PESP-� , i.e. one iteration of Algorithm 1, is set to 500 s. To compute 
the upper bound �max and a feasible solution (�, z) quickly, the time limit for Algo-
rithm 2 is set to 50 s. This may lead to a slightly more relaxed upper bound �max , but 
it satisfies the more important criterion that it provides a feasible solution to PESP-� 
in Algorithm 1. Table 1 summarises characteristics of defined scenarios.

Table  2 defines parameters for relaxing measures M2 and M3 of Algorithm  1 
such as minimum, step and maximum values. In addition, for M1, we chose to 
remove one critical train service at the time. Values for relaxing regularity and run-
ning time constraints are defined so as to allow up to two consecutive iterations of 
each relaxation measure.

In the following, we perform three types of analyses. First, the effect of single 
measures on the behaviour of Algorithm 1 is explained (Sect. 5.2). Second, the 
cycle time threshold has been determined (Sect. 5.3). Third, the performance of 

Fig. 4  Passenger line plan show-
ing 20 train lines
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our approach is demonstrated by applying different combinations of relaxation 
measures (Sect. 5.4).

5.2  Explaining the effect of relaxation measures

We interpret the effect of single measures on the computed timetable structure 
within Algorithm 1. For this purpose, we used a test case with T = 1200 s, Q = 20 
and average frequency 2. Also, all three relaxation measures M1, M2 and M3 
are considered. An assumed cycle time threshold is 1.3 ⋅ T  that quantifies 𝜆 ≫ T  . 
The solution efficiency in each iteration is measured as the sum of running and 
dwell time supplements and referred to as the total amount of time supplement. 
More time supplement means a lower efficiency. The similar behaviour was also 
observed in other test cases and we use the following one to show impacts of 
relaxation measures to minimal cycle time and solution efficiency. Figure 5 shows 
the convergence of the minimal cycle time and changes in time supplements, i.e. 
solution efficiency, through iterations until 𝜆 < T  was satisfied. An applied meas-
ure is denoted in each iteration by a corresponding marker.

We observed that in the first three iterations, M1 ( × marker) is used consecutively 
since 𝜆 ≫ T  . Measure M1 usually provides a reduction of the minimal cycle time � . 
Once � is not significantly bigger than T ( iter ≥ 4 ), other measures are considered. 
The relaxing line frequencies was applied again at iteration 8, after the other two 
measures were relaxed maximally ( S = Smax and W = Wmax ) and no further improve-
ment was possible using M2 and M3. When doing so, S and W were reset to their 
initial values Smin and Wmin.

Table 1  Characteristics for 
tested scenarios

Parameter Notation (unit) sc0 Experiments

Number of lines |Q| 20 [14, 30]
Average frequency fq 1 [1, 2]
Total number of train services ∑

�Q�

q=1
fq

20 [20, 60]

Scheduled cycle time T (s) 1800 1800
Time step for Algorithm 2 �T (s) – 100

Table 2  Input parameters for 
Algorithms 1 and 2

Parameter Notation (unit) Value

M2 minimum Smin (s) 0
M2 step Sstep (s) 60
M2 maximum Smax (s) 120
M3 minimum Wmin 1
M3 step Wstep 0.1
M3 maximum Wmax 1.2
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Measure M2 ( ▴ marker) was applied four times, in iterations 4, 5, 9 and 10. The 
values of Sstep and Smax allowed maximally two consecutive iterations with M2. The 
first time applied, in iteration 4 (also holds for 9), M2 generated a solution with 
smaller � and better efficiency. Then, in the following iteration 5, no improvement 
on � is reported compared to the previous one, but M2 reduced time supplements 
and thus improved the efficiency. In iteration 10, a significantly lower � is achieved 
with only slight deterioration of efficiency. On one hand, measure M2 does not 
always provide better � because the critical circuit C

�
 may not always include regu-

larity arcs. For example, C
�
 may consist of multiple headways and/or running times 

only. On the other hand, relaxing regularity times may positively impact the solu-
tions efficiency.

Measure M3 ( ∙ marker) was applied after maximally relaxing regularity con-
straints, i.e. in iterations 6 and 11. Parameters Wstep and Wmax allowed maximally 
two consecutive iterations with M3. The first time M3 was used (in iteration 6), a 
better � is found at the expense of relaxed running times. In iteration 7, � was further 
improved, with even greater reduction of efficiency.

For some cases when M3 was applied, we observed that � may remain unchanged, 
but create better efficiency. This results from the fact that a larger solution space 
admits better solutions. For instance, allowing more time supplements relaxes cer-
tain arcs (i.e. get more time supplements), which may allow other arcs to use less 
time supplements resulting in an overall better efficiency. Similarly to M2, measure 
M3 does not always provide better � because the critical circuit C

�
 may not always 

include running time constraints. For example, C
�
 may consist of multiple headways 

and/or dwell times only. Finally, M1 may not always provide an improvement to � , 
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which may be due to the fact that multiple circuits exist in N with the same cycle 
time.

Overall, measure M1 relaxes the solution more radically and while 𝜆 ≫ T  , it is 
the only relaxation worth using. Only when � is closer to T then Algorithm 1 con-
siders also measures M2 and M3. After relaxing M2 and M3 to their maxima and 
still a stable solution was not found, the algorithm relaxes line frequencies again 
while resetting S and W to the smallest values. Measure M3 tends to provide bigger 
solution improvements than M2. Also, M3 seems to improve a solution more often, 
which may be due to the fact that there are more running arcs compared to regularity 
arcs in N; hence, more possibility to use a relaxation measure. A solution obtained 
by relaxing M2 and M3 may both increase and decrease solution’s efficiency in sub-
sequent iterations. The efficiency is often decreased when a smaller � is found, while 
it is increased when � stayed unchanged. The latter happens due to more flexibility 
and bigger search space for PESP-� , while the former is due to smaller search space 
imposed by smaller �.

5.3  Empirical analysis of � ≫ T

We performed empirical experiments of 𝜆 ≫ T  using various sizes of target line 
plans, to determine the cycle time threshold that allows reaching stable solutions 
using measures M2 and M3. To do so, we (1) run Algorithm 2 to obtain an upper 
bound �max for a given line plan and then (2) run Algorithm 1 with measures M2 and 
M3 only and evaluate whether a stable solution could be obtained. Figure 6 reports 
the outcome including computed �max values and the corresponding cycle time � 
over multiple scenarios. We can see that as long as the starting upper bound �max is 
under 2100 s, then it is possible to reach a stable timetable by relaxing M2 and M3. 
Based on these experiments, we adopt 𝜆 > 1.12 ⋅ T  as the cycle time threshold to 
describe 𝜆 ≫ T .
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5.4  Experimental results

We present the performance results of the proposed approach for resolving instabil-
ity in periodic timetables. Two algorithm variants are considered: first, using only 
line plan relaxation (denoted M1) and second, using all three measures combined 
(denoted M123). We report computational performance of the heuristic for resolv-
ing instability (Algorithm 1) and a procedure for generating an initial solution for 
Algorithm 1 (Algorithm 2), and evaluate the quality of the computed solutions. For 
the former, we report an analysis of Algorithm  1 and computation times of both 
algorithms. For the later, we compare the minimum cycle times and two metrics of 
level of service: an average running time supplement rate and a regularity interval. 
A regularity interval of a solution is computed as an average time over all regularity 
activities Areg.

Figure 7 shows relation between the size of the target line plan and an average 
number of iterations of Algorithm 1 needed to reach an optimised stable timetable 
solution. As long as a target line plan has 42 train services or less, exactly one itera-
tion is performed, meaning that all services have been scheduled for an initial target 
line plan and timetable design parameters. At most 31 iteration was sufficient to find 
an optimised stable timetable, i.e. for M1 and 60 train services. On average, variant 
M1 needs typically lesser number of iterations compared to the variant M123. This 
can be explained by the fact that M123 tries to relax timetable design parameters 
(applies M2 and M3) once T ≤ � ≤ 1.12 ⋅ T  . In case a stable solution is not found, 
then a new train service is removed (applies M1). Therefore, it may be expected 
that every time relaxation measures M2 and M3 are applied, additional iterations are 
performed. An exception to this behaviour is the target line plan with 44 train ser-
vices. Here, M1 relaxes train frequencies, while M123 schedules the complete target 
line plans due to a bigger search space. For target line plans between 52 and 58 train 
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services, we may also see certain oscillations in the number of iterations needed 
when increasing the target plan, which may occur due to random scenarios drawn in 
our experiments. In particular, some instances may represent more “difficult” target 
line plans, i.e. more services concentrated in congested parts of the network, while 
others have more evenly distributed train lines over network. In a real-life applica-
tion, this observed behaviour is expected to be less significant, since planners would 
start with a current line plan and only add extra train services to it. In this case, it is 
expected that the number of iterations increases (or stagnates, but never decreases) 
with larger target line plans. The computation times of Algorithm 1 follow a similar 
pattern as of the number of iterations and it typically varied from 1000 s to 16000 s 
over all scenarios.

Table 3 gives performance statistics of Algorithms 1 and 2. It reports average 
CPU times and the number of iterations for both algorithms, an average time to 
solve PESP-� and an average optimality gap if an optimal solution for PESP-� is 
not found. For target line plans smaller that 44 train services, number of itera-
tions for Algorithm 2 is 1, meaning that a feasible timetable solution is found for 
T = 1800 s. Therefore, Algorithm 1 needs exactly 1 iteration to find an optimised 
stable timetable. Algorithm  2 typically needs at most 6 iterations and finds an 
initial solution within 260 s. For Algorithm 1, number of iterations and CPU time 
increase with the size of the target line plan. It is observed that for sizes bigger 
than 44 train services, time limit is typically reached. Thus, an optimal solution 
was not found in each iteration, while the reported optimality gap was always 
under 20%. Figure 8 reports computation times for Algorithm 2 over all scenar-
ios based on number of train services. The computation times for Algorithm  1 
follow a similar pattern as of Algorithm 2. Finally, scenarios with less then 36 

Table 3  Performance statistics for Algorithms 1 and 2

Target line 
plan

Algorithm 2 Algorithm 1 PESP-� Gap (%)

Iterations CPU (s) Iterations CPU (s)

36 1 0 1 264.10 264.13 0
38 1 0.95 1 320.22 320.22 11.38
40 1 2 1 411.00 411.00 13.43
42 1 5.2 1 500.10 500.07 19.50
44 1.33 26.63 1.67 597.37 264.06 6.30
46 1.50 31.68 8.50 4250.30 500.08 17.61
48 2.67 95.73 7.33 3667.20 500.07 16.88
50 4.00 165.04 12.22 6112.06 500.08 16.93
52 4.80 211.17 16.40 8201.40 500.08 14.90
54 4.00 172.30 17.10 8300.40 500.04 19.56
56 3.42 131.85 15.50 7709.31 463.81 16.12
58 4.67 153.75 16.97 8233.93 500.12 18.64
60 5.50 257.48 19.88 9876.54 500.07 14.16
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train services are not included in Table 3 since the optimal stable timetables were 
found without any relaxations and within 200 s.

Figure 9 shows relation between the size of a target line plan and an average size 
of optimised stable timetable solutions. It can be seen again that for target line plans 
under 42 train services, both M1 and M123 were able to schedule all services. Look-
ing closer, M123 was able to fit all services also for target line plans with 44 train 
services, while M1 needed to cancel some train services. Overall, Algorithm 1 with 
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M1 on average creates stable timetable solutions with less train services. The big-
gest difference in number of train services was at 50, equalling 38 for M1 compared 
to 45 for M123. It can be concluded that the considered network tends to become 
saturated with around 40 train services for M1 and around 42 for M123.

Figure 10 compares the target line plan and an observed regularity intervals. It 
can be seen that M1 tends to have a higher regularity interval as opposed to M123 
for all scenarios. This is expected to some extent since M1 imposes a strict regular-
ity constraint being equal to �

2
 . (For train lines with frequency 1, regularity interval 

is not computed.) Also, values of the regularity interval smaller than T = 1800 s are 
due to 𝜆 < T  . For some cases, regularity intervals for M1 and M123 become similar 
(e.g. at 52 and 58 services). Looking at cases with more than 44 train services, the 
regularity intervals for M1 range between 870 and almost 900s and seem to be rather 
stable. For M123, due to given relaxation of regularity constraints, a more deviating 
behaviour is observed and it ranges from 810 s to almost 890 s. Figure 11 compares 
the target line plan and an average running time supplements rate. The resulting time 
supplement rate is typically bigger for M123 over all scenarios. This is due to the 
fact that time supplements are relaxed in this variant. In particular, for M1, average 
time supplement rate is typically between 3.5% and 5.5%, and for M123 is bigger 
than 5.5% and reaches 7.5%.

Figure  12 provides an in-depth relation between average running time supple-
ment rate and regularity intervals. It shows that lower time supplement rates usually 
lead to a higher regularity interval. In particular, for time supplement rate smaller 
than 5.5%, regularity intervals are higher than 870 s. However, when biger rates are 
observed, regularity interval may become as low as 800 s. In addition, higher time 
supplement rates (lower regularity intervals) correspond more to M123 (blue dots). 
Therefore, we could say that using M123, we may expect somewhat lower level of 
service in terms of both regularity and average running time supplements.
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Figures 13, 14 and 15 evaluate quality of generated solutions, they compare the 
obtained stable timetables with minimum cycle times, regularity intervals and aver-
age running time supplement rates, respectively. Figure  13 clarifies that solutions 
with less train services may also obtain smaller minimum cycle times. For solutions 
with more than 48 services, � is always bigger than 1740 s, thus providing at most 
60 s of additional time allowances. So, increasing number of services in the solution 
leads to � ≃ T  . It means that the more services exist in the solution, the closer is the 
railway network to its saturation. Comparing performance of M1 and M123, for the 

40 45 50 55 60
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Target line plan [train services]

A
ve

ra
ge

 ti
m

e 
su

pp
le

m
en

t r
at

e 
[%

] M1
M123

Fig. 11  Number of train services in target line plan vs average running time supplement rate
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same size of solutions, it appears that M123 reaches smaller � . Such smaller � can 
be beneficial when allocating time allowances to design robust timetables, e.g. as in 
Bešinović and Goverde (2016).

In Fig. 14, for smaller solutions’ sizes, regularity has larger variations, particu-
larly when a stable timetable is smaller than 45 train services. When increasing the 
number of train services, the regularity interval comes closer to 900 s, i.e. �

2
 , inde-

pendent of the algorithm variant. It seems that M123 leads to more scheduled train 
services.
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In Fig. 15, we can see that an increasing number of train services in the solution 
tend to lead to higher time supplement rates. In particular, for solutions with more 
than 45 train services, always more than 5% is needed, independent of the algorithm 
variant. Also the stricter variant M1 typically allocates less time supplements (red 
dots).

Table  4 shows performance statistics over all scenarios for variants M1 and 
M123: minimum cycle time � , number of iterations (Iter), number of applications 
of each relaxation measure (M1, M2, M3), number of train services in stable timeta-
bles (Stable TT), average running time supplement rate (AvgRTsupp), total running 
and dwell time supplements (TotalSupp) and regularity interval. Variant M1 reports 
a higher computed cycle time � , 1730.42 compared to 1689.71 for M123. Variant 
M123 usually needs more iterations, and thus longer computation time. However, 
on average, it relaxes less line plan compared to M123. Variant M123 applies M1 
approximately 10 times while M1 as much as 15 times. In M123, M2 is used around 
5 times while M3 less than that, a little over 4 times. This suggests that when relax-
ing design parameters, not always maximal relaxation (i.e. S = Smax , W = Wmax ) was 
necessary to find a stable solution. Providing a larger search space to M123 resulted 
in having almost 5 train services more scheduled on average, 44.29 as opposed to 
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Table 4  Overall computation statistics for variants M1 and M123

s

Variant � (s) Iter M1 M2 M3 Stable TT AvgRTsupp 
(%)

TotalSupp (s) Regularity (s)

M1 1730.42 16.11 15.11 0 0 40.53 4.41 8548.58 865.58
M123 1689.71 19.79 10.68 5.07 4.14 44.29 6.13 11117.71 836.04
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40.53. More train services, however, lead to higher average running time supple-
ment rates and lower regularity intervals. Overall, we could say that M1 variant pro-
vides a higher level of service over multiple scenarios; however, this may often be 
a consequence of lesser train services scheduled. Therefore, if more services is an 
imperative in the planning stage, then we need to relax timetable design parameters 
and accept a certain cost of lost level of service.

6  Conclusions

This paper proposed a new approach for resolving instability in railway timetabling 
problems. We developed a heuristic that relaxes the target line plan and timetable 
design parameters. The heuristic integrates a mixed integer linear programming 
model for minimising the cycle time PESP-� and applies different combinations of 
relaxation measures. The algorithm runs until a stable solution is found and an opti-
mised stable timetable structure is retrieved.

We observed that if transport demand is significantly bigger than the infrastruc-
ture capacity can handle, then it is necessary to relax some line frequencies. Even 
more, it is important to determine and relax train lines that occur in the critical cir-
cuit. Relaxing regularity constraints does not always generate a better solution, and 
relaxing running times seems more effective. By relaxing regularity and running 
time constraints, we may need more iterations to find a stable solution, but more 
importantly, such a solution tends to have less train services removed due to more 
flexibility given to the PESP-� model. Therefore, it would be preferable to use all the 
available measures to generate a stable timetable structure and minimise the unsat-
isfied demand. In case that more regularity, as well as an overall higher level of 
service , is preferred, it can be achieved by restricting timetable design parameters 
and relaxing only frequencies of train lines. This, however, may come with a cost 
that less train services are scheduled in such a stable timetable. Our approach can be 
used to determine a saturation level of a given railway network.

Future research could be addressed in several directions. First, an actual fore-
casted transport demand can be considered in the timetabling problem instead of 
the current assumptions. Second, identifying additional combinations of relaxation 
measures could improve further satisfaction of transport demand. Third, develop-
ing more robust heuristics with a more advanced searching technique that integrate 
multiple measures within each iteration could reduce computation times. Fourth, we 
may try additional relaxation measures, such as shortening or splitting train lines, 
which could result in less relaxed line frequencies and better demand satisfaction. 
The proposed model for resolving instability can be a very useful support tool in 
timetable planning for areas with high demand and/or scarce infrastructure capacity 
and can help in finding a stable timetable that maximises satisfied transport demand.
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