
SURVEY

GPU computing in discrete optimization. Part II:
Survey focused on routing problems

Christian Schulz • Geir Hasle • André R. Brodtkorb •
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Abstract In many cases there is still a large gap between the performance of

current optimization technology and the requirements of real-world applications. As

in the past, performance will improve through a combination of more powerful

solution methods and a general performance increase of computers. These factors

are not independent. Due to physical limits, hardware development no longer results

in higher speed for sequential algorithms, but rather in increased parallelism.

Modern commodity PCs include a multi-core CPU and at least one GPU, providing

a low-cost, easily accessible heterogeneous environment for high-performance

computing. New solution methods that combine task parallelization and stream

processing are needed to fully exploit modern computer architectures and profit

from future hardware developments. This paper is the second in a series of two. Part

I gives a tutorial style introduction to modern PC architectures and GPU pro-

gramming. Part II gives a broad survey of the literature on parallel computing in

discrete optimization targeted at modern PCs, with special focus on routing prob-

lems. We assume that the reader is familiar with GPU programming, and refer the

interested reader to Part I. We conclude with lessons learnt, directions for future

research, and prospects.
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Introduction

In Part I of this paper (Brodtkorb et al. 2013), we give a brief introduction to

parallel computing in general and describe modern computer architectures with

multi-core processors for task parallelism and accelerators for data parallelism

(stream processing). A simple prototype of a GPU-based local search procedure is

presented to illustrate the execution model of GPUs. Strategies and guidelines for

software development and performance optimization are given. On this background,

we here, in Part II, give a survey of the existing literature on parallel computing in

discrete optimization targeted at modern PC platforms. With few exceptions, the

work reported focuses on GPU parallelization.

The section ‘‘Literature survey with focus on routing problems’’ contains the bulk

of Part II. It starts with an overall description of our literature search before we refer

to ‘‘Early works on non-GPU related accelerators’’. The rest of the section is

structured according to type of optimization method. As a reflection of the number

of publications, the first and most comprehensive part concerns metaheuristics. We

give accounts of the literature on ‘‘Swarm intelligence metaheuristics (routing)’’,

‘‘Population based metaheuristics (routing)’’ and ‘‘Local search and trajectory-based

metaheuristics (routing)’’, respectively. For all optimization methods, we briefly

describe the method in question, present a survey of papers, often also in tabular

form, and synthesize the insights gained. The section ends with a discussion of

‘‘GPU computing for shortest path problems’’. In ‘‘Literature on non-routing

problems’’ we give an overview over GPU implementations of metaheuristics

applied to problems that are not related to routing, using the same structure as in the

previous section. In addition we discuss ‘‘Hybrid metaheuristics’’. As Linear

Programming and Branch & Bound are important bases for methods in discrete

optimization, we give a brief account of ‘‘GPU implementations of Linear

Programming and Branch & Bound’’. We conclude Part II with ‘‘Lessons for future

research’’ followed by a ‘‘Summary and conclusion’’.

Literature survey with focus on routing problems

Parallel methods to alleviate the computational hardness of discrete optimization

problems (DOPs) are certainly older than the modern PC architecture. Parallelized

heuristics, metaheuristics, and exact methods for DOP have been investigated since

the 1980s and there is a voluminous literature, see for instance Talbi (2006) and

Alba (2005) for general surveys, and Crainic (2008) for a survey focused on the

VRP. Most of the work is based on task parallelism, but the idea of using massive

data parallelism to speed up genetic algorithms dates back to the early 1990s, see for

instance Spiessens and Manderick (1991).

It should be clear that population-based metaheuristics and methods from swarm

intelligence such as ant colony optimization lend themselves to different types of

parallelization at several levels of granularity. Both task and data parallelization are

possible, and within both types there are many alternative parallelization schemes.

Also, the neighborhood exploration in local search that is the basis and the
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bottleneck of many trajectory-based metaheuristics is inherently parallel. At a fine-

grained level, the evaluation of objective components and constraints for a given

neighbor may be executed in parallel. A more coarse-grained parallelization results

from neighborhood splitting. What may be regarded as the simplest metaheuristic—

multi-start local search—is embarrassingly parallel. Again, both data and task

parallelization may be envisaged, and there are many non-trivial design decisions to

make including the parallelization scheme.

Branch & Bound and Branch & Cut are basic tree search algorithms in exact

methods for DOP. At least conceptually, they are easy to parallelize, but load

balancing and scaling are difficult issues. We refer to Crainic et al. (2006) and

Ralphs (2006) for in-depth treatments. Commercial MILP solvers typically have

task parallel versions that are well suited for multi-core processors. As far as we

know there exists no commercial MILP solver that exploits stream processing

accelerators. More sophisticated exact MILP methods such as Branch & Cut &

Price are harder to parallelize (Ralphs et al. 2003).

In a literature search (2012), we found some 100 publications on GPU computing

in discrete optimization. They span the decade 2002–2012. With only a few

exceptions they discuss GPU implementation of well-known metaheuristics, or

problem-specific special algorithms. Very few address the combined utilization of

the CPU and the GPU. Below, we give some overall characterizations of the

publications found, before we structure and discuss the literature in some detail.

As for applications and DOPs studied, 28 papers describe research on routing

problems, of which 9 focus on the shortest path problem (SPP), 16 discuss the TSP,

and only 3 study the VRP. As GPU computing for the SPP is peripheral to the goals

of this paper, we only give a brief survey of the literature in ‘‘GPU computing for

shortest path problems’’. Also relevant to transportation there is a paper on route

selection for car navigation (Bura et al. 2011), and one on route planning in aerial

surveillance (Sanci and Isler 2011). Bleiweiss (2008) describes an efficient GPU

implementation of parallel global pathfinding using the CUDA programming

environment. The application is real-time games where a major challenge is

autonomous navigation and planning of thousands of agents in a scene with both

static and dynamic moving obstacles. Rostrup et al. (2011) describe a GPU

implementation of Kruskal’s algorithm for the minimum spanning tree problem.

Amongst others, the following DOPs and applications are studied:

• Allocation of tasks to heterogeneous processing units

• Task matching

• Flowshop scheduling

• Option pricing

• FPGA placement

• VLSI circuit optimization

• Protein sequence alignment in bioinformatics

• Sorting

• Learning

• Data mining

• Permutation perceptron problem
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• Knapsack problem

• Quadratic assignment problem

• 3-SAT and Max-SAT

• Graph coloring

Not surprisingly, the bulk of the literature with some 80 papers discusses

implementations of swarm intelligence methods and population-based metaheuris-

tics. Of the 41 swarm intelligence papers found, there are 23 on ant colony

optimization (ACO) and 18 on particle swarm optimization (PSO). Most of the PSO

publications focus on continuous optimization. The identified literature on

population-based metaheuristics (evolutionary algorithms, genetic algorithms,

genetic programming, memetic algorithms, and differential evolution) also consists

of 41 publications. The remaining publications cover (number of publications) the

following:

• Metaheuristics in general (1)

• Immune systems (2)

• Local search (8)

• Simulated annealing (3)

• Tabu search (3)

• Special purpose algorithms (2)

• Linear programming (4)

The most commonly used basis for justifying a GPU implementation is speed

comparison with a CPU implementation. This is useful as a first indication, but it is

not sufficient by itself. Important aspects such as the utilization of the GPU

hardware are typically not taken into consideration. Moreover, the CPU code used

for comparison is normally unspecified and thus unknown to the reader. We refer to

‘‘Lessons for future research’’ for a detailed discussion on speedup comparison.

Often, an algorithm can be organized in different ways, which in turn can have a

variety of GPU implementations, each using different GPU specifics such as shared

memory. Only a few papers discuss and compare different algorithmic approaches

on the GPU. A thorough investigation of hardware utilization, e.g., through profiling

of the implemented kernels, is missing in nearly all of the papers. For these, we will

simply quote the reported speedups. If a paper provides more information on the

CPU implementation used, different approaches, or profiling, we will mention this

explicitly.

Early works on non-GPU related accelerators

Early papers utilize hardware such as field-programmable gate arrays (FPGAs).

Guntsch et al. (2002) is the earliest paper in our survey. It appeared in 2002 and

proposes a design for an ACO variant, called population-based ACO (P-ACO), that

allows efficient FPGA implementation. In Scheuermann et al. (2004), an overlap-

ping set of authors report from the actual implementation of the P-ACO design.

They conduct experiments on random instances of the single-machine total tardiness

problem (SMTTP) with number of jobs ranging from 40 to 320 and report moderate
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speedups between 1.6 and 10 relative to a software implementation. In Scheuer-

mann et al. (2007), they continue their work on ACO for FGPAs and propose a new

ACO variant, called counter-based ACO. The algorithm is designed such that it can

easily be mapped to FPGAs. In simulations they apply this new method to the TSP.

Swarm intelligence metaheuristics (routing)

The emergent collective behavior in nature, in particular the behavior of ants, birds,

and fish is the inspiration behind swarm intelligence metaheuristics. For an

introduction to swarm intelligence, see for instance Kennedy et al. (2001). Swarm

intelligence metaheuristics are based on communication between many, but

relatively simple, agents. Hence, parallel implementation is a natural idea that has

been investigated since the birth of these methods. However, there are non-trivial

design issues regarding parallelization granularity and scheme. A major challenge is

to avoid communication bottlenecks.

The methods of this category that we have found in the literature of GPU

computing in discrete optimization are ACO, PSO, and flocking birds (FB). ACO is

the most widely studied swarm intelligence metaheuristic (23 publications),

followed by PSO (18) and FB (3). ACO is also the only swarm intelligence

method applied to routing problems in our survey, which is why we will discuss it

here. For an overview of GPU implementations of the other swarm intelligence

methods, we refer to ‘‘Swarm intelligence metaheuristics (non-ACO, non-routing)’’.

In ACO, there is a collection of ants where each ant builds a solution according to

a combination of cost, randomness and a global memory, the so-called pheromone

matrix. Applied to the TSP this means that each ant constructs its own solution.

Afterwards, the pheromone matrix is updated by one or more ants placing

pheromone on the edges of its tour according to solution quality. To avoid

stagnation and infinite growth, there is a pheromone evaporation step added before

the update, where all existing pheromone levels are reduced by some factor. There

exist variants of ACO in addition to the basic ant system (AS). In the max–min ant

system (MMAS), only the ant with the best solution is allowed to deposit

pheromone and the pheromone levels for each edge are limited to a given range.

Proposed by Stützle, the MMAS has proven to be one of the most efficient ACO

metaheuristics. The most studied problem with ACO is the TSP. There are also

several ACO papers on the SPP and variants of the VRP.

Parallel versions of ACO have been studied extensively in the literature, and

several concepts have been developed. The two predominant, basic parallelization

schemes are parallel ants, where one process/thread is allocated to each ant, and the

multiple colonies approach. Pedemonte et al. (2011) introduce a new taxonomy for

classifying parallel ACO algorithms and also present a systematic survey of the

current state-of-the-art on parallel ACO implementations. As part of the new

taxonomy they describe the master-slave category, where a master process manages

global information and slave processes perform subordinate tasks. This concept can

again be split into coarse-grained and fine-grained. In the former, the slaves

compute whole solutions, as done in parallel ants. In the latter, the slaves only

perform parts of the computation for one solution. Pedemonte et al. consider a wide
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variety of parallel computing platforms. However, out of the 69 publications

surveyed, only 13 discuss multi-core CPU (9) and GPU platforms (4). Table 1

presents an overview of the routing-related GPU papers implementing ACO that we

found in the literature, showing which steps of ACO are performed on the GPU in

what fashion and by which paper.

ACO exhibits apparent parallelism in the tour construction phase, as each ant

generates its tour independently. The inherent parallelism has led to early

implementations of this phase on the GPU using the graphics pipeline. In Catala

et al. (2007) and Wang et al. (2009), fragment shaders are used to compute the next

city selection. In both papers, the necessary data is stored in textures and

computational results are made available by render-to-texture, enabling later

iterations to use earlier results. Wang et al. (2009) assign to each ant-city

combination a unique (x, y) pixel coordinate and only generate one fragment per

pixel. This leads to a conceptually simple setup that needs multiple passes to

compute the result. Catala et al. (2007) relate one pixel to an ant at a certain

iteration and generate one fragment per city related to this pixel. The authors utilize

depth testing to select the next city and also provide an alternative implementation

of tour construction using a vertex shader.

With the arrival of CUDA and OpenCL, programming the GPU became easier

and consequently more papers studied ACO implementations on the GPU. In

CUDA and OpenCL there is the basic concept of having a thread/workitem as basic

computational element. Several of them are grouped together into blocks/

workgroups. For convenience we will use the CUDA language of threads and

blocks. From the parallel master-slave idea, one can derive two general approaches

for the tour construction on the GPU. Either a thread is assigned to computing the

full tour of one ant, or one thread computes only part of the tour and a whole thread

block is assigned per ant. Thus we have the one-ant-per-thread and the one-ant-per-

block schemes. Many papers implement either the former (Bai et al. 2009; You

2009; Diego et al. 2012) or the latter (Li et al. 2009a; Uchida et al. 2012). Only a

few publications (Cecilia et al. 2011; Delévacq et al. 2013) compare the two.

Cecilia et al. argue that the one-thread-per-ant approach is a kind of task

parallelization and that the number of ants for the studied problem size is not

enough to fully exploit the GPU hardware. Moreover, they argue that there is

divergence within a warp and that each ant has an unpredictable memory access

pattern. This motivated them to study the one-block-per-ant approach as well.

Most papers provide a single implementation of their selected approach, often

reporting how they use certain GPU specifics such as shared and constant memory.

In contrast, the papers by Cecilia et al. (2011), Delévacq et al. (2013), and Uchida

et al. (2012) study different implementations of at least one of the approaches. For

the one-ant-per-thread scheme, Cecilia et al. (2011) examine the effects of

separating the computation of the probability for each city from the tour

construction. They also introduce a list of nearest neighbors that have to be visited

first to reduce the amount of random numbers. The effects of shared memory and

texture memory usage are studied. Delévacq et al. also examine the effects of using

or not using shared memory. Moreover, they study the addition of a local search step

to improve each ant’s solution. Uchida et al. (2012) examine different approaches of
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city selection in the tour construction step to reduce the amount of probability

summations.

As the pheromone update step is often less time consuming than the tour

construction step, not all papers put it on the GPU. Most of the ones that do

investigate only a single pheromone update approach. In contrast, Cecilia et al.

(2011) propose different pheromone update schemes and investigate different

implementations of those schemes.

An additional parallelization concept developed already in the pre-GPU literature

is multi-colony ACO. Here, several colonies independently explore the search space

using their own pheromone matrices. The colonies can cooperate by periodically

exchanging information (Pedemonte et al. 2011). On a single GPU this approach

can be realized by assigning one colony per block, as done by Bai et al. (2009) and

by Delévacq et al. (2013). If several GPUs are available, one can of course use one

GPU per colony as studied by Delévacq et al. (2013).

Both Catala et al. (2007) and Cecilia et al. (2011) provide information about the

CPU implementation used for computing the achieved speedups, see Table 1.

Catala et al. compare their implementations against the GRID-ACO-OP algorithm

(Mocholı́ et al. 2005) running on a grid of up to 32 Pentium IV.

From the above description, we observe that for the ACO, the task most

commonly executed on the GPU is tour construction. The papers of Cecilia et al.

(2011) and Delévacq et al. (2013) indicate that the one-ant-per-block scheme seems

to be superior to the one-ant-per-thread scheme.

Population-based metaheuristics (routing)

By population-based metaheuristics we understand methods that maintain and

evolve a population of solutions, in contrast with trajectory (or single solution)-

based metaheuristics that are typically based on local search. In this subsection we

will focus on evolutionary algorithms. For a discussion of swarm intelligence

methods on the GPU we refer to the ‘‘Swarm intelligence Metaheuristics (routing)’’

above.

In evolutionary algorithms, a population of solutions evolves over time, yielding

a sequence of generations. A new population is created from the old one using a

process of reproduction and selection, where the former is often done by crossover

and/or mutation and the latter decides which individuals form the next generation. A

crossover operator combines the features of two parent solutions to create children.

Mutation operators simply change (mutate) one solution. The idea is that, analogous

to natural evolution, the quality of the solutions in the population will increase over

time. Evolutionary algorithms provide clear parallelism. The computation of

offspring can be performed with at most two individuals (the parents). Moreover,

the crossover operators might be parallelizable. Either way, enough individuals are

needed to fully saturate the GPU, but at the same time all of them have to make a

contribution to increasing the solution quality (see, e.g. Fujimoto and Tsutsui

(2011).

In our literature search, we found publications on evolutionary algorithms (EA)

and genetic algorithms (GA) (25), genetic programming (12), and differential
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evolution (3) within this category. For combinations of EA/GA with LS, and

memetic algorithms, see ‘‘Hybrid metaheuristics’’ below.

Although the literature is rich on GPU implementations of population-based

metaheuristics, only a few publications discuss routing problems. The ones we found

are all presented in Table 2. They use either a genetic algorithm or an immune

evolutionary algorithm which combines concepts from immune systems1 with

evolutionary algorithms. All the papers we have found in this category use CUDA.

In some of the GPU implementations, the crossover operator is completely

removed to avoid binary operations and yield totally independent individuals. In the

routing-related GPU literature the apparent parallelism has led to the two

parallelization schemes of assigning one individual to one thread (coarse grained

parallelism) (Chen et al. 2011) and one individual to one block (fine grained

parallelism) (Li et al. 2009b; Fujimoto and Tsutsui 2011), see also Table 3. In some

papers, different parallelization schemes are used for different operators. We have

seen no paper that directly compares both schemes for the same operation.

The scheme chosen obviously influences the efficiency and quality of the GPU

implementation. On the one hand a minimum number of individuals is needed to fully

saturate all of the computational units of the GPU, especially with the one-individual-

per-thread scheme. On the other hand, from an optimization point of view, it might not

increase the quality of the algorithm to have a huge population size (Fujimoto and

Tsutsui 2011). Analogously, the one-individual-per-block scheme only makes sense if

the underlying operation can be distributed over the threads of a block.

Most of the papers describe their approach with details on the implementation.

Zhao et al. (2011) compare their work in addition with the results of four other

papers (Acan 2002; Li et al. 2008, 2009a, b). They report that their own

implementation has the shortest GPU running time, but interestingly the speedup

compared with unknown CPU implementations is highest for Li et al. (2009b).

Local search and trajectory-based metaheuristics (routing)

Local search (LS, neighborhood search), see for instance Aarts and Lenstra (2003),

is a basic algorithm in discrete optimization and trajectory-based metaheuristics. It

Table 3 Studied implementation approaches with respect to whether one individual is assigned to one

thread or block

References Crossover Mutation Vaccination Tour evaluation

T B T B T B T B

Li et al. (2009b) x

Chen et al. (2011) x x

Fujimoto and Tsutsui (2011) x x x

Zhao et al. (2011) x U

T thread, B block, U uncertain

1 Artificial immune systems (AIS) is a sub-field of Biologically-inspired computing. AIS is inspired by

the principles and processes of the vertebrate immune system.
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is the computational bottleneck of single solution-based metaheuristics such as tabu

search, guided local search, variable neighborhood search, iterated local search, and

large neighborhood search. Given a current solution, the idea in LS is to generate a

set of solutions—the neighborhood—by applying an operator that modifies the

current solution. The best (or, alternatively, an improving) solution is selected, and

the procedure continues until there is no improving neighbor, i.e., the current

solution is a local optimum. An LS example is described in Part I (Brodtkorb et al.

2013).

The evaluation of constraints and objective components for each solution in

the neighborhood is an embarrassingly parallel task, see for instance Melab et al.

(2006) and Brodtkorb et al. (2013) for an illustrating example. Given a large

enough neighborhood, an almost linear speedup of neighborhood exploration in

LS is attainable. The massive parallelism in modern accelerators such as the

GPU seems well suited for neighborhood exploration. This has naturally led to

several research papers implementing local search variations on the GPU,

reporting speedups of one order of magnitude when compared with a CPU

implementation of the same algorithm. Profiling and fine-tuning the GPU

implementation may ensure good utilization of the GPU. Schulz (2013) reports a

speedup of up to one order of magnitude compared with a naive GPU

implementation. To fully saturate the GPU, the neighborhood size is critical; it

must be large enough (Schulz 2013). The effort of evaluating all neighbors can

be exploited more efficiently than by just applying one move. In Burke and Riise

(2012) a set of improving and independent moves is determined heuristically and

applied simultaneously, reducing the number of neighborhood evaluations

needed.

We would have liked to present clear guidelines for implementing LS on the

GPU based on the observed literature. Due to the richness of applications, problems,

and variations of LS, this is not possible. Instead, we shall discuss approaches taken

in papers that study routing problems.

Although the term originates from genetic algorithms, we will use the term fitness
structure for the collection of delta values (see Section 5 in Brodtkorb et al. 2013)

and feasibility information for all neighbors of the current solution. Table 4

provides an overview of the routing-related GPU papers using some kind of local

search. The earliest by Janiak et al. (2008) utilizes the graphics pipeline for tabu

search by providing a fragment shader that evaluates the whole neighborhood in a

one fragment per move fashion. The remaining steps of the search were performed

on the CPU.

With the availability of CUDA, the number of papers studying LS and LS-based

metaheuristics on the GPU increased. The technical report by Luong et al. (2009)

discusses a CUDA-based GPU implementation of LS. To the authors’ best

knowledge, this is the first report of a GPU implementation of pure LS. Further

research is discussed in two follow-up papers (Luong et al. 2011a, b). The authors

apply LS to different instances of well-known DOPs such as the quadratic

assignment problem and the TSP. We will concentrate on their results for routing

related problems, i.e., the TSP.
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Local search on the GPU

Thanks to the flexibility and ease of programming of CUDA, more steps of the LS

process can be executed on the GPU. Table 5 provides an overview of what steps

are done on the GPU in which routing-related publication. Table 6 shows the CPU-

GPU copy operations involved. Broadly speaking, LS consists of neighborhood

generation, evaluation, neighbor/move selection, and solution update. The first task

can be done in several ways. A simple solution is to generate the neighborhood on

the CPU and copy it to the GPU on each iteration. Alternatively, one may create the

neighborhoods directly on the GPU. The former approach, taken by Luong et al.

(2011b), involves copying a lot of information from the CPU to the GPU on each

iteration.

The neighborhood is normally represented as a set of moves, i.e., specific

changes to the current solution. If one thread on the GPU is responsible for the

evaluation of one or several moves, a mapping between moves and threads can be

provided. This mapping can either be an explicit formula (Luong et al. 2011b;

Burke and Riise 2012; Coelho et al. 2012; Rocki and Suda 2012; Schulz 2013) or an

algorithm (Luong et al. 2011b). Alternatively, it can be a pre-generated explicit

Table 6 Data copied from and to GPU

References Once In each iteration

Prob. desc. Nbh. desc. Sol. Nbh. FS Sel. move

Janiak et al. (2008) " " " ;

Luong et al. (2011b) " " –/" –/; –/;

O’Neil et al. (2011) "
Burke and Riise (2012) " " s;

Coelho et al. (2012) " ; "
Schulz (2013) " " ;

Prob. problem, Nbh. neighborhood, desc. description, Sol. solution, FS fitness structure, Sel. selected, :,

upload to GPU from CPU; ;, download from GPU to CPU; s;, subset of fitness structure is downloaded

from GPU; –/: or –/;, copied in some settings

Table 5 Tasks performed on the GPU during one iteration

References Nbh gen. Nbh eval. Neighbor sel. Sol. update

Janiak et al. (2008) i x

Luong et al. (2011b) -/i x -/x

O’Neil et al. (2011) i x x x

Burke and Riise (2012) i x

Coelho et al. (2012) i x x

Schulz (2013) i x x x

Nbh neighborhood, gen. generation, eval. evaluation, sel. selection, Sol solution, i neighborhood gener-

ation is done implicitly (use of some nbh description), -/x done in some settings, -/i done in some

settings

GPU computing in discrete optimization, Part II 171

123



mapping that lies in the GPU memory as investigated by Janiak et al. (2008) and

Schulz (2013). The advantage of the mapping approach is that there is no need for

copying any information to the GPU on each iteration. The pre-generated mapping

only needs to be copied to the GPU once before the LS process starts.

The neighborhood evaluation is the most computationally intensive task in LS-

based algorithms. Hence, all papers perform this task on the GPU. In contrast,

selecting the best move is not always done on the GPU. A clear consequence of

CPU-based move selection is the necessity of copying the fitness structure to the

CPU on each iteration. GPU-based move selection eliminates this data transfer, but

an efficient selection algorithm needs to be in place on the GPU. A clear example is

simple steepest descent, where the best move can be computed by a standard

reduction operation. A tabu search can also be implemented on the GPU by first

checking for each move whether it is tabu and then reducing to the best non-tabu

move. In general, it may not be clear which approach will perform better; it depends

on the situation at hand. In such cases, the alternative implementations must be

compared. All routing-related papers we found use either one or the other approach

for a given algorithm, see Table 5. Luong et al. (2011b) compare them for hill

climbing on the permuted perceptron problem.

If move selection is performed on the GPU, the update of the current solution

may also be performed on the device. This eliminates the otherwise necessary

copying of the updated current solution from the CPU to the GPU. Alternatively, the

chosen move can be copied to the GPU (Coelho et al. 2012).

Efficiency aspects and limitations of local search on the GPU

In CUDA it is not possible to synchronize between blocks inside a kernel. Since

most papers employ a one-move-per-thread approach, the LS process needs to be

implemented using several kernels. In combination with the different copy

operations that might be needed, the question of asynchronous execution becomes

important. By using streams in combination with asynchronous CPU–GPU

coordination, it is possible to reduce the time where the GPU is idle, even to

zero. Only the paper by Schulz (2013) proposes and investigates an asynchronous

execution pattern.

The efficiency of a kernel is obviously important for the overall speed of the

computation. The papers (Luong et al. 2011b; O’Neil et al. 2011; Coelho et al.

2012; Rocki and Suda 2012; Schulz 2013) all discuss some implementation details

and CUDA-specific optimizations. Only Schulz (2013) provides a profiling analysis

of the presented details.

So far we have assumed that the GPU memory is large enough to store all

necessary information such as problem data, the current solution, and the fitness

structure. For very large neighborhoods the fitness structure might not fit into GPU

memory. Luong et al. (2011b) mention this problem. They seem to solve it by

assigning several moves to one thread. Schulz (2013) provides an implementation

for very large neighborhoods by splitting the neighborhood in parts.

When evaluating the whole neighborhood one naturally selects a single, best

improving move. However, as observed by Burke and Riise (2012), one may waste
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a lot of computational effort. They suggest an alternative strategy where one finds

independent improving moves and applies them all. This reduces the amount of

iterations needed to find a local optimum.

Multi-start Local Search

Pure local search is guaranteed to get stuck in a local optimum, given sufficient

time. Amongst alternative remedies, multi-start LS maybe the simplest. New initial

solutions may be generated randomly, or with management of diversity. Multi-start

LS thus provides another degree of parallelism, where one local search instance is

independent of the other. In the GPU literature we have found two main approaches.

Either, a GPU-based parallel neighborhood evaluation of the different local searches

is performed sequentially (Luong et al. 2011a), or the local searches run in parallel

on the GPU (O’Neil et al. 2011; Zhu et al. 2010; Luong et al. 2011a).

For approaches where there is no need for data transfer between the CPU and

GPU during LS, the former scheme should be able to keep the GPU fully occupied

with neighborhood evaluation. However, LS might use a complicated selection

procedure that is more efficient to execute on the CPU, despite the necessary copy

of fitness structure. In this case one could argue that using sequential parallel

neighborhood evaluation will lead to too many CPU-GPU copy operations, slowing

down the overall algorithm. However, this is not necessarily true. If the copying of

data takes less time than the neighborhood evaluation, asynchronous execution

might be able to fully hide the data transfer. In one iteration, while the fitness

structure of the ith local search is copied to the CPU, the GPU can already evaluate

the neighborhood for the next, jth local search where j = i ? 1. Once the copying is

finished, the CPU can then perform move selection for the ith local search, all while

the GPU is still evaluating the neighborhood of the jth local search.

The second idea of using one thread per LS instance also has its drawbacks. First,

for the GPU to be fully utilized, thousands of threads are needed. This raises the

question, whether, from a solution quality point of view, it makes sense to have that

many local searches. On the GPU, all threads in a warp perform exactly the same

operation at any time. Hence, all local searches in a warp must use the same type of

neighborhood. Moreover, different local searches in a warp might have widely

varying numbers of iterations until they reach a local optimum. If all threads in the

same warp simply run their local search to the end, they have to ’wait’ until the last

of their local searches is finished before the warp can be destroyed.

There are ways to tackle these problems. O’Neil et al. (2011) use the same

neighborhood for all local searches and employ a kind of load balancing to avoid

threads within a warp waiting for the others to complete. Another idea, used, e.g. in

(Zhu et al. 2010; Luong et al. 2011a) is to let the LS in each thread run only for a

given number of iterations and then perform restart or load balancing before

continuing. Due to the many variables involved, it is impossible to state generally

that the sequential parallel neighborhood evaluation is better or worse than the one

thread per local search approach. Even for a given situation, such a statement needs

to be based on implementations that have been thoroughly optimized, analyzed, and

profiled, so that the advantages and limitations of each approach become apparent.
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We have not found a paper that provides such a thorough comparison between the

two approaches.

GPU computing for shortest path problems

Already in 2004, Micikevicius (2004) describes his graphics pipeline GPU

implementation of the Warshall–Floyd algorithm for the all-pairs shortest paths

problem. He reports speedups of up to 39 over a CPU implementation. In 2007,

Harish and Narayanan (2007) utilize CUDA to implement breadth first search,

single source shortest path, and all-pairs shortest path algorithms aimed at large

graphs. They report speedups, but point out that the size of the device memory

limits the size of the graphs handled on a single GPU. Also, the GPU at the time

only supported single precision arithmetic. Katz and Kider (2008) describe a shared

memory cache efficient CUDA implementation to solve transitive closure and the

all-pairs shortest-path problem on directed graphs for large datasets. They report

good speedups both on synthetic and real data. In contrast with the implementation

of Harish and Narayanan, the graph size is not limited by the device memory.

Buluç et al. (2010) implemented (CUDA) a recursively partitioned all-pairs

shortest-paths algorithm where almost all operations are cast as matrix-matrix

multiplications on a semiring. They report that their implementation runs more than

two orders of magnitude faster on an NVIDIA 8800 GPU than on an Opteron CPU.

The number of vertices in the test graphs used vary between 512 and 8192. The all-

pairs SPP was also studied by Tran (2010), who utilized CUDA to implement two

GPU-based algorithms and reports an incredible speedup factor of 2,500 relative to

a single core implementation.

In a recent paper Delling et al. (2011) present a novel algorithm called PHAST to

solve the nonnegative single-source SPP on road networks and other graphs with

low highway dimension. PHAST takes advantage of features of modern CPU

architectures, such as SSE and multi-core. According to the authors, the method

needs fewer operations, has better locality, and is better able to exploit parallelism at

multicore and instruction levels when compared to Dijkstra’s algorithm. They also

implement a GPU version of PHAST (GPHAST) with CUDA, and report up to three

orders of magnitude speedup relative to Dijkstra’s algorithm on a high-end CPU.

They conclude that GPHAST enables practical all-pairs shortest-paths calculations

for continental-sized road networks.

With robotics applications as main focus, Kider et al. (2010) implement a GPU

version of R*, a randomized, non-exact version of the A* algorithm, called R*GPU.

They report that R*GPU consistently produces lower cost solutions, scales better in

terms of memory, and runs faster than R*.

Literature on non-routing problems

Although the specifics of a metaheuristic may change according to the problem at

hand, its main idea stays the same. Therefore, it is also interesting to study GPU

implementations of metaheuristics in a non-routing setting. This is especially true
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for metaheuristics where so far no routing-related GPU implementation exists. In

the following, we present a short overview over existing GPU literature for

metaheuristics applied to DOPs other than routing problems.

Swarm intelligence metaheuristics (non-ACO, non-routing)

Particle swarm optimization is normally considered to belong to swarm intelligence

methods, but may also be regarded as a population based method. Just as GA, PSO

may be used both for continuous and DOPs. An early PSO on GPU paper is Li et al.

(2007). They use the graphics pipeline for fine-grained parallelization of PSO and

perform computational experiments on three unconstrained continuous optimization

problems. Speedup factors up to 5.7 were observed. In 2011, Solomon et al. (2011)

report from an implementation of a collaborative multi-swarm PSO algorithm on the

GPU for a real-life DOP application: the task matching problem in a heterogeneous

distributed computing environment. They report speedup factors of up to 37.

Emergent behavior in biology, e.g., flocking birds and schooling fish, was an

inspiration for PSO. However, the flocking birds brand is still used for PSO-like

swarm intelligence methods in optimization. Charles et al. (2008) study flocking-

based document clustering on the GPU and report a speedup of 3–5 relative to a

CPU implementation. In a 2011 follow-up paper with partly the same authors (Cui

et al. 2011), speedup factors of 30–60 were observed. In an undergraduate honors

thesis, Weiss (2010) investigates GPU implementation of two special purpose

swarm intelligence algorithms for data mining: an ACO algorithm for rule-based

classification, and a bird-flocking algorithm for data clustering. He concludes that

the GPU implementation provides significant benefits.

Population-based metaheuristics (non-routing)

Yu et al. (2005) describe an early (2005) implementation of a fine-grained parallel

genetic algorithm for continuous optimization, referring to the 1991 paper by

Spiessens and Manderick (1991) on massively parallel GA. They were probably the

first to design and implement a GA on the GPU, using the graphics pipeline. Their

approach stores chromosomes and their fitness values in the GPU texture memory.

Using the Cg language for the graphics pipeline, fitness evaluation and genetic

operations are implemented entirely with fragment programs (shaders) that are

executed on the GPU in parallel. Performance of an NVidia GeForce 6800GT GPU

implementation was measured and compared with a sequential AMD Athlon 2500?

CPU implementation. The Colville function in unconstrained global optimization

was used as benchmark. For genetic operators, the authors report speedups between

1.4 (population size 322) and 20.1 (population size 5122). Corresponding speedups

for fitness evaluation are 0.3 and 17.1, respectively.

Also in 2005, Luo et al. (2005) describe their use of the graphics pipeline and the

Cg language for a parallel genetic algorithm solver for 3-SAT. They compare

performance between two hardware platforms.

Wong et al. (2005), Wong and Wong (2006) and Fok et al. (2007) investigate

hybrid computing GAs where population evaluation and mutation are performed on
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the GPU, but the remainder is executed on the CPU. Wong (2009) extends the work

to multi-objective GAs and uses CUDA for the implementation. For a recent

comprehensive survey on GPU computing for EA and GA, but not including

Genetic Programming, see Section 1.3.2 of the PhD Thesis of Luong (2011).

Genetic programming (GP) is a special application of GA where each individual

is a computer program. The overall goal is automatic programming. Early GPU

implementations (2007) are described by Chitty (2007), who uses the graphics

pipeline and Cg. Harding and Banzhaf (2007b) also use the graphics pipeline but

with the Accelerator package, a .Net assembly that provides access to the GPU via

DirectX. Several papers (Harding and Banzhaf 2007a, 2011; Langdon and Banzhaf

2007, 2008; Banzhaf et al. 2008; Langdon and Harrison 2008) report from

extensions of this initial work. Robilliard et al. (2008, 2009a, b) have published

three papers on GPU-based GP using CUDA, initially with a fine-grained

parallelization scheme on the G80 GPU, then with different parallelization schemes

and better speedups. Maitre et al. (2010) report from similar work. For details, we

refer to the recent survey by Langdon (2011) and the individual technical papers.

Local search and trajectory-based metaheuristics (non-routing)

Luong et al. have published several follow-up papers to Luong et al. (2009, 2011a,

b). In (Luong et al. 2010a) they discuss how to implement LS algorithms with large-

size neighborhoods on the GPU2, with focus on memory issues. Their general

design is based on so-called iteration-level parallelization, where the CPU manages

the sequential LS iterations, and the GPU is dedicated to parallel generation and

evaluation of neighborhoods. Mappings between threads and neighbors are

proposed for LS operators with Hamming distance 1, 2, and 3. From an

experimental study on instances of the permuted perceptron problem from

cryptography the authors conclude that speedup increases with increasing neigh-

borhood cardinality (Hamming distance of the operator) and that the GPU enables

the use of neighborhood operators with higher cardinality in LS. Similar reports are

found in Luong et al. (2010b, c). The PhD thesis of Luong from 2011 (Luong 2011)

contains a general discussion on GPU implementation of metaheuristics, including

results from the papers mentioned above.

The paper by Janiak et al. (2008) applies tabu search also to the permutation

flowshop scheduling problem (PFSP) with the Makespan criterion. Their work on

the PFSP was continued by Czapiński and Barnes (2011). They describe a tabu

search metaheuristic based on swap moves. The GPU implementation was done

with CUDA. Two implementations of move selection and tabu list management

were considered. Performance was optimized through experiments and tuning of

several implementation parameters. Good speedups were reported, both relative to

the GPU implementation of Janiak et al. and relative to a serial CPU implemen-

tation, for randomly generated PFSP instances with 10–500 tasks and 5–30

2 The title of the paper may suggest that it discusses the large neighborhood search metaheuristic, but this

is not the case.

176 C. Schulz et al.

123



machines. The authors mainly attribute the improved efficiency over Janiak et al. to

better memory management.

The first of three publications we have found on GPU implementation of

Simulated annealing (SA) is a conference paper by Choong et al. (2010). SA is the

preferred method for optimization of FPGA placement3. Han et al. (2011) study SA

on the GPU for IC floorplanning by using CUDA. They work with multiple solutions

in parallel and evaluate several moves per solution in each iteration. As the GPU-

based algorithm works differently than the CPU method, Han et al. examine three

different modifications to their first GPU implementation with respect to solution

quality and speedup. They achieve a speedup of up to 160 for the best solution

quality, where the computation times are compared with the CPU code from the

UMpack suite of VLSI-CAD tools (Adya and Markov 2003). Stivala et al. use GPU-

based SA in (Stivala et al. 2010) for the problem of searching a database for protein

structures or occurrences of substructures. They develop a new SA-based algorithm

for the given problem and provide both a CPU and a GPU implementation4. Each

thread block in the GPU version runs its own SA schedule, where the threads perform

the database comparisons. The quality of the proposed method varies with different

problems, but good speedups of the GPU version versus the CPU one are obtained.

Hybrid metaheuristics

The definition of hybrid metaheuristics may seem unclear. In the literature, it often

refers to methods where metaheuristics collaborate or are integrated with exact

optimization methods from mathematical programming, the latter also known as

matheuristics. A restricted definition to combinations of different metaheuristics

arguably has diminishing interest, as increasing emphasis in the design of modern

metaheuristics is put on the combination and extension of relevant working

mechanisms of different classical metaheuristics. As regards hybrid methods, the

three relevant publications we have found all discuss GPU implementation of

combinations of genetic algorithms with LS, a basic form of memetic algorithms.

In 2006, Luo and Liu (2006) follow up on the 2005 graphics pipeline GA paper

on the 3-SAT problem by Luo et al. (2005) referred to in ‘‘Population based

metaheuristics (non-routing)’’ above. They develop a modified version of the

parallel CGWSAT hybrid of cellular GA and greedy local search due to Folino et al.

(1998) and implement it on a GPU using the graphics pipeline with Cg. They report

good speedups over a CPU implementation with similar solution quality. GPU-

based hybrids of GA and LS for Max-SAT were investigated in 2009 by Munawar

et al. (2009).

Krüger et al. (2010) present the first implementation of a generic memetic

algorithm for continuous optimization problems on a GTX295 gaming card using

CUDA. Reportedly, experiments on the Rosenbrock function and a real-world

problem show speedup factors between 70 and 120.

3 As discussed in ‘‘Early works on non-GPU related accelerators’’ above, FPGAs were used in early

works in heterogeneous discrete optimization.
4 The CPU version is generated by compiling the kernels for the CPU.
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Luong et al. (2012) propose a load balancing scheme to distribute multiple

metaheuristics over both the GPU and the CPU cores simultaneously. They apply

the scheme to the quadratic assignment problem using the fast ant metaheuristic,

yielding a combined speedup (both multiple cores on CPU and GPU) of up to 15.8

compared with a single core on the CPU.

GPU implementations of Linear Programming and Branch & Bound

Also relevant to discrete optimization we found five publications on GPU implemen-

tation of linear programming (LP) methods. Greeff (2005) published a technical report

on a GPU graphics pipeline implementation of the revised simplex method in 2005.

Reported speedups were large compared with a CPU implementation. The

implementation could not solve problems with more than 200 variables, however.

In their 2008 paper, Jung and O’Leary (2008) present a mixed-precision CPU-

GPU interior point LP algorithm. By comparing GPU and CPU implementations,

they demonstrated performance improvement for sufficiently large dense problems

with up to some 700 variables and 500 constraints.

In 2009, Spampinato and Elster (2009) published a continuation of the work by

Greeff from 2005. Their CUDA implementation of the revised simplex method

solves LPs with up to 2000 variables on a CPU/GPU system. They report speedups

factors of 2.5 for large problem instances.

Early GPUs had only single precision arithmetic. In 2011, Lalami et al. (2011b)

report a maximum speedup of 12.5 for their simplex method implementation with

double precision arithmetic on a GTX 260 GPU. They use randomly generated non-

sparse LP instances. Also in 2011, the same authors report from a CUDA

implementation of the simplex method on a multi GPU architecture (Lalami et al.

2011a). Computational tests on random, non-sparse instances show a maximum

speedup of 24.5 with two Tesla C2050.

Branch & Bound is a widely used exact method for solving DOPs. Chakroun

et al. (2012) use the GPU for the bound operator in the algorithm applied to the flow

shop scheduling problem. The paper discusses GPU-specific details of the

implementation and in experiments a speedup of up to 77.5 compared with a

single core on a CPU is achieved.

Lessons for future research

In the previous section we presented a literature survey on GPU computing in

discrete optimization and a more detailed discussion of selected papers on routing

problems. In the following we will provide our views on future research on GPU

computing in discrete optimization.

GPU implementations in discrete optimization

The overwhelming majority of routing-related papers on GPU usage in discrete

optimization has focused on relatively simple, well-known optimization algorithms
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on the GPU. A main goal is to compare GPU implementations with equivalent

single core CPU versions. The results predominantly show significant speedups and

hence provide proofs of concept. The observations are consistent with GPU-related

research from other parts of scientific computing. Also in optimization, the GPU is a

viable and powerful tool that can be used to increase performance. This is not

uninteresting, particularly from a pragmatic stance. Also from a scientific point of

view, proof of concept papers are important. More power for computational

experiments will lead to better algorithms and better understanding of optimization

problems.

Is this the final word? Far from it. Most of the relevant literature does not

consider important aspects of GPU usage and the development of novel algorithms

which fully utilize the combined advantages of the CPU and the GPU to provide

faster and more robust solutions. In our opinion, the subfield of GPU computing in

discrete optimization is still in its infancy.

For a practitioner it may be of little interest whether the GPU or CPU is used to

its full capacity. From a scientific perspective we would like to use scientific

methods to develop algorithms which are able to yield better and more robust

solutions than the algorithms of today by fully utilizing all available hardware

efficiently. To achieve this goal, research that provides knowledge and ideas

towards this end is welcome. What qualifies such research, and what is lacking so

far?

Focusing on comparing CPU and GPU versions of an algorithm is an important

step to provide proof of concept implementations showing the performance

potential provided by the GPU. Nevertheless, towards the specified scientific goal of

new and efficient algorithms, this approach has several potential drawbacks.

Solution quality Many of the papers comparing a CPU and a GPU implementation

do not discuss solution quality. On the one hand, if the algorithm is the same, it can

be expected that the solution quality is too. However, the considered algorithm that

is run on the GPU might not be a state-of-the-art CPU-based algorithm and thus not

be competitive in terms of latest solution quality.

CPU speed Similar to the point above, the used algorithm might not be cutting

edge for the CPU. Hence, even if the GPU implementation is faster than its CPU

counterpart, the leading CPU algorithm might still be faster than the studied GPU

implementation. In addition, the considered implementation of the algorithm on the

CPU might not be state-of-the-art. An efficient GPU implementation requires effort

in finding the right memory access patterns, the right distribution of data over the

different memories, synchronization and cooperation strategies, and much more. An

equally optimized CPU implementation would amongst others utilize multiple

cores, have caching strategies and use SSE or AVX instructions5. Such an effort is

rarely seen in the literature.

5 Modern CPUs support vector operations, enabling simultaneous operations on all elements of those

vectors (Fog 2013). These so-called SIMD extensions/operations started with MMX on 64byte registers

and developed further with SSE (128byte registers) into AVX (256byte registers). For a coarse overview

see (Wikipedia 2013), a more detailed discussion of the operations including examples can be found in

(Fog 2013).
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GPU usage Although the GPU implementation might perform faster than the CPU

implementation, it does not mean it uses the GPU efficiently. There might be a

better way to distribute the work over the GPU architecture, a faster memory access

pattern, or other improving variants. It might be that the GPU implementation is

using the GPU only a fraction of the time, leaving it idle for a substantial part of the

time. This means that there could be a different implementation or algorithm for the

problem which is able to use the GPU more efficiently, with resulting speed and/or

quality improvement.

CPU usage In most of the papers comparing CPU and GPU implementations, the

CPU is basically idle the whole time. This is a waste of computational resources. A

truly heterogeneous algorithm will typically have higher performance.

In our opinion, future research papers on GPU usage in discrete optimization

should contain algorithm analysis and analysis of hardware utilization. Such

analyses will identify areas of further improvement, spawn ideas for novel

algorithms, and point to further research directions. Such analyses are time

consuming. Although the potential gain is high6, one cannot expect that researchers

in optimization will follow these steps of research in computational science to their

end. We think that initial steps should be mandatory, however.

Algorithm analysis

This is obviously a wide area that covers mathematical analyses as well as

computational experiments. Such analyses may show that a known algorithm,

deemed too inefficient on the CPU, can now be used beneficially7 with the help of

the GPU. Another example is the development of new algorithms that use the

intrinsic properties of the available hardware (CPU and GPU together) to provide

better or more robust solutions. Clearly one focus here would be on the

improvement of the solution quality. In general, when studying algorithms on the

GPU, one has to make sure that the work done on the GPU is actually beneficial to

the algorithm. In LS one could, for example, question the meaning of evaluating

billions of moves if just one of them is applied afterwards. Does this really increase

the solution quality compared with a simpler first improvement strategy? One could,

as suggested by Burke and Riise (2012), utilize several of the improving moves

found.

Hardware utilization

Hardware utilization should be analyzed, at least to a basic level, so major

bottlenecks are identified and removed. This includes an examination of the CPU–

GPU coordination and whether asynchronous execution patterns might be possible

6 The paper by Schulz (2013) indicates an order of magnitude speedup by careful tuning of a basic GPU

implementation.
7 Beneficially here means to improve the overall solution quality, speed or robustness of the overall

solution method.
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and beneficial. An example is found in the paper by Schulz (2013), although in

general it will not be possible to conduct such a detailed and time-consuming

analysis and performance tuning. The analysis and conclusions should be based on

solid scientific methods and fair comparison.

Even if it is not possible to perform the final steps of performance optimization, it

is important to understand whether an algorithm or implementation is able to use the

hardware efficiently. If not, it is equally interesting to discover why this is not the

case and what the limiting factors are. This will provide valuable information for the

development of other, more efficient algorithms or implementation approaches.

Heterogeneous discrete optimization in general

The lessons learnt from GPU-based algorithms in discrete optimization are in

principle also true for heterogeneous discrete optimization. The goal should be

algorithms that use all available hardware resources8 efficiently towards finding

high-quality solutions. Ideally, such algorithms should be self-adapting and

automatically configure themselves to the problem, the hardware, and even to the

problem-solving status while executing. We think that papers in heterogeneous

discrete optimization and similar areas should give a reasonable contribution in the

form of knowledge that can be used to create and develop such algorithms. This

requires full specification of hardware platforms utilized as well as algorithmic and

implementational details.

A promising and virtually unexplored research avenue is the development of

collaborative methods in discrete optimization that fully utilize modern, heteroge-

neous PC architectures. In the next ten years we may see a general performance

increase in discrete optimization that surpasses the historical increase pointed to by

Bixby (2002) for commercial LP solvers.

Summary and conclusion

The sequence of two papers of which this paper is the second, has two primary

goals. The first, addressed in Part I (Brodtkorb et al. 2013), is to provide a tutorial

style introduction to modern PC architectures and the computational performance

increase opportunities that they offer through a combination of parallel cores for

task parallelization and one or more stream processing accelerators. The second

goal, addressed in Part II here, is to present a survey of the literature relevant to

discrete optimization and routing problems in particular.

Part I (Brodtkorb et al. 2013) starts with a short overview of the historical

development of CPUs and stream processing accelerators such as the GPU,

followed by a brief discussion of the development of more user-friendly GPU

programming environments. To illustrate modern GPU programming with CUDA,

we provided a concrete example: local search for the TSP. This was followed by the

8 I.e., multiple CPU cores and one or more stream processing accelerators according to the scope of this

paper.
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presentation of best practice and state-of-the-art strategies for developing efficient

GPU code. We also discussed heterogeneous aspects involved in keeping both the

CPU and the GPU busy. Here, in Part II, we provide a comprehensive survey of the

existing literature on parallel discrete optimization for modern PC architectures with

focus on routing problems. Virtually all related papers report on implementation of

an existing optimization algorithm on a stream processing accelerator, mostly the

GPU. We provide a critical, detailed review of the literature relevant to routing

problems. Finally, we present lessons learnt and our subjective views on future

research directions.

GPU computing in discrete optimization is still in its infancy. The bulk of the

literature consists of reports from rather basic implementations of existing

optimization methods on GPU, with measurement of speedup relative to a CPU

implementation of unknown quality. It is our opinion that further research should be

performed in a more scientific fashion: with stronger focus on the efficiency of the

implementation, proper analyses of algorithms and hardware utilization, thorough

and fair measurement of speedup, with efforts to utilize all of the available

hardware, and with reports that better enable reproduction. The ultimate goal would

be the development of novel, fast, and robust high-quality methods that exploit the

full heterogeneity of modern PCs efficiently while at the same time being flexible by

self-adapting to the hardware at hand. The potential gains are hard to over-estimate.
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