
TUTORIAL PAPER

GPU computing in discrete optimization. Part I:
Introduction to the GPU

André R. Brodtkorb • Trond R. Hagen •

Christian Schulz • Geir Hasle

Received: 17 April 2012 / Accepted: 28 March 2013 / Published online: 30 April 2013

� Springer-Verlag Berlin Heidelberg and EURO - The Association of European Operational Research

Societies 2013

Abstract In many cases there is still a large gap between the performance of

current optimization technology and the requirements of real world applications. As

in the past, performance will improve through a combination of more powerful

solution methods and a general performance increase of computers. These factors

are not independent. Due to physical limits, hardware development no longer results

in higher speed for sequential algorithms, but rather in increased parallelism.

Modern commodity PCs include a multi-core CPU and at least one GPU, providing

a low cost, easily accessible heterogeneous environment for high performance

computing. New solution methods that combine task parallelization and stream

processing are needed to fully exploit modern computer architectures and profit

from future hardware developments. This paper is the first part of a series of two,

where the goal of this first part is to give a tutorial style introduction to modern PC

architectures and GPU programming. We start with a short historical account of

modern mainstream computer architectures, and a brief description of parallel

computing. This is followed by the evolution of modern GPUs, before a GPU

programming example is given. Strategies and guidelines for program development

are also discussed. Part II gives a broad survey of the existing literature on parallel

computing targeted at modern PCs in discrete optimization, with special focus on

papers on routing problems. We conclude with lessons learnt, directions for future

research, and prospects.

Keywords Discrete optimization � Parallel computing � Heterogeneous

computing � GPU � Survey � Introduction � Tutorial � Transportation �
Travelling salesman problem � Vehicle routing problem

A. R. Brodtkorb � T. R. Hagen � C. Schulz � G. Hasle (&)

Department of Applied Mathematics, SINTEF ICT, P.O. Box 124, Blindern, 0314 Oslo, Norway

e-mail: geir.hasle@sintef.no

123

EURO J Transp Logist (2013) 2:129–157

DOI 10.1007/s13676-013-0025-1



Introduction

Applications of optimization problems abound in society. Today, there are many

examples of optimization-based decision support tools that improve important

processes both in industry and the public sector. Such tools are becoming more

powerful, more widespread, and more critical to the performance of their users.

A successful tool provides substantial improvement of key factors to the user

organization. Examples are savings of economical and environmental costs, enhanced

customer service, higher revenues, less use of critical resources, and improvement of

human factors. Vehicle routing software (Partyka and Hall 2012) is but one example.

The impact of such tools is to a large degree dependent on their optimization

performance, i.e., the quality of solutions produced within a given response time

requirement. Optimization performance is largely determined by the selected

optimization method, the implementation of this method on the targeted hardware

platform, and the computational performance of the hardware. These three factors

are closely intertwined.

More often than not, the optimization problem to be solved is computationally

hard. This is particularly true for discrete optimization problems (DOPs). Over the

past few decades, there has been a tremendous increase in the ability to solve ever

more complex optimization problems. Bixby (2002) reminds us that the perfor-

mance of commercial Linear Programming solvers increased by a factor of one

million in the period 1987–2000. Roughly a factor of 1,000 is due to better methods,

and a similar factor stems from the general performance increase of computers.

For many applications, there is still a large gap between the requirements and the

performance of today’s optimization-based decision support systems. The ability to

provide better solutions in shorter time will give substantial savings through better

optimization performance of existing tools. Moreover, applications that are too

complex to be effectively solved by the technology of today may become within

reach of the optimization technology of tomorrow. More integrated, larger, and

richer optimization problems may be solved. Again, further performance increase

will result from a combination of better optimization algorithms that are

implemented in more efficient ways on more powerful computers.

For many decades, Moore’s law materialized in the form of a doubling of clock

speed for commodity processors every 18 months or so. This was the realm of the

tongue-in-cheek ‘‘Beach law’’1. Around year 2000, the architecture of processors for

commodity computers started to change. Multi-core processors with an increasing

number of cores and higher total theoretical performance than their single core

predecessors emerged, but each core had lower clock speed. Hence, developers of

sequential software could no longer enjoy the pleasant, serendipitous effects of the

Beach law. From then on, algorithms for computationally hard tasks such as

solution of optimization problems need an efficient, task parallel implementation to

fully utilize multiple CPU cores2.

1 One way of doubling the performance of your computer program is to go to the beach for two years and

then buy a new computer.
2 For a brief introduction to main concepts in parallel computing, see ‘‘Parallel computing’’ below.

130 A. R. Brodtkorb et al.

123



In addition, there has over the past decade been a drastic improvement of

performance and general programmability of massively parallel stream processing

(data parallel) accelerators. Data parallelism, also called stream processing, means

that each processor performs the same task on different pieces of distributed data.

The origin was the graphics processing unit (GPU) that was a normal component in

common PCs. Primarily driven by requirements from the gaming industry, the

computational performance of GPUs developed rapidly. Thus, it became more and

more interesting to utilize GPUs as accelerators for compute bound tasks in general

purpose computing. This trend became a natural driver for better programmability

of GPUs through industry-standard languages and high quality development tools.

GPUs of today have a large number of relatively simple processors that have

general purpose computing capabilities and their architecture supports data

parallelism. The theoretical GPU performance has lately increased far more rapidly

than the theoretical CPU performance, as illustrated in Fig. 1. The GPU is now

regarded as an accelerator to be used in tandem with a multi-core CPU. Leading

processor manufacturers have recently developed an integrated multi-core CPU and

GPU on a single die.

To fully profit from the general recent and future hardware development on

modern PC architectures, optimization methods that combine task and data

parallelism must be developed. Ideally, such methods should be flexible and self-

adaptable to the hardware at hand. The parallel, heterogeneous architecture of

modern processors also motivates a fundamental re-thinking of solution methods.

Algorithms that are obviously inefficient in a sequential computing model may be

optimal on a massively parallel architecture.

This paper has two main goals. First, we provide a tutorial style introduction to

the modern PC architecture and how to exploit it through parallel computing.

Second, we give a critical survey of the literature on discrete optimization for such

architectures with a focus on routing problems. For selected papers, we discuss

implementation details and insights. Our intended main audience consists of

researchers and practitioners in discrete optimization, routing problems in

particular, which are not proficient in modern PC hardware and heterogeneous

computing. We hope the paper will serve as a useful basis for increased, high quality

research and development efforts in this combined research area of high importance.

The area of GPU-based methods for discrete optimization is still in its infancy.

The bulk of the limited literature consists of reports from rather basic implemen-

tations of existing optimization methods on GPU, with measurement of speedup

relative to a CPU implementation of unknown quality. This is not necessarily

uninteresting. A speedup of existing solution methods has great pragmatic value.

It enables resolution of large, complex, and time critical applications of discrete

optimization that are beyond the reach of current technology. Also, it enables more

comprehensive and thorough empirical scientific investigations in discrete optimi-

zation and, hence, a deeper understanding. However, it is our opinion that research

in this area should be performed in a more scientific fashion: with thorough and fair

measurement of speedup, and also with focus on efficiency of the implementation.

An important research avenue is the design of novel methods that exploit the full

heterogeneity of modern PCs in an efficient, flexible, and possibly self-adaptable

GPU computing in discrete optimization, Part I 131

123



way. As far as we can see, there are no such publications in the literature. If this

paper will inspire research in this direction, a main objective has been fulfilled. We

strongly believe that the potential is huge.

The remainder of Part I of this paper is organized as follows. The ‘‘Parallel

computing’’ section gives a brief introduction to parallel computing in general. In

‘‘Modern computer architecture’’, we describe modern computer architectures with

multi-core processors for task parallelism and accelerators for data parallelism

(stream processing). Alternative programming environments for such hardware are

0

100

200

300

400

2000 2002 2004 2006 2008 2010 2012

G
ig

af
lo

ps

Performance CPUParallel

Serial

0

400

800

1200

1600

2000

2000 2002 2004 2006 2008 2010 2012

G
ig

af
lo

ps

Performance CPU-GPUGPU

CPU

0

50

100

150

200

250

2000 2002 2004 2006 2008 2010 2012

G
ig

ab
yt

es
 p

er
 s

ec
on

d Bandwidth GPU-CPUGPU

CPU

Fig. 1 Performance of CPUs versus GPUs in terms of theoretical peak performance in single precision,
and memory bandwidth. Data constructed from processor specifications as reported from Intel (2012) and
NVIDIA (2012)

132 A. R. Brodtkorb et al.

123



discussed in ‘‘Development of modern GPU technology’’. In ‘‘Programming

example in CUDA’’, a simple prototype of a GPU-based local search procedure is

presented to illustrate the execution model of GPUs. We proceed in ‘‘Development

strategies’’ with guidelines and strategies for optimizing GPU code. For illustrative

purposes, we then take a closer look at the performance of GPU codes in ‘‘Profiling

the local search example’’ and sum up Part I in ‘‘Summary and conclusion’’. In Part

II (Schulz et al. 2013), we give a survey of the literature on GPU-based methods in

discrete optimization, with focus on routing problems.

Parallel computing

The idea of parallel computing dates back to the Italian mathematician Menabrea

and his ‘‘Sketch of the Analytical Engine Invented by Charles Babbage’’ in

(Menabrea 1842). Menabrea’s paper has extensive notes by the now famous

translator, Lady Lovelace. In the notes she wrote what has been recognized as the

world’s first computer program. It was not until the late 1960s that computers with

multiple processors emerged and parallel computing was realized, however.

There are several main types of parallel computing. Apart from the low level

instruction level parallelism that is offered by modern processors, there are two

main categories: task parallelism and data parallelism. In task parallelism, different

procedures are performed on possibly different sets of data, typically using different

processes or threads. Normally, but not necessarily, the parallel threads or processes

execute on multiple processors, and there is communication between them. In the

basic form of data parallelism, the same procedure, often referred to as the kernel, is

executed on multiple data in parallel, on multiple processors. There is also a

distinction between fine-grained parallelism, where processes or threads synchro-

nize or communicate many times per second, coarse-grained parallelism if they

communicate less frequently, and embarrassingly parallel if they only rarely need

to communicate or synchronize.

Parallel computer systems can be categorized by the nature of their processors,

their processor interconnection, their memory and the communication between the

processors. The set of processors may be homogeneous or heterogeneous. They may

be integrated on the same chip and communicate via a high-bandwidth bus such as,

modern multi-core PC processors, or physically distributed around the globe and

communicate over the Internet as in grid computing. Main memory may be either

shared between the processors or distributed. Computer clusters are groups of

loosely connected, fully-fledged, typically general purpose, not necessarily similar

computers that are tightly connected and communicate through a network.

In this paper, we concentrate on modern commodity processors with multiple

cores that share memory, and one or more data parallel accelerators with separate

memory such as the GPU, as the platform for parallel, heterogeneous computing.

There is a substantial literature on scientific computing that exploits such hardware

(Brodtkorb et al. 2010; Owens et al. 2008).

GPU computing in discrete optimization, Part I 133

123



Modern computer architectures

From the first microprocessor emerged in the 1970s, up until 2004, virtually all

mainstream computers have used a serial execution model, in which one instruction

is executed after another. The exponentially growing performance of such CPUs has

traditionally come from two main factors: an increasing number of transistors, and

an increasing frequency. Around 2004, however, we saw an abrupt halt to the serial

performance. Increasing the number of transistors yielded only marginal perfor-

mance increases, and the frequency had reached the physical limit that the chip can

withstand. Since then, we have instead seen an increase in parallelism. Whilst one

previously used the increasing number of transistors for executing instructions more

efficiently, the extra transistors today are spent on creating multi-core designs.

Simultaneously as we have seen a growing parallelism in CPUs, we have also

seen alternative architectures emerge. Around the year 2000, researchers started

exploring how GPUs could be used to solve non-graphics problems. GPUs utilize a

SIMD (single-instruction-multiple-data) type of execution model. SIMD was

originally developed in the 1970s for vector supercomputers3. Although SIMD

machines that can execute up to 64,000 instructions in parallel were developed, such

computers were very specialized and expensive. In comparison, parallel computers

based on several main-stream processors running independent tasks offered more

flexibility at a lower cost. With the development of GPUs, a cheap, powerful SIMD

based accelerator became easily accessible. Programming the GPU for non-graphic

tasks was originally an error prone and cumbersome process, but showed that GPUs

could solve a multitude of problems faster than the CPU. Since then, GPUs have

become highly programmable using modern C-based languages, and have received

widespread adaption. In fact, three of the worlds five fastest supercomputers today

use GPU acceleration (http://www.top500.org/), and there is an increasing number

of libraries, such as MAGMA and CULA sparse, and commercial software products,

such as Adobe Photoshop and MATLAB, that incorporate GPU acceleration.

The reason for the widespread adoption of GPUs is twofold. The first reason is

that GPUs are inexpensive and readily available in everything from laptops to

supercomputers. The second reason is that they offer an enormous performance,

especially when considering performance per watt or performance per dollar. This

difference between the GPU and the CPU is due to their differing design intents.

The CPU is a highly complex processor, and modern CPUs can have over two

billion transistors4. However, most of these transistors are spent on caches, complex

logic for instruction execution and latency hiding, and operating system function-

ality, leaving only a small percentage for computational units. GPUs, on the other

hand, have up to three billion transistors, a slight increase compared to CPUs, and

spend most of these transistors on computational units. This means that GPUs

cannot replace CPUs, as they do not contain enough complex functionality, but can

at the same time offer an extreme floating point performance. A further difference

between these architectures, is that CPUs are optimized for single thread

3 Vector-computers execute the same instruction on each element of a vector.
4 For example, the Intel Core i7-3960X holds 2.27 9 109 transistors

134 A. R. Brodtkorb et al.

123

http://www.top500.org/


performance, meaning it is very efficient at making one task run quickly. GPUs, on

the other hand, are designed for throughput instead of single thread performance,

meaning it can perform a lot of computations fast, but the speed of each

computation might be slower.

The most recent trend in modern computer architectures is the incorporation of

GPU cores and CPU cores on the same physical chip. This combines the best of

both worlds by incorporating traditional CPU cores, which are efficient for serial

tasks, and GPU cores, which are efficient for throughput tasks. There are also other

alternatives to GPUs for accelerated computing. For example, in 2006 Sony,

Toshiba and IBM released the Cell processor (Chen et al. 2007) used in both the

PlayStation 3 and the first petaflops supercomputer (Barker et al. 2008). This

processor was based on using one traditional CPU core coupled with eight

lightweight accelerator cores all on the same chip, and it delivered unprecedented

performance. However, the programming model was cumbersome and has been

openly criticized by many, and there has not been an updated version yet, making it

a one-off architecture. Another alternative is to use FPGAs (field programmable

gate arrays). FPGAs are essentially reprogrammable integrated circuits that offer an

extreme performance per watt ratio, as you only use power on actual computation.

However, as with application specific integrated circuits (ASICs), programming

them is both cumbersome and error prone as one has to consider details, such as

timings etc. Nevertheless, over the last five years, there has been a tremendous

development in programmability through the development of C-like languages.

However, programming FPGAs is still a challenging process.

Development of modern GPU technology

GPUs were originally designed for offloading demanding graphics functions from

the CPU to a dedicated co-processor. As such, it originally accelerated a fixed set of

graphics operations, such as vertex transformations and lighting calculations of a 3D

game world. In the early days of GPU computing, one had to use these graphics

specific APIs, such as OpenGL (Shreiner et al. 2012) or DirectX (Luna 2012) to

perform computations, see also Fig. 2. This was a cumbersome and error prone

process, as one had to rephrase the problem into operations on graphical primitives.

As a trivial example, the addition of two matrices could be performed by creating a

window with one pixel per output element, and rendering one quadrilateral that

covered the whole window. This quadrilateral would then be textured with two

textures, in which the matrix values would be represented as a color, and the GPU

would add these colors together unknowing that it was performing a matrix

addition. For more complex algorithms, such as matrix multiplication or Gaussian

elimination, however, this process becomes quite difficult.

The earliest GPUs that accelerated a fixed set of graphics functions used the so-

called fixed function graphics pipeline, and around 2003 parts of this pipeline

became programmable with the release of the NVIDIA GeForce 256 GPU and the C

for Graphics (Cg) (Fernando and Kilgard 2003) language. Figure 3 shows this

programmable graphics pipeline, in which the input is a set of vertices in 3D space

GPU computing in discrete optimization, Part I 135

123



that typically represent triangles of a 3D model. These vertices are then first

transformed into the so-called clip space, essentially the world as seen from the

camera, by the vertex shader5. This is a programmable stage, meaning that we can

calculate the new position of the vertex using a program. After vertices have been

transformed into clip space, the GPU typically creates triangles from them in the

primitive assembly stage, and removes triangles that are not seen by the camera in

the primitive processing stage. Then, the GPU converts the triangles into fragments

in a process called rasterization. Fragments are candidates for an output pixel, and

each triangle that covers a pixel position gives rise to one fragment. This means that

we may have multiple fragments per pixel, for example, if two triangles cover the

same pixel. All these fragments are then processed by the fragment shader, which

determines the color of the fragment using for example textures6 and lighting

calculations. Finally, all these fragments enter the framebuffer operations stage,

which determines the final pixel color from all the input fragments. This stage can

give rise to transparency, by blending the fragments from two overlapping triangles,

or simply to choose the one closest to the camera, see Fig. 4. The latter is done using

the depth test.

In 2007, however, NVIDIA released the first general-purpose language for

programming GPUs, called CUDA. This release met the demands of researchers

who up until then had either used the graphics APIs, or the various abstractions of

these, and subsequently we saw a whole new level of interest in GPU computing.

Since then, two alternatives to CUDA have emerged, namely OpenCL and

DirectCompute. All these are quite similar when it comes to the basic programming

concept, which is often referred to as data parallel execution.

20102000 2005

DirectCompute

AMD CTM / CAL

DirectX

BrookGPU

OpenCL

NVIDIA CUDA

Graphics APIs Various Abstractions Dedicated C-based languages

AMD Brook+

C for Graphics

Fig. 2 Evolution of GPU programming languages. Initially, the graphics card was programmed using
dedicated graphics languages, but since 2007 general purpose languages ,such as CUDA, DirectCompute,
and OpenCL have appeared

5 The vertex shader typically uses a modelview matrix and a perspective matrix to transform the vertices

from object space to clip space.
6 A texture is a 2D image that typically is shown on a 3D surface to increase realism.

136 A. R. Brodtkorb et al.

123



Programming example in CUDA

To illustrate the execution model of GPUs and how they are programmed using

CUDA, we present a simple prototype of a local search procedure running on the

GPU. This programming example is designed for clarity and used to demonstrate

how GPUs work, and thus we have neglected important performance optimizations.

A more thorough discussion on algorithm design and optimization can be found in

(Schulz 2013).

A local search procedure starts with a given (feasible) initial solution to the

problem at hand as the current solution. In our example, it is an instance of the well-

known Euclidean Travelling Salesman Problem: Given a number of cities, find a

permutation with minimal total traveling cost of visiting all cities in the order of the

permutation. Traveling cost between cities is defined as the Euclidean distance.

Local search with steepest descent (or best improvement) then examines all

solutions that lie within a certain neighborhood of the current solution. The best

improving neighboring solution is accepted as the new current solution, and the

local search procedure continues in the same way. The procedure stops when there

is no improving neighbor, i.e., a local minimum for the defined neighborhood is

found.

Typically, the neighborhood is not defined explicitly as a set of solutions, but

described implicitly in terms of a type of change to the current solution defined by a

Fig. 4 Illustration of the framebuffer operations stage of the graphics pipeline. The left figure uses
blending of the primitives for each fragment, and the right selects the fragment closest to the camera
using the depth test

Application 
Memory

Vertex 
Shader

Primitive 
Assembly

Primitive 
Processing

Rasterization
Fragment 

Shader
Framebuffer
Operations

Framebuffer

Fig. 3 The programmable OpenGL graphics pipeline with programmable stages marked in orange. Input
to the pipeline are vertices that often represent triangles in 3D, and the output is a 2D image on screen

GPU computing in discrete optimization, Part I 137

123



neighborhood operator. Given a current solution and the operator, the neighborhood is

generated by applying the operator in all possible ways to the solution. Each individual

change is called a move. In our example, we use a simple swap neighborhood where a

move simply exchanges the position of two specific cities in the permutation. In our

representation, we keep the first city fixed to avoid rotating the solution.

The quality of a move can be expressed by the difference, or delta value,

between the cost of the neighboring solution the move leads to and the cost of the

current solution. Hereby a negative delta value means that the neighboring

solution has less cost than the current one, i.e., for minimizing problems like the

TSP it is better.

Let us start our example by showing how this can be implemented as a

traditional CPU algorithm. A fixed random permutation is our initial solution. Let

n be the numbers of cities in the problem instance to be solved, leading to a swap

neighborhood size of (n - 1)(n - 2)/2 moves. We systematically generate these

moves, evaluate each of their incremental cost, and select the best move as

follows. We include a feasibility check of each move to illustrate where such a test

can be performed (here on the CPU and later on the GPU), although a swap move

for the TSP will always be feasible.

After having evaluated the full neighborhood, we apply the best move, or exit if

we have found a local minimum:

This problem is well suited for execution on GPUs, due to its highly parallel

nature: the evaluation of each move can be performed independently of all other

138 A. R. Brodtkorb et al.

123



moves. However, finding the move that improves the solution the most is a serial

process. Let us start showing how the evaluation can be done in parallel on the GPU.

We start by first allocating storage space for the solution on the GPU, and copy the

initial configuration to the GPU as well:

Similarly, we allocate space for the city coordinates on the GPU and copy them from the

CPU to the GPU. We can now write a kernel that evaluates the cost of moves, and stores

this on the GPU. A kernel is a function that is invoked by a large number of threads in

parallel on the GPU. Our approach is to write a kernel that evaluates in each thread a

subset of the total number of moves, and stores the best move of the subset in main GPU

memory (which must be allocated similarly to gpu_solution):

GPU computing in discrete optimization, Part I 139

123



Here, the keyword __global__ marks the function as a kernel, and the number of

parallel invocations is determined by the grid and block configuration. The global

CUDA variable blockDim.x contains our one-dimensional block size, threa-
dIdx.x the index of the thread inside its block, and blockIdx.x the index of the

block inside the grid. A block is simply a collection of threads, and a grid is a collection

of blocks. In our example, we have chosen a total of 8,192 threads split into blocks

consisting of 128 threads, giving us a total of 64 blocks. These numbers are somewhat

arbitrarily chosen, but still follow some fundamental guidelines. The block size should

be a multiple of 32, as the GPU executes 32 threads in SIMD7 fashion, and we want

enough blocks to occupy all of the 16 multiprocessors on current GPUs.

The next thing we now need to do, is to reduce the best moves for the 8,192 different

subsets into the best global move, and apply this move. We can do this in another kernel,
but this time, we only invoke one block consisting of 512 threads. This is because

threads within one block can cooperate, whilst different blocks are independent. In the

first part of the kernel, we use parallel reduction8 in shared memory9 to find the best

move and we then apply this move:

With these two GPU kernels, we can find the best move for the current configuration in

parallel and then also apply it. What remains is the CPU logic for launching these

kernels, and stopping execution when no moves improve the solution:

7 SIMD stands for single instruction multiple data.
8 Reduction is a standard SIMD and, thus, GPU operation which computes the repeated application of a

binary operator to all elements in parallel. In our example, the binary operator chooses the move with

smaller delta and, thus, the reduction returns the best move.
9 Shared memory is a kind of programmable cache or scratch-pad memory on the GPU.

140 A. R. Brodtkorb et al.

123



Both the GPU and the CPU version of this code end up with the same solution in the

same number of iterations10, but there is a dramatic difference in execution speed. For

1,000 cities, the GPU version takes just over 2 s to find the local minimum, whilst

the CPU uses over 175 s to complete the same task, a more than 80-fold increase in

speed.

Our parallel local search on the GPU was able to achieve a 80 times speed

increase compared to the GPU, a figure that is representative for many publications.

However, this ‘‘speedup’’ is nothing more than an indication that the GPU has a

potential. It is highly likely that both the GPU and the CPU are operating at only a

fraction of peak performance, and it is still a major challenge to optimize both the

CPU and the GPU version. In ‘‘Profiling the local search example’’, we will show

that our approach in fact far from utilizes the full potential of the GPU.

Development strategies

GPU programming differs from traditional multi-core CPU programming, because

the hardware architecture is dramatically different. It is rather simple to get started

with GPU programming, and it is often relatively easy to get speedups over existing

CPU codes. But these first attempts at GPU computing are often sub-optimal, and do

not utilize the hardware to a satisfactory degree. Achieving a scalable high-

performance code that uses hardware resources efficiently is still a difficult task that

can take months and years to master.

10 The GPU version is compiled for compute capability 2.0.

GPU computing in discrete optimization, Part I 141

123



In this section, we present techniques for achieving a high resource utilization

when it comes to GPUs11. These techniques target NVIDIA GPUs using CUDA, but

as both the programming model and hardware is similar for other GPUs and

languages, many of these techniques are also applicable in a broader context.

The GPU execution model

The execution model of the GPU is based around the concept of launching a kernel

on a grid consisting of blocks as shown Fig. 5. Each block is composed of a set of

threads. All threads in the same block can synchronize and cooperate using fast

shared memory. These blocks are executed by the GPU, so that a block runs on a

single multiprocessor. However, we can have far more blocks than we have

multiprocessors, since each multiprocessor can execute multiple blocks in a time-

sliced fashion. The grid and block can be one-, two-, and three-dimensional, and

determine the number of threads that will be used. Each thread has a unique

identifier within its block, and each block has a unique identifier within the grid. By

combining these two, we get a unique global identifier per thread.

Latency hiding and thread performance

The GPU uses the massively threaded execution model to hide memory latencies.

Even though the GPU has a vastly superior memory bandwidth compared to CPUs,

Fig. 5 The CUDA concept of a grid, blocks, and threads. The domain consists of distinct blocks, which
again are made up of a set of threads that can communicate and cooperate. Each thread in the global grid
can be identified uniquely by the use of its block index in combination with its thread index

11 The information in this section is gathered from many sources, including books, documentation,

manuals, conference presentations, and on Internet fora. However, most of the optimization techniques

presented can be found in (NVIDIA 2011; Micikevicius 2010a, b; Brodtkorb et al. 2012b).

142 A. R. Brodtkorb et al.

123



it still takes on the order of hundreds of clock cycles to transfer a single element

from main GPU memory. This latency is hidden by the GPU as it automatically

switches between threads. Once the current thread stalls on a memory fetch, the

GPU activates another waiting thread in a fashion similar to Hyper-Threading (Marr

et al. 2002) on Intel CPUs. This strategy is most efficient when there are enough

available threads to completely hide the memory latency, however, meaning we

need a lot of threads. As there is a maximum number of threads a GPU can support

concurrently, we can calculate how large a percentage of this figure we are using.

This is referred to as the occupancy of the GPU, and is a rough measure of how well

the GPU program is at hiding memory and other latencies. As a rule of thumb it is

good to keep a relatively high occupancy, but a higher occupancy does not

necessarily equate higher performance: Once all latencies are hidden, a higher

occupancy may actually degrade performance as it also affects other performance

metrics.

Hardware support for multiple threads is available on Intel CPUs as Hyper-

Threading, but a GPU thread operates quite differently from these CPU threads. One

of the differences from traditional CPU programming is that the GPU executes

instructions in a 32-way SIMD fashion, in which the same instruction is

simultaneously executed in 32 neighboring threads, called a warp. This is illustrated

in Fig. 6, in which different code paths are taken by different threads within one

warp. This means that all threads within a warp must execute both parts of the

branch, which in the worst case slows down the program by a factor 32. Conversely,

the cost of such an if-statement is minimal when all threads in a warp take the same

branch.

Sorting is one technique that can be used to avoid expensive branching within a

kernel: by sorting the different elements according to the branch we make sure the

threads within each warp all execute their code without diverging. Another way of

preventing branching is to perform the branch once on the CPU instead of once for

each warp on the GPU. This can be done, for example, using templates: by replacing

the branch variable with a template variable, we can generate two kernels, one for

condition true, and one for condition false, and let the CPU select the correct kernel.

The use of templates in this example is not particularly powerful, as the overhead of

running a simple if-statement in the kernel would be small. When there are a lot of

parameters, however, there can be a large performance gain from using template

kernels (Harris 2011; Brodtkorb et al. 2012a). Another example of the benefit of

Fig. 6 Thread divergence on 32-wide SIMD GPU architectures. All threads perform the same
computations, but the result is masked out for the dashed boxes

GPU computing in discrete optimization, Part I 143

123



kernel template arguments is the ability to specify different shared memory sizes at

compile time, thus allowing the compiler to issue warnings for out-of-bounds

access. The use of templates can also be used to perform compile-time loop

unrolling, which has a great performance impact. By having separate kernels for

different for-loop sizes, performance can be greatly improved.

Memory guidelines

The memory wall, in which transferring data to the processor is far more expensive

than computing on that data, has halted the performance increase of CPU programs

for a long time. It can also be a major problem on GPUs, which makes memory

optimizations important. The first rule in optimizing memory is to reuse data and

keep it as close as possible to the processor. The memory hierarchy on GPUs

consists of three main memories, listed in decreasing order by speed: registers,

shared memory, and global memory. The use or misuse of these can often determine

the efficiency of GPU programs.

Registers are the fastest memory units on a GPU, and each multiprocessor on the

GPU has a large, but limited, register file. This register file is divided amongst

threads residing on that multiprocessor, and are private for each thread. If the

threads in one block use more registers than are physically available, registers will

also spill to the L1 cache12 and global memory, which means that when you have a

high number of threads, the number of registers available to each thread is very

restricted. This is one of the reasons why a high occupancy may actually hurt

performance. Thus, thread-level parallelism is not the only way of increasing

performance, It is also possible to increase performance by decreasing the

occupancy to allow more registers per thread.

The second fastest memory on the GPU is the shared memory. Shared memory is

a very powerful tool in GPU computing because it allows all threads in a block to

share data. Shared memory can be thought of as a kind of programmable cache, or

scratchpad, in which the programmer is responsible for placing data there explicitly.

However, as with caches its size is limited (up to 48 KB), which can be a limitation

on the number of threads per block. Shared memory is physically organized into 32

banks that serve one warp with data simultaneously. For full speed, each thread

must access a distinct bank, which can be achieved, for example, if the threads

access consecutive 32-bit elements.

The third type of memory on the GPU is the global memory. This is the main

memory of the GPU, and even though it has an impressive bandwidth, it has a high

latency as discussed earlier. The latencies are preferably hidden by a large number

of threads, but there are other pitfalls. First of all, just as with CPUs, the GPU

transfers full cache lines13 across the memory bus (called coalesced reads).

Transferring a single element, therefore, consumes the same bandwidth as

12 Global memory is cached by several caches on the GPU. The L1 cache is the fastest (and smallest)

cache in the cache hierarchy, followed by the L2 cache which is larger but slower.
13 Caches transfer continuous regions of memory from RAM called cache lines (128 bytes on Fermi class

GPUs). These cache lines increase the read performance when the processor requests neighboring

elements.

144 A. R. Brodtkorb et al.

123



transferring a full cache line as a rule of thumb. To achieve full memory bandwidth,

we should therefore program the kernel such that warps access continuous regions

of memory. Furthermore, we want to transfer full cache lines, which is done by

starting at a quad word boundary (the start address of a cache line), and transfer full

quadwords (128 bytes) as the smallest unit. The address alignment is typically

achieved by padding arrays. Alternatively, for non-cached loads, it is sufficient to

align to word boundaries and transfer words (32 bytes). To fully occupy the memory

bus the GPU also uses memory parallelism, in which a large number of outstanding

memory requests are used to occupy the bandwidth. This is both a reason for a high

memory latency, and a reason for high bandwidth utilization.

In addition to the above-mentioned memory areas, the NVIDIA GPUs of the

recent Fermi architecture have hardware L1 and L2 caches. The L2 cache size is

fixed and shared between all multiprocessors on the GPU, whilst the L1 cache is per

multiprocessor. The L1 cache can be configured to be either 16 or 48 KB, at the

expense of shared memory. The L2 cache, on the other hand, can be turned on or off

at compile-time, or by using inline PTX assembly instructions in the kernel. The

benefit of turning off the L2 cache is that the GPU is allowed to transfer smaller

amounts of data than a full cache line, which will often improve the performance for

sparse and other random access algorithms.

In addition to the L1 and L2 caches, the GPU also has caches related to

traditional graphics functions. The constant memory cache is one example, which is

typically used for arguments sent to a CUDA kernel. It is a cache tailored for

broadcast, in which all threads in a block access the same data. The GPU also has a

texture cache that can be used to accelerate reading global memory. However, the

L1 cache has a higher bandwidth, so the texture cache is mostly useful if combined

with texture functions, such as linear interpolation between elements.

Further guidelines

The CPU and the GPU operate asynchronously because they are different

processors. This enables simultaneous execution on both processors, which is a

key ingredient of heterogeneous computing: the efficient use of multiple different

computational resources by letting each resource perform the tasks for which it is

best suited. In the CUDA API, this is exposed as streams. Each stream is an in-order

queue of operations that will be performed by the GPU, including memory transfers

and kernel launches. A typical use-case is that the CPU schedules a memory copy

from the CPU to the GPU, a kernel launch, and a copy of results from the GPU to

the CPU. The CPU then continues processing simultaneously as the GPU executes

its operations, and synchronization is only performed when the GPU results are

needed. There is also support for multiple streams, which can execute simulta-

neously as long as they obey the order of operations within their respective streams.

Current GPUs support up to 16 concurrent kernel launches (NVIDIA 2011), which

means that we can both have data parallelism, in terms of a computational grid of

blocks, and task parallelism, in terms of different concurrent kernels. GPUs

furthermore support overlapping memory copies between the CPU and the GPU and

kernel execution. This means that we can simultaneously copy data from the CPU to

GPU computing in discrete optimization, Part I 145

123



the GPU, execute 16 different kernels, and copy data from the GPU back to the CPU

if all these operations are scheduled properly to different streams. In practice,

however, it can be a challenge to achieve such high levels of task parallelism.

When transferring data between the CPU and the GPU, it can be beneficial to use

so-called page-locked memory. Page locked memory is guaranteed to be continuous

and in physical RAM (not swapped out to disk, for example), and is thus not

pageable by the operating system. However, page-locked memory is scarce and

rapidly exhausted if used carelessly. A further optimization for page-locked memory

is to use write-combining allocation. This disables CPU caching of a memory area

that the CPU will only write to, and can increase the bandwidth utilization by up to

40 % (NVIDIA 2011). It should also be noted that enabling error-correcting code

(ECC) memory will negatively affect both the bandwidth utilization and available

memory, as ECC requires extra bits for error control.

CUDA supports a unified address space, in which the physical location of a

pointer is automatically determined. That is, data can be copied from the GPU to the

CPU (or the other way round) without specifying the direction of the copy. While

this might not seem like a great benefit at first, it greatly simplifies code needed to

copy data between CPU and GPU memories, and enables advanced memory

accesses. The unified memory space is particularly powerful when combined with

mapped memory. A mapped memory area is a continuous block of memory that is

available directly from both the CPU and the GPU at the same time. When using

mapped memory, data transfers between the CPU and the GPU are automatically

executed asynchronously with kernel execution when possible.

The most recent version of the CUDA API has become thread safe (NVIDIA

2011), so that one CPU thread can control multiple CUDA contexts (e.g., one for

each physical GPU), and conversely multiple CPU threads can share a single CUDA

context. The unified memory model together with the new thread safe context

handling enables much faster transfers between different GPUs. The CPU thread

can simply issue a direct GPU–GPU copy, bypassing a superfluous copy in CPU

memory.

Profile driven development

A quote often attributed to Donald Knuth is that ‘‘premature optimization is the root

of all evil’’ (Knuth 1974). The lesson in this statement is to make sure that the code

produces the correct results before trying to optimize it, and optimize only where it

will matter. Optimization always starts with identifying the major bottlenecks of the

application, as performance will increase the most when removing these. However,

locating the bottleneck is hard enough on a CPU, and can be even more difficult on a

GPU. Optimization should also be considered a cyclic process, because after having

found and removed one bottleneck, we need to repeat the process to find the next

bottleneck in the application. This cyclic optimization can be repeated until the

kernel operates close to the theoretical hardware limits or all optimization

techniques have been exhausted.

To identify the performance bottleneck in a GPU application, it is important to

choose an appropriate performance metric, and compare attained performance to the

146 A. R. Brodtkorb et al.

123



theoretical peak performance. When programming GPUs there are several

bottlenecks one can encounter. For a GPU kernel there are essentially three main

bottlenecks: the kernel may be limited by instruction throughput, memory

throughput, or latencies. It may, however, also be that CPU–GPU communication

and synchronization is a bottleneck, or that other overheads dominate the run-time.

When profiling a CUDA kernel, there are two main approaches to locate the

performance bottleneck. The first and most obvious is to use the CUDA visual

profiler. The profiler is a program that samples different hardware counters, and the

correct interpretation of these numbers is required to identify bottlenecks. The

second option is to strategically modify the source code in an attempt to single out

what takes most time in the kernel.

The visual profiler can be used to identify whether a kernel is limited by

bandwidth or arithmetic operations. This is done by simply looking at the

instruction-to-byte ratio, or in other words finding out how many arithmetic

operations your kernel performs per byte it reads. The ratio can be found by

comparing the instructions issued counter (multiplied with the warp size, 32) to the

sum of global store transactions and L1 global load miss counters (both multiplied

with the cache line size, 128 bytes), or directly through the instruction/byte counter.

Then we compare this ratio to the theoretical ratio for the specific hardware the

kernel is running on, which is available in the profiler as the ideal instruction/byte

ratio counter.14

Unfortunately, the profiler does not always report accurate figures as the number

of load and store instructions may be lower than the actual number of memory

transactions (e.g., it depends on address patterns and individual transfer sizes). To

get the most accurate figures, we can compare the run-time of different versions of

the kernel: the original kernel, one Math version in which all memory loads and

stores are removed, and one Memory version in which all arithmetic operations are

removed, see Fig. 7. If the Math version is significantly faster than the original and

Memory kernels, we know that the kernel is memory bound, and conversely for

arithmetics. This method has the added benefit of showing how well memory

operations and arithmetic operations overlap.

To create the Math kernel, we simply comment out all load operations, and move

every store operation inside conditionals that will always evaluate to false. We do

this to fool the compiler so that it does not optimize away the parts we want to

profile, since the compiler will strip away all code not contributing to the final

output to global memory. However, to make sure that the compiler does not move

the computations inside the conditional as well, the result of the computations must

also be used in the condition as shown in Fig. 8. Creating the Memory kernel, on the

other hand, is much simpler. Here, we can simply comment out all arithmetic

operations, and instead add all data used by the kernel, and write out the sum as the

result.

If control flow or addressing is dependent on data in memory, as is often the case

in discrete optimization, the method becomes less straightforward and requires

special care. A further complication with modifying the source code is that the

14 The Visual Profiler 4.0 computes the instruction/byte ratio.

GPU computing in discrete optimization, Part I 147

123



register count can change, which again can alter the occupancy and thereby

invalidate the measured run-time. This can be solved by increasing the shared

memory parameter in the launch configuration of the kernel, someKer-

nel\\\grid_size, block_size, shared_mem_size, ...[[[(...), until the occupancy

of the unmodified version is matched. The occupancy can easily be examined using

the profiler or the CUDA occupancy calculator.

When a kernel appears to be well balanced (i.e., neither memory nor arithmetics

appear to be the bottleneck), it does not necessarily mean that it operates close to the

theoretical performance numbers. The kernel can be limited by latencies, which

typically are caused by problematic data dependencies or the inherent latencies of

arithmetic operations. Thus, if your kernel is well balanced, but operates at only a

fraction of the theoretical peak, it is probably bound by latencies. In this case, a

reorganization of memory requests and arithmetic operations can be beneficial: the

goal should be to have many outstanding memory requests that can overlap with

arithmetic operations.

Debugging

Debugging GPU programs has become almost as easy as debugging traditional CPU

programs as more advanced debugging tools have emerged. Many CUDA

Fig. 7 Run-time of modified kernels which are used to identify bottlenecks: (top left) a well-balanced
kernel, (top right) a latency bound kernel, (bottom left) a memory bound kernel, and (bottom right) an
arithmetic bound kernel. ‘‘Total’’ refers to the total kernel time, whilst ‘‘Memory’’ refers to a kernel
stripped of arithmetic operations, and ‘‘Math’’ refers to a kernel stripped of memory operations. It is
important to note that latencies are part of the measured run-times for all kernel versions

Fig. 8 Complier trick for arithmetic only kernel. By adding the kernel argument flag (which we always
set to 0), we disable the complier from optimizing away the if-statement, and simultaneously disable the
global store operations

148 A. R. Brodtkorb et al.

123



programmers have encountered the ‘‘unspecified launch failure’’, which used to be

notoriously hard to debug. Such errors were typically only found by either

modification and experimenting, or by careful examination of the source code.

Today, however, there are powerful CUDA debugging tools for commonly used

operating systems.

CUDA-GDB is available for Linux and Mac, can step through a kernel line by

line at the granularity of a warp, e.g., identifying where an out-of-bounds memory

access occurs, in a similar fashion to debugging a CPU program with GDB. In

addition to stepping, CUDA-GDB also supports breakpoints, variable watches, and

switching between blocks and threads. Other useful features include reports on the

currently active CUDA threads on the GPU, reports on current hardware and

memory utilization, and in-place substitution of changed code in running CUDA

application. The tool enables debugging on hardware in real-time, and the only

requirement for using CUDA-GDB is that the kernel is compiled with the gG flags.

These flags make the compiler add debugging information into the executable, and

the executable to spill all variables to memory.

Parallel NSight is a plug-in for Microsoft Visual Studio and Eclipse which offers

conditional breakpoints, assembly level debugging, and memory checking directly

in the IDE. It furthermore offers an excellent profiling tool, and is freely available to

developers. Debugging used to require two distinct GPUs (one for display, and one

for running the actual code to be debugged), but this requirement has been lifted as

of version 2.2. Support for Linux and the Eclipse development IDE was also

released with version 2.2, making Parallel NSight an excellent tool on all platforms.

Profiling the local search example

For illustrative purposes, we will profile the local search code described in

‘‘Programming example in CUDA’’ and show how we determine its performance

using Parallel NSight and the Visual Profiler tool. It is often good to get an overview

of the application by generating a timeline of the different GPU operations and

measure a set of metrics for the kernels, as shown in Fig. 9. The Visual Profiler also

offers the option of displaying averaged measurements for each kernel, as shown in

Fig. 10. It is often possible to identify application bottlenecks by examining these

different measurements, and a few selected measurements are presented in Table 1.

The table shows that the neighborhood evaluation kernel takes the most time, and if

we double the problem size it completely dominates the run-time. This means that

we should focus our optimization efforts on this kernel first.

The first thing we can look at for this kernel is the achieved FLOPS counter,

which indicates a performance of 142 gigaflops. The hardware maximum is over 1

teraflop, meaning we are way off. However, if our kernel is memory bound, this

might still be ok, as measuring gigaflops for a memory bound kernel makes little

sense.

We have to acknowledge that our problem is quite small in terms of memory

usage. For each node in our problem, we need 12 bytes of storage (4 bytes for its

place in the solution, 2 9 4 bytes for the 2D coordinates), yielding a total of 12 KB.

GPU computing in discrete optimization, Part I 149

123



Fig. 9 NSight generated timeline, which shows how long the different parts of the code take

Fig. 10 Result of profiling the local search example on a GeForce GTX 480 with the NVIDIA Visual
Profiler

150 A. R. Brodtkorb et al.

123



The GTX480 has an L1 cache which holds 16 KB by default, more than enough to

hold our whole problem. This is clearly visible in the profiling by a 100 % L1

Global Hit Rate counter as shown in Table 1. Each value is only read once from the

global memory (DRAM), which explains the very low DRAM read throughput and

efficiency. Unfortunately, this does not mean that our memory access pattern is well

designed in general. In fact, reading the coordinates of a node in the cost

computation means reading data at a random location, as the node is specified by a

permutation (the solution). The effects of this can be observed when studying the

instruction replay overhead. If threads within a warp cause non-coalesced reads,

several instructions are necessary to read all needed data from memory, or as in our

case, the L1 cache. For a coalesced read only one instruction would be necessary.

Each thread writes only the best move of the ones it has evaluated to global

memory. As neighboring threads write to neighboring memory locations, we get

coalesced writes and an excellent global memory store efficiency of 100 %. Good

news also come from the problem of warp divergence. The branch efficiency

counter is at 99.8 %, which means that of all branches taken, virtually none were

divergent.

Summing up, we know now that our example has several shortcomings that limit

its performance, and is operating far from the peak performance of the hardware.

Some of these issues are simpler to address than others, but all require some

redesign of the original local search algorithm. Therefore, we should revisit the

algorithm with our new insight to achieve higher performance. In the Appendix, we

apply some simple adjustments to the kernels to achieve a considerable

improvement.

Table 1 Selected profiling

results for the local search

example on a GeForce GTX 480

nbh. evaluation apply move

Avg. duration (ls) 459.7 274.8

Achieved FLOPS: single GFLOPS 141.84 0

Registers/thread 23 18

Achieved occupancy 0.3 0.3

Static shared memory 0 4,096

Avg. dynamic shared memory 0 0

Instructions issued 6,452 288 49,327

Instruction replay overhead (%) 52.1 16

Branch efficiency (%) 99.8 94.7

Warp execution efficiency (%) 97 96.5

DRAM read throughput (bytes/s) 896 458

Global memory load efficiency (%) 6.9 0.9

DRAM write throughput (MBytes/s) 135.6 0.3

Global memory store efficiency (%) 100 12.5

Global store transactions 570 11

L1 global hit rate (%) 100 96.3

L1 global load miss 1,395 1,131

L2 hit rate reads (%) 100 100

GPU computing in discrete optimization, Part I 151

123



Summary and conclusion

Over the last decade, we have seen that GPUs have gone from curious hardware

being exploited by a few researchers, to mainstream processors that power the

worlds fastest supercomputers. The field of discrete optimization has also joined the

trend with an increasing level of research on mapping solution methods for these

problems to the GPU. In the foreseeable future, it is clear that GPUs and parallel

computers will play an important role in all of computational science, including

discrete optimization, and it is important for researchers to consider how to utilize

these kinds of architectures.

This paper is Part I in a series of two papers. Here, we introduce graphics

processing units in the context of discrete optimization. We give a short historical

introduction to parallel computing, and the GPU in particular. We also show how

local search can be written as a parallel algorithm and mapped to the GPU with an

impressive speed-up, yet there is still room for major improvements, as the

implementation far from utilizes the full potential of the GPU. We also discuss

general development and optimization strategies for writing algorithms that may

approach peak performance. In Part II (Schulz et al. 2013), we give a literature

survey focusing on the use of GPUs for routing problems.

Acknowledgments The work presented in this paper has been partially funded by the Research Council

of Norway as a part of the Collab project (Contract Number 192905/I40, SMARTRANS), the DOMinant

II project (Contract Number 205298/V30, eVita), the Respons project (Contract Number 187293/I40,

SMARTRANS), and the CloudViz project (Contract Number 201447, VERDIKT).

Appendix: Profiling and improving the local search example

In this appendix we will show, how some simple adjustments in the kernels improve

the GPU implementation considerably. The final kernels will not be rigorously

profiled and optimized as the focus here is on illustrating some of the different

aspects of GPU programming discussed in the paper.

Before we continue, we would like to briefly mention compute capability (CC). If

GPU kernels are compiled for CC 1.x, the floating point arithmetic will not conform

to the IEEE standard. This causes slightly different results in the distance

computations, leading to a different solution on the GPU than on the CPU. With CC

2.0 and higher, however, floating point arithmetic on the GPU became IEEE

compliant. For this reason, we will in the following discussion use results from

compilation for CC 2.0. The arguments hold for compilation for CC 1.x and the

profiling results are very similar. All profiling is done on a Geforce GTX 480, which

is a Fermi class GPU.

From ‘‘Profiling the local search example’’ we know that our achieved occupancy

is very low, only around 33 %. At the same time, the move evaluation kernel takes

more time than the application kernel which chooses and applies the best move. The

times spent on evaluation, application and other tasks are illustrated in Fig. 11 for a

problem with 1,000 and 2,000 nodes, respectively. Using NSight, we profile the

evaluation kernel with an occupancy experiment that tells us that in our chosen

configuration we can have up to 8 blocks per SM yielding a total of

152 A. R. Brodtkorb et al.

123



8 9 128 9 15 = 15,360 threads. So the reason for our low occupancy is actually

too few threads, as we only have 8,192 and, thus, the GPU does not have enough

active warps to hide latency. The kernel needs 23 registers per thread, so an

occupancy of 100 % is not possible on our GPU. With some small experimentation,

we find that using 20,160 threads spread over 105 blocks (7 per SM) with 192

threads each gives the best achieved occupancy of 78.38 % (compared to a

theoretical limit of 87.5 % for this setup). Figure 11 shows that this GPU version 2

yields a faster move evaluation kernel, but a slower move application kernel. The

reason for the latter is that choosing the best move now includes reducing 20,160

rather than 8,192 moves to the best one. For a problem of 1,000 nodes this increase

in the application kernel actually dominates the whole runtime, such that the second

GPU version is actually slower than the first version. However for larger problems

(e.g., 2,000 nodes) the decrease in evaluation time leads to an improvement in

overall runtime. As the GPU is intended for solving large problems, we will

continue to focus on the evaluation kernel which still dominates the run time for

bigger problems (see right part of Fig. 11).

In ‘‘Profiling the local search example’’, we observed that although our memory

access pattern in the evaluation kernel is not ideal, access to global memory is

actually efficient as the whole problem of 1,000 nodes fits into the L1 cache.

Clearly, for a problem of size 2,000 nodes this will no longer be the case with a 16

KB L1 cache, as illustrated in Fig. 12. However, on the Fermi architecture, we can

configure the L1 cache to be either 16 or 48 KB. Setting it to 48 KB enables us to

have problems of size up to about 4,000 nodes in the L1 cache. The positive effect

can clearly be seen in GPU version 3 in Fig. 11 for the problem with 2,000 nodes.

The memory experiment in Fig. 12 also points out our bad memory access

pattern (for loading). In average, we have 14.75 transactions per request. Ideal

would be one (coalesced reads only), worst would be 32 (completely random

memory access). As those are transactions between cache and registers, this number

does not change with the increased L1 cache. So we need to improve our reading

pattern from memory. The computation of the cost of one move includes two types

of reads: find the node at a given position in the solution and get the coordinates of

Fig. 11 Time spent on move evaluation, move choice and application and other tasks during local search
for different versions of the GPU kernels on a problem with (left) 1,000 nodes over 2,500 iterations and
(right) 2,000 nodes over 5,000 iterations

GPU computing in discrete optimization, Part I 153

123



this node. Actually this has do be done not just for one but several nodes.

Nevertheless, as the solution can be any permutation of the nodes, it is impossible to

predict which node will be at which position in the solution. Hence it is difficult to

improve reading the coordinates of the nodes. However, we have control over the

positions in the solution, or more exactly, we know which positions in the solution a

move needs to access. So far, we split the lexicographically ordered moves into

consecutive parts of a certain length, and one thread in the evaluation kernel

evaluates the moves in its part.

In this way, we ensure that the moves are evaluated and compared to each other in

exactly the same order as on the CPU. However, if two moves are equally good, it

does not matter which of them is taken. So we can split the neighborhood into

different parts, which enables a more efficient memory access pattern. In most

cases, the first node to swap in the moves i and i ? 1 will be the same and the

second node in move i ? 1 will be the neighboring node in the solution to the

second node of move i. Hence, it makes sense to let neighboring threads k and k ? 1

evaluate the moves i and i ? 1 so we get coalesced memory access with respect to

finding the node in the solution. Moreover, since one of the nodes is the same, this

will also benefit the coordinate access for this node. We thus change the

neighborhood part a thread has to evaluate from the moves i, i ? 1,…, i ? N to the

moves j, j ? M, j ? 2M, …, j ? NM where M is the grid size.

Fig. 12 Memory experiment statistics for global memory access for the evaluation kernel of GPU
Version 2 for a problem with 2,000 nodes

154 A. R. Brodtkorb et al.

123



The benefit is clear, as our transactions per request now reduce to 10.23 for the

problem of size 2,000. The effects in running time both for the evaluation kernel and

in total are again shown in Fig. 11 for this GPU version 4.

Profiling the GPU version 4 indicates that the memory access pattern is still the

limiting factor for the evaluation kernel. Unfortunately it is hard to optimize this

pattern further, since the access to the node coordinates goes through a, from a GPU

point of view, random permutation. For this reason, we will stop here focusing on

the evaluation kernel and instead concentrate on move reduction and application.

For small problems, the move application kernel dominates the runtime. Similarly to

the evaluation kernel, we have a very bad achieved occupancy of 2.2 %, which

stems from the fact that we in total only have one block running on the GPU. This

was done to keep the reduction code easy and readable and we will, therefore, not

change this. The profiling tells us in addition, that again the memory access pattern

is bad with around 17 transactions per global memory load request. When deciding

on the best move, each thread in the application kernel first reads through a set of

delta values.

This is the same type of bad memory access pattern used before in the evaluation

kernel, hence we can apply the same remedy by changing which delta values are

accessed by which thread.

Figure 11 shows that this drastically improves the runtime of the application kernel

(GPU version five).

Reduction is a standard technique in GPU literature that has been studied with

respect to good implementations (Harris 2011). With the improved memory access

pattern, we now implement most of the ideas suggested in (Harris 2011) except loop

unrolling. In GPU version 6 we, therefore, include loop unrolling in the reduction,

but the effect on the runtime is only marginal in our case (see Fig. 11).

In the above paragraphs, we have shown that profiling and applying only minor

changes to the original code resulted in a considerable speedup of the runtime for

both larger and smaller problems. But how big problems can we actually solve? So

far we only considered up to 2,000 nodes. How long does it take to evaluate the

swap neighborhood for 10,000 nodes on the GPU? Running the program for a TSP

of this size leads to a problem; both the CPU and the GPU version terminate with an

error. The cause is a problem in our mapping from the linear move index to the

indices of the nodes to be swapped. It includes floating point arithmetic, which on a

computer never is exact. For such a big problem, the error in floating point

computations causes the resulting indices to be invalid in a few cases, causing the

GPU computing in discrete optimization, Part I 155

123



termination of the programs. On the CPU, the solution is simple. In fact, if one

would implement local search for this neighborhood on the CPU without thinking

about the GPU, most people would not use a mapping but instead two loops, where

the first runs through the valid indices for the first node and the second loop through

the valid ones for the second node.

This eliminates the need for the demanding floating point arithmetic and, thus,

not only enables very large problem sizes but in addition improves the runtime on

the CPU. The latter fact illustrates also the limited usefulness of our GPU vs. CPU

speedup statement mentioned earlier when introducing the ‘‘Programming example

in CUDA’’. For a more detailed discussion about usefulness and limits of such GPU

vs. CPU speedup measurements see ‘‘Lessons for future research’’ in the second part

of this paper (Schulz et al. 2013).

For the GPU, the floating point arithmetic problem is not so easy to solve. The

square root in the mapping comes from solving a quadratic problem. Goldberg

(1991) suggests to rearrange the quadratic formula to avoid catastrophic cancel-

lation errors. This is done in GPU version 7, but in our case it does unfortunately not

eliminate all possible sources of catastrophic cancellation. Hence, this GPU version

still terminates with an error for a TSP of size 10,000. In (Schulz 2013), a different

mapping between the linear move index and the node indices is suggested. The idea

of this mapping is to consider the lexicographically ordered indices as a triangle and

then cut the triangle top and rotate it to create a rectangular indexing scheme. The

same idea can alternatively be described as considering the lexicographical triangle

as half of a rectangle and filling the other half with the same indexing scheme in

reverse order as done in Fig. 13. Then a simple rectangular mapping can be used to

compute for a move its cell in the table. From this it is easy to deduce the node

indices. This mapping consists only of integer arithmetic, hence eliminating any

floating point errors. Our GPU version 8 using this mapping is able to evaluate 500

iterations for a TSP with size 10,000 in roughly 22.5 s.

In this appendix, we showed how repeated profiling and modifying can lead to a

significant improvement in the efficiency of a GPU implementation. This just

Fig. 13 Improved mapping between linear index and node indices for (left) even and (right) odd number
of nodes. The gray marked cells are the ones used

156 A. R. Brodtkorb et al.

123



emphases the importance of considering the architecture of the GPU when

programming it. At the same time, we illustrated that comparing the CPU vs. the

GPU can be unfair. Finally, the mapping between move number and thread number

showed the importance of rethinking and adjusting an algorithm when implement-

ing it on the GPU.

References

Barker K, Davis K, Hoisie A, Kerbyson D, Lang M, Pakin S, Sancho J (2008) Entering the Petaflop Era:

the architecture and performance of roadrunner. Supercomputing

Bixby RE (2002) Solving real-world linear programs: a decade and more of progress. Operations Res

50:3–15

Brodtkorb AR, Dyken C, Hagen TR, Hjelmervik JM, Storaasli O (2010) State-of-the-art in heterogeneous

computing. Sci Progr 18(1):1–33

Brodtkorb AR, Sætra ML, Altinakar M (2012a) Efficient shallow water simulations on GPUs:

implementation, visualization, verification, and validation. Comput Fluids 55(0):1–12

Brodtkorb AR, Sætra ML, Hagen TR (2012b) GPU programming strategies and trends in GPU

computing. J Parallel Distrib Comput

Chen T, Raghavan R, Dale J, Iwata E (2007) Cell broadband engine architecture and its first

implementation: a performance view. IBM J Res Dev 51(5):559–572

Fernando R, Kilgard M (2003) The Cg tutorial: the definitive guide to programmable real-time graphics.

Addison-Wesley Professional, Boston

Goldberg D (1991) What every computer scientist should know about floating-point arithmetic. In:

Numerical Computation Guide, Appendix D, pp 171–264

Harris M (2011) NVIDIA GPU Computing SDK 4.1: optimizing parallel reduction in CUDA

Intel (2012) Intel’s microprocessor export compliance metrics. http://www.intel.com/support/

processors/sb/CS-017346.htm

Knuth DE (1974) Structured programming with go to statements. Comput Surv 6:261–301

Luna F (2012) Introduction to 3D Game Programming with DirectX 11. Mercury Learning and

Information, Boston

Marr DT, Binns F, Hill DL, Hinton G, Koufaty DA, Miller JA, Upton M (2002) Hyper-threading

technology architecture and microarchitecture. Intel Technol J 6(1):1–12

Menabrea LF (1842) Sketch of the analytical engine invented by Charles Babbage. Bibliothèque

Universelle de Genève

Micikevicius P (2010a) Analysis-driven performance optimization. In: 2010 GPU Technology

Conference, session 2012 (Conference presentation)

Micikevicius P (2010b) Fundamental Performance Optimizations for GPUs. In: 2010 GPU Technology

Conference, session 2011 (Conference presentation)

NVIDIA (2011) NVIDIA CUDA Programming Guide 4.1

NVIDIA (2012) http://nvidia.com

Owens J, Houston M, Luebke D, Green S, Stone J, Phillips J (2008) GPU Computing. Proc IEEE

96(5):879–899

Partyka J, Hall R (2012) Vehicle routing software survey—on the road to innovation. OR MS Today

39(1):38–45

Schulz C (2013) Efficient local search on the GPU—investigations on the vehicle routing problem.

J Parallel Distrib Comput 73(1):14 –31 (Metaheuristics on GPUs)

Schulz C, Hasle G, Brodtkorb AR, Hagen TR (2013) GPU Computing in discrete optimization–Part II:

survey focused on routing problems. EURO J Transp Logist

Shreiner D, Group TKW, Licea-Kane B, Sellers G (2012) OpenGL programming guide: the official guide

to learning OpenGL, 8th edn. Addison-Wesley, Boston

(2011) Top 500 supercomputer sites. http://www.top500.org/

GPU computing in discrete optimization, Part I 157

123

http://www.intel.com/support/processors/sb/CS-017346.htm
http://www.intel.com/support/processors/sb/CS-017346.htm
http://nvidia.com
http://www.top500.org/

	GPU computing in discrete optimization. Part I: Introduction to the GPU
	Abstract
	Introduction
	Parallel computing
	Modern computer architectures
	Development of modern GPU technology
	Programming example in CUDA
	Development strategies
	The GPU execution model
	Latency hiding and thread performance
	Memory guidelines
	Further guidelines
	Profile driven development
	Debugging

	Profiling the local search example
	Summary and conclusion
	Acknowledgments
	Appendix: Profiling and improving the local search example
	References


