
TUTORIAL

Inventory routing problems: an introduction

Luca Bertazzi • M. Grazia Speranza

Received: 11 June 2012 / Accepted: 2 November 2012

� Springer-Verlag Berlin Heidelberg and EURO - The Association of European Operational Research

Societies 2012

Abstract In this tutorial paper, we introduce the inventory routing problems

(IRPs) with examples, we classify the characteristics of an IRP and present different

models and policies for the class of problems where the crucial decision is when to

serve customers. We call this class the problems with decisions over time only. The

contributions are on the single link case, i.e., the problem where products are

shipped from a supplier to a customer with capacitated vehicles, and on the IRPs

with direct shipping. We overview the pioneering papers that appeared in the

eighties, the literature on the single link and direct shipping problems, and cite the

surveys and the tutorials available.
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Introduction

It is well known that whenever a problem needs to be optimized, the decomposition of

the problem into subproblems yields a sub-optimal solution. However, large problems

are difficult to tackle and optimization models aim at optimizing a small part of a much

more complex system. Whereas in several situations, the problem is relatively

independent of the rest of the system, in other situations this is not the case. In general,

modeling more comprehensive problems creates the opportunity for more savings.

In transportation and logistics, a trend in the direction of considering more and more

comprehensive systems can be observed both in practice and in the academic world.
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The concept of logistics has evolved over time to include more and more company

functions and has inspired the concept of supply chain management that aims at

including more companies in the integration process. The advance of information

systems, the availability of data and the rise of the Internet have favored this direction.

Restricting the attention to optimization models in transportation and logistics, one

can observe the growth of contributions in the modeling of systems that were

traditionally decomposed and solved separately. This is also due to the advances in

solution methods, both exact and heuristic, and the increased power of commercial

software for linear programming (LP) and mixed integer linear programming (MILP)

models.

In this paper, we introduce, motivate and survey the area of an inventory routing

problems (IRPs), an area where the first contributions date back to the eighties and that

has been constantly growing over time. The adoption by several companies of the

so-called Vendor Managed Inventory (VMI) technique in supply chain management

has partially driven the research in this area. Thousands of papers are available for the

modeling and solution of routing problems and thousands of papers can be found on

inventory management models. IRPs aim at integrating the two areas.

In this paper, we introduce the class of IRPs and focus on the decisions over time

only, where the crucial decision is when to serve customers. In a forthcoming paper,

we will focus on the decisions over time and space, where joint decisions on when

to serve the customers and how to organize the routes are taken.

In ‘‘A motivating example’’ of this paper, we describe an example of a problem

where a product has to be distributed to satisfy the demand of a network of customers

over a discrete time period. The example is aimed at showing the impact on the

transportation cost of taking joint decisions on whom to serve, how much to deliver

and the routes to travel. In the example, the inventory cost plays no role. The main

characteristics of an IRP, including the planning horizon, the policies, the objectives,

the decisions, are presented and discussed in ‘‘Managing distribution networks’’. In

‘‘Decisions over time only: the Single Link Shipping Problem’’ and ‘‘Decisions over

time only: the Inventory Routing Problem with Direct Shipping’’, we introduce and

describe the main models for IRPs where the routing part has no role. In ‘‘Decisions

over time only: the Single Link Shipping Problem’’, we define the single link problem

and present different models, both in continuous and discrete time. The case of a

distribution problem to several customers with direct shipping is treated in ‘‘Decisions

over time only: the Inventory Routing Problem with Direct Shipping’’. Finally,

‘‘Literature’’ is devoted to an overview of the literature. We cover the papers that

appeared in the eighties and introduced in the literature the IRPs. We also cover the

literature related to the specific content of this paper, i.e., the papers that tackle single

link and direct shipping problems. Finally, we cite the surveys and the tutorials that

cover the topic of this paper and of the follow-up paper.

A motivating example

In this section, we introduce the IRPs using an example inspired by one of the

pioneering papers in the area, namely Bell et al. (1983). In this example, the
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inventory costs play no role. The example is aimed at showing the impact on the

transportation cost of taking joint decisions on whom to serve, how much to deliver

and the routes to travel.

The example

Time is assumed to be discrete, for example structured in days. A product has to be

distributed from a supplier to a set of four customers with capacitated vehicles.

Decisions have to be taken, for each day, on which customers to serve, how much to

deliver and the routes to travel. There is no limitation on the availability of product

at the supplier.

Let M ¼ f1; 2; 3; 4g be the index set of the customers. Figure 1 shows the

available connections between the supplier and the customers and between pairs of

customers with their associated travel cost, i.e., the cost to pay if the connection is

traveled by a vehicle. There is no limitation on the number of vehicles available.

Each vehicle has capacity C = 5,000. The daily demand qs of customer s; s 2 M; is

1,000, 3,000, 2,000 and 1,500. Each customer has a limited inventory level, i.e., the

amount of product stocked at the customer cannot exceed this level. The maximum

inventory level Us of customer s; s 2 M; is 5,000, 3,000, 2,000 and 4,000. The initial

inventory level of each customer s is equal to its maximum inventory level, i.e.,

Is0 ¼ Us; for all s 2 M: No inventory cost is charged at the supplier and at the

customers.

The objective is to find a periodic distribution policy, i.e., a plan on whom to

serve, how much to deliver and the routes traveled by the vehicles, to be repeated

regularly, that minimizes the total transportation cost. The policy must be such that

a stock out is never caused at any of the customers, that the maximum inventory

level at the customers is not exceeded and the vehicle capacity is satisfied. The

periodicity of the policy implies that the inventory levels at the end of the period

must be equal to the initial levels.

A natural solution

We first note that customers 2 and 3 must be served every day because their

maximum inventory level equals the daily demand, i.e., they cannot stock more than

the daily demand. Observing the traveling costs in Fig. 2, it is natural to combine

the two pairs of close customers 1 and 2, and 3 and 4, and to serve daily each pair

Fig. 1 Bell et al. instance
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with a separate vehicle. The vehicles capacity is not fully used. The daily cost is

420. Thus, the period of this policy is equal to 1 day.

A better solution

A better policy has period equal to 2 days. On the first day, customers 1 and 2 are

served together with one vehicle and 3 and 4 are served together with another

vehicle. A quantity 2,000 (twice the daily consumption) is delivered to 1, 3,000 (the

daily consumption) to 2, 2,000 (the daily consumption) to 3 and 3,000 (twice the

daily consumption) to 4. The capacity of the vehicles is fully used in this case. Since

customers 2 and 3 have to be served daily, due to their storage capacity and daily

consumption, on the second day customers 2 and 3 are served together in a tour,

3,000 is delivered to 2 and 2,000 to 3, while customers 1 and 4 are not visited. The

average daily cost of this policy is 380. It has been proved that this policy is optimal.

This example shows the impact of the decisions on whom to serve and how much

to deliver on the transportation costs. The decisions on the routes of the vehicles

have basically no impact on the costs as, given the customers to visit and the

quantities to deliver, the routes are very easy to be found.

Managing distribution networks

We consider distribution networks with one supplier and one or several customers.

In the inventory routing literature, the term ‘retailer’ is often used instead of the

term ‘customer’. This is due to the most common role of customers in VMI and to

the fact that several papers in the inventory routing literature are motivated by the

practical adoption of the VMI technique. In this paper, we will use the more general

term ‘customer’. We maintain the term ‘supplier’ to indicate the origin of the

distribution flow. The supplier may identify a depot, a warehouse or a factory.

A set of products has to be shipped from the supplier to the customers to satisfy a

deterministic demand over a time horizon that can be infinite or finite. Inventory

Fig. 2 Solutions for the Bell et al. instance
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costs are charged at the supplier and the customers. The situation of inventory costs

at the supplier only or at the customers only are special cases. Shipments are

performed by a fleet of vehicles having given capacity. A transportation cost is paid

for each arc traversed by the vehicles.

In this section, we describe and structure the main characteristics of an IRP: the

shipping times and the planning horizon, the structure of the distribution policy, the

objective of the policy and the decision space. An optimization problem aims at

determining an optimal policy where each of these characteristics is specified.

Different specifications of these characteristics give rise to a different IRP.

Shipping times and planning horizon

The possible shipping times of an IRP can be:

1. Continuous A shipment can be performed at any time (starting from 0).

2. Continuous with a minimum intershipment time A shipment can be performed at

any time (starting from 0), but the time between any pair of consecutive

shipments (intershipment time) cannot be lower than a given minimum

intershipment time, due to shipment/receiving set-up time requirements.

3. Discrete Shipments can be performed only at multiples of a minimum

intershipment time. Since the minimum intershipment time can be normalized

to 1 without loss of generality, shipments are performed at discrete times.

Let us denote by z�C; z
�
M and z�D the optimal cost of a problem with continuous

shipping times, the optimal cost of a problem with continuous shipping times and

minimum intershipment time and the optimal cost of a problem with discrete times,

respectively. If all the other characteristics of the problem are the same,

z�C � z�M � z�D: This ranking of the optimal values does not imply that the model

with continuous shipping times should always be preferred to the others. In fact, for

any specific situation, the most appropriate model should be chosen. Hall (1985),

Maxwell and Muckstadt (1985), Jackson et al. (1988) and Muckstadt and Roundy

(1993) pointed out the practical relevance of shipping policies where the

intershipment times are discrete.

The planning horizon over which an optimal policy is looked at may be:

1. Infinite In this case, the IRP aims at determining a long-term distribution plan

that may be useful, for example, to determine the fleet of vehicles, the number

of drivers, and the organization of the distribution area in regions. More

detailed operational problems may be solved at a later stage.

2. Finite The length of the planning horizon depends on the specific situation

tackled. A short horizon is more operational than a long horizon.

Structured policies

Given the possible shipping times and the planning horizon, an optimal distribution

policy is specified by the service times at the customers, the quantities to deliver and
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the routes of the vehicles. The problem of determining an optimal distribution

policy, without any specific structure, may be extremely hard. Moreover, there may

be practical reasons to restrict the structure of a policy. If the structure of a policy is

defined, the aim of an IRP becomes finding an optimal or a heuristic policy in the

class of policies having the given structure. Typical examples of structured policies,

often inspired by practical relevance, are the following:

1. Zero Inventory Ordering (ZIO) Any customer is replenished if and only if its

inventory level is down to zero.

2. Periodic A period P has to be found. Any operation performed at time

t, 0 B t \ P, is repeated at times t ? kP, k ¼ 1; 2; . . .:
3. Frequency-based These are periodic policies in which shipments are performed

on the basis of one or several frequencies. For each frequency, the

intershipment time is constant. In the single frequency policy, the intershipment

time can be continuous or discrete. If more frequencies are allowed, then each

frequency has an associated integer intershipment time and the period P of the

policy is the minimum common multiplier of the intershipment times.

4. Full load Shipments are performed using full load vehicles only.

5. Direct shipping Any customer is served independently by direct shipments from

the supplier only. Routes that visit more than one customer are not allowed.

6. Order-up-to level Any customer has defined a maximum inventory level. Every

time a customer is served, the delivered quantity is such that the maximum

inventory level at the customer is reached.

7. Maximum level This class of policies generalizes the order-up-to level policies.

Any customer has defined a maximum inventory level. Every time a customer is

served, the delivered quantity is such that the inventory level at the customer is

not greater than the maximum level.

8. Fixed partition The set of customers is partitioned into a number of sets such

that each set is served separately and independently of the other sets. In other

words, any route visits customers of the same set. The partition is typically

based on the geographical location of the customers.

9. Partition-based This class of policies generalizes the fixed partition policies.

Customers are partitioned into sets, as in the fixed partition policy. A route may

visit customers of a set only, but also customers of specific combinations of two

or more sets.

Objectives

The optimal solution of any IRP depends on the objective function chosen. The

minimization of the transportation cost only is a suitable goal for a decision-maker

who is responsible for the transportation only or for a situation where the inventory

costs are not relevant when compared to the transportation costs. In this case, we

may expect that an optimal solution prescribes infrequent transportation with highly

loaded vehicles. The minimization of the inventory costs is the goal in situations

where the focus is on inventory management. In this case, we may expect frequent

transportation. This is what happens when just-in-time is implemented. The
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objective of minimizing the sum of the inventory and transportation costs is more

suitable than the minimization of only one of the two cost components whenever a

decision-maker is responsible for all the cost components. Tackling the transpor-

tation problem separately from the inventory management becomes in these cases a

way to decompose a complex problem in simpler problems, but produces sub-

optimal solutions.

The following examples show that in the worst case, the solution obtained when

the objective is to minimize the transportation cost only or the inventory cost only

can be infinitely worse than the one obtained by minimizing the sum of the costs.

Example 1 Consider the case with one supplier and one customer. The shipping

times are discrete. A set I of products has to be shipped from the supplier to the

customer. Each product i 2 I has a production and consumption rate qi; a unit

volume vi and unit inventory cost hi. Let � be such that 1
� is an integer number.

Suppose that the total volume per time unit is v ¼
P

i2I viqi ¼ � and the associated

inventory cost is h ¼
P

i2I hiqi ¼ 1
� : The transportation is performed by vehicles

having capacity C = 1. The transportation cost per trip, i.e., the cost to go from the

supplier to the customer and return to the supplier, is c = 100.

Let us first compute the average total cost per time unit of a single frequency

policy, i.e., a policy where a shipment takes place every s times. The inventory cost

at the supplier is computed as follows. Let us focus on any time interval of length s:
As the production rate qi of any product i 2 I is constant over time, the total quantity

produced every s times is qis: Therefore, the total inventory level at the supplier

over s is
ðqisÞs

2
and the average inventory level per time unit is

ðqisÞs
2s ¼

qis
2
: Since the

unit inventory cost hi is charged for any product i 2 I; the average inventory cost at

the supplier is

P
i2I

hiqis

2
per time unit. Since the average inventory cost at the

customer is identical, the total average inventory cost is
P

i2I hiqis per time unit. Let

us now compute the transportation cost. As the total volume shipped every s time is

vs; y ¼ dvsCe, vehicles are needed every s time. Therefore, the average transportation

cost per time unit is c
s dvsCe: Hence, the average total cost per time unit is zSFðsÞ ¼

P
i2I hiqisþ c

s dvsCe:
Let us return to our numerical example. If the transportation cost only is taken

into account, one fully loaded vehicle is sent every s ¼ 1
� time with average total

cost per time unit zSF 1
�

� �
¼ 1

�2 þ 100�: A different solution is obtained by sending

one vehicle per time unit, with a resulting average total cost per time unit zSFð1Þ ¼
1
� þ 100: Therefore,

zSF 1
�

� �

zSFð1Þ ¼
1
�2 þ 100�
1
� þ 100

!1 �! 0:

The above example shows that whenever the inventory costs are relevant but are

ignored in the optimization, a very poor solution is likely to be found and

implemented.
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Example 2 Consider again the problem of one supplier and one customer with

discrete shipping times. Let � be such that 1
� is an integer number. Let us assume that

the total volume per time unit is v ¼ � and the total inventory cost per time unit is

h ¼ �: The transportation is performed by vehicles having capacity C = 1 and cost

per trip c ¼ 1
� :

If the objective chosen is the minimization of the inventory cost, one vehicle is

sent per time unit. Therefore, the average total cost per time unit is zSFð1Þ ¼ �þ 1
� :

A different solution can be obtained by sending one vehicle every 1
� time. The

corresponding average total cost per time unit is zSF 1
�

� �
¼ 2: Therefore,

zSFð1Þ
zSFð1�Þ

¼
1þ 1

�

2
!1 �! 0:

This example complements the previous one and shows that also ignoring the

transportation costs may lead to very poor solutions.

Decisions

In vehicle routing problems, the customers to be visited are given as well as the

quantities to be delivered. The decisions to be taken concern the routes of the

vehicles, i.e., the space traversed by the vehicles. We call these decisions over
space. If the customers of a supplier, independently of each other and independently

of the supplier, decide when and how much to order, the problems to be solved by

the supplier over time are vehicle routing problems. In this kind of traditional

distribution management, that we call Retailer Managed Inventory (RMI), the

power of the supplier to optimize the distribution is strongly constrained by

the decisions taken by the customers, even when the goal is the minimization of the

transportation cost only. Consider, for example, the case of two retailers located

very close to each other, each ordering half a load once a week. The first retailer

requests the delivery to take place on Monday and the second one the delivery to

take place on Tuesday. The supplier needs to make two trips per week, with half

load each. Clearly, if the supplier had the power to decide the timing of the

deliveries, one full load trip only per week could be organized. The level of service

to the retailers would remain the same and the cost would be halved. In VMI,

the supplier has the power of deciding times and quantities of the deliveries. At the

same time, it has the responsibility to avoid a stock-out at the retailers.

In inventory management, the decisions concern the timing and the quantities of

the orders. We call these decisions over time.

In IRPs, the decision space always includes timing and quantities and may

include the routing too. In general, we can classify the IRPs according to the

decision space as follows:

1. Decisions over time only In this case, the routes are given. The decisions

concern the times and the quantities to deliver to the customers. In the Single

Link Shipping Problem, a supplier serves one customer only and, thus, the route

traversed by the vehicles is given, from the supplier to the customer and back.
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Similarly, in the Inventory Routing Problem with Direct Shipping, a supplier

serves a set of customers with direct shipments to each separately. Again, the

routes are fixed.

2. Decisions over time and space The timing of the deliveries to each customer,

the quantities to be delivered each time a delivery takes place and the routes

traveled by the vehicles have to be decided at the same time.

This paper is restricted to the problems with decisions over time, whereas the

problems with decisions over time and space will be the topic of a follow-up paper.

The IRPs with decisions over time only have been deeply studied in the last two

decades. The simplest problem of this type is the Single Link Shipping Problem. Its

natural generalization to the case of several customers is the Inventory Routing

Problem with Direct Shipping.

Decisions over time only: the Single Link Shipping Problem

A set I of products has to be shipped from a supplier A to a customer B. Each

product i 2 I is made available at the supplier and absorbed at the customer at a

constant rate qi. Each unit of product i 2 I has a unit volume vi and a unit inventory

cost hi per time unit. The total volume produced per time unit is v ¼
P

i2I viqi and

the total inventory cost per time unit is h ¼
P

i2I hiqi: The inventory level of any

product i 2 I at the supplier and the customer must be always non-negative.

Shipments are performed by a fleet of vehicles. Each vehicle has a transportation

capacity C (normalized to 1, without loss of generality) and transportation cost

c, charged for each trip independently of the quantity loaded on the vehicle. The

goal of the problem is to find a shipping policy that minimizes the sum of

the average transportation and inventory costs per time unit. The minimization of

the transportation costs only is a special case obtained setting to 0 the unit inventory

costs hi.

In the following, we present different models for the Single Link Shipping

Problem based upon different assumptions on the shipping times, the horizon and

the structure of the policy.

As periodic policies play a relevant role, we define here the concept. A periodic
policy is defined by the period P and, in the continuous case, by the quantities sit of

product i to be shipped at time 0� t\P; whereas, if time is discrete, by the

quantities sit to be shipped at times t ¼ 0; 1; . . .;P� 1: Then, the number of vehicles

yt to use at time 0� t\P in the continuous case and at time t ¼ 0; 1; . . .;P� 1 in

the discrete case can be calculated. To define a periodic policy, the starting

inventory levels dA
i and dB

i to make available at time 0 at the supplier and the

customer are also needed. The quantity sit0 ¼ sit is then shipped at any time t0 ¼
kPþ t; where k is an integer [0.

An example of a periodic policy is the single frequency policy with discrete

shipping times, where the products are shipped every s times, with s integer. In this

case, P ¼ s; dA
i ¼ qis; dB

i ¼ 0; si0 ¼ qis; sit ¼ 0 for t ¼ 1; 2; . . .;P� 1;y0 ¼ dvse and
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yt ¼ 0 for t ¼ 1; 2; . . .;P� 1: The corresponding average total cost per time unit is

hsþ c
s dvse; which is identical to the cost zðsÞ obtained in Example 1.

We will make use of the following remark, derived from the fact that demand and

consumption are constant over time and equal at the supplier and the customer.

Remark 1 The sum of the inventory levels in A and in B is constant over time.

Thus, the total inventory level at any time t is dA
i þ dB

i :

The continuous case

In the continuous case, we assume that a shipment can be performed at any time and

we aim at finding an optimal periodic policy. We can prove the following important

property that characterizes the optimal policy.

Property 1 In the optimal periodic policy of the continuous case, the products are
shipped at a single frequency, using a single vehicle.

Let us consider any periodic policy. Let �P be the period of this policy, �s be the

maximum intershipment time and �m be the number of vehicles used over a period.

Let us show that the inventory cost is at least h�s: As there is no shipment in a time

interval of length �s; the inventory level of each product i 2 I at the beginning of this

time interval at the customer has to be at least qi�s: Since the total (at the supplier and

at the customer) inventory is constant over time, then the inventory level at any time

is at least
P

i qi�s and therefore the total inventory cost per time unit is at leastP
i hiqi�s ¼ h�s: Thus, the policy that minimizes the total inventory cost per time unit,

given �P and �m (and therefore given the transportation cost), is the one with equally

spaced intershipment times, i.e., the single frequency policy with intershipment time

s ¼ �P
�m :

Thanks to the characterization of the optimal periodic policy, the problem to find

the optimal periodic policy can be formulated in the continuous case as the problem

to determine the intershipment time s�C such that the sum of the inventory and

transportation costs is minimized. This problem, referred to as Problem C; can be

modeled as follows:

Problem C

min hsþ c

s
ð1Þ

vs� 1 ð2Þ
s� 0 ð3Þ

The objective function (1) expresses the minimization of the sum of the average

transportation and the inventory costs per time unit. Constraint (2) is the capacity

constraint and constraint (3) defines the non-negativity of the decision variable of

the problem.

Problem C is a non-linear constrained optimization model and has the following

simple closed solution (see Burns et al. 1985):
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s�C ¼ min

ffiffiffi
c

h

r

;
1

v

� �

: ð4Þ

When the optimal intershipment time is s�C ¼
ffiffi
c
h

p
\ 1

v ; then a vehicle is sent with

partial load every s�C time, whereas when s�C ¼ 1
v ; a full load vehicle is sent. The

model for the continuous case is very simple, but suffers from two main drawbacks.

The first is that s�C can be a very small number. The second is that s�C can be an

irrational number, such as
ffiffiffi
3
p

: In both cases, the solution is impractical.

The continuous case with minimum intershipment time

To avoid that the intershipment time takes a very small impractical value, a

minimum intershipment time, normalized to 1, can be imposed. Such value takes

into account shipment/receiving set-up time requirements. Since the structure of the

optimal policy of this problem, called the continuous case with minimum
intershipment time is unknown in this case, policies with a specific structure of

practical relevance were proposed and analyzed. The simplest one is the single

frequency policy. The optimal policy of this class can be obtained by solving the

following model, where y is the number of vehicles to use every s times. This

problem, referred to as Problem MSF; can be modeled as follows:

Problem MSF

min hsþ c

s
y ð5Þ

vs� y ð6Þ
s� 1 ð7Þ

y� 0 integer: ð8Þ
The objective function (5) expresses the minimization of the sum of the average

transportation and inventory costs per time unit. Constraint (6) is the capacity

constraint. Constraint (7) takes into account the minimum intershipment time and

(8) defines the decision variable y of the problem.

Problem MSF is a non-linear constrained optimization model and has the

following optimal intershipment time (see Bertazzi et al. 2007)

s�M ¼ min maxf1;
ffiffiffiffiffiffiffiffiffiffi
c

h
dve

r

g; dve
v

� �

: ð9Þ

The corresponding optimal number of vehicles is y� ¼ vs�M
	 


:

A natural question is how much more expensive than the optimal policy the

optimal single frequency policy is. This question may be partially answered by

means of a worst-case analysis of the performance of the optimal single frequency

policy with respect to the optimal policy. Let zSF
M be the optimal cost of Problem

MSF ; i.e., of the optimal single frequency policy, and z�M be the cost of the optimal,

unknown policy. The following result was proved in Bertazzi et al. (2007).
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Theorem 1
zSF

M

z�M
�

ffiffiffi
2
p
� 1:414 and the bound is tight.

This means that the optimal single frequency policy may increase the cost of the

optimal one by up to 41.4 %. The fact that the bound is tight means that a smaller

bound is not valid for all the problem instances because an instance exists where the

bound is reached or a sequence of instances exists with ratio that tends to the bound.

We now propose a different proof to give a complete example of worst-case analysis.

Let us first prove that the worst-case ratio
ffiffiffi
2
p

holds for any instance of the problem.

Case 1 v� 1: in this case, if c� h; then s�M ¼ s�C: Since s�C is the optimal solution

of a relaxed problem, shipping the products every s�M is optimal. Otherwise, s�M ¼ 1

and y� ¼ 1; with a corresponding cost h ? c. This is optimal. In fact, any solution

with at least one intershipment time [1 has inventory cost per time unit at least

2h. Since the minimum transportation cost per time unit is cv (the cost in case of full

load), the corresponding total cost per time unit is at least 2hþ cv [ 2h [ hþ c:

Case 2 v [ 1: in this case, zSF
M is not greater than the cost of shipping the products

every sc ¼
ffiffiffiffiffi
dve
v

q
time using dve vehicles, i.e., zSF

M � h
ffiffiffiffiffi
dve
v

q
þ cffiffiffiffi

dve
v

p dve ¼
ffiffiffiffiffi
dve
v

q
ðhþ cvÞ:

Instead, z�M � hþ cv; i.e., the sum of the minimum inventory cost (the cost to

send the products every time unit) and the minimum transportation cost (the cost of

a full load). Therefore,

zSF
M

z�M
�

ffiffiffiffiffi
dve
v

q
ðhþ cvÞ

hþ cv
�

ffiffiffiffiffiffiffi
dve
v

r

�
ffiffiffi
2
p

;

as v [ 1.

Since the worst-case ratio is obtained by overestimating zSF
M and underestimating

z�M; one may think that the bound
ffiffiffi
2
p

could be reduced. This is not possible as there

exists a sequence of instances such that the ratio between zSF
M and z�M tends to

ffiffiffi
2
p

:Let us

consider the instance with volume per time unit v ¼ 1þ �; where ��
ffiffiffi
2
p
� 1; and

such that 1ffiffi
�
p is an integer number. The total average inventory cost per time unit is

h = 1. The transportation cost per trip c is equal to 1. The optimal solution of Problem

MSF is s�M ¼
ffiffiffi
2
p

and y� ¼ 2; with a corresponding cost zSF
M ¼ 2

ffiffiffi
2
p

: A different

solution can be obtained by shipping a fraction 1
1þ� every time unit and the remaining

fraction �
1þ� every 1ffiffi

�
p time. Let s1 ¼ 1 and s2 ¼ 1ffiffi

�
p be the corresponding intershipment

times. The cost of this solution is h 1
1þ� s1 þ �

1þ� s2

� �
þ c

s1
þ c

s2
¼ 1þ

ffiffi
�
p

1þ� þ 1þ
ffiffi
�
p
:

Therefore, z�M �
1þ
ffiffi
�
p

1þ� þ 1þ
ffiffi
�
p
:Hence, in this sequence of instances, depending on �

zSF
M

z�M
� 2

ffiffiffi
2
p

1þ
ffiffi
�
p

1þ� þ 1þ
ffiffi
�
p !

ffiffiffi
2
p

�! 0:

Other specific policies were investigated in Bertazzi et al. (2007), namely the

Best Single Frequency and the Best Double Frequency policies.
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In the Best Single Frequency, shipments are performed at the best possible

frequency with discrete intershipment time. The Best Single Frequency policy is a

particular case of the optimal single frequency. Whereas, the intershipment time of

the optimal single frequency policy may be any continuous value [1, the

intershipment time of the Best Single Frequency policy can only be a multiple of 1.

Therefore, the cost of the Best Single Frequency policy cannot be lower than the

cost of the optimal single frequency policy. The reason to study the Best Single

Frequency policy is that it is relevant from a practical point of view. In the Best

Double Frequency policy, shipments are performed on the basis of the best two

frequencies with discrete intershipment times. For example, one vehicle is sent

every day and an additional vehicle every week.

Let zSF be the cost obtained by the Best Single Frequency policy. The following

result holds:

Theorem 2 zSF

z�M
� 5

3
� 1:667 and the bound is tight.

The proof of the worst-case ratio can be found in Bertazzi et al. (2007). The

following example shows the instance that proves that the bound is tight.

Example 3 Consider the instance having volume v ¼ 1þ � per time unit, where �

is such that 1ffiffi
�
p is an integer number. The unit inventory cost per time unit is h = 1.

The transportation cost per trip c is equal to 2.

The cost of the single frequency policy with intershipment s ¼ 1 or s ¼ 2 is

hþ 2c ¼ 2hþ 3
2

c ¼ 5; while the cost with s� 3 is at least 3hþ cv [ 5: Therefore,

the Best Single Frequency policy has intershipment time either s ¼ 1 or s ¼ 2: A

different solution can be obtained by shipping a fraction 1
1þ� every time unit and the

remaining fraction �
1þ� every 1ffiffi

�
p time. Let s1 ¼ 1 and s2 ¼ 1ffiffi

�
p be the corresponding

intershipment times. The cost of this solution is hð 1
1þ� s1 þ �

1þ� s2Þ þ c
s1
þ c

s2
¼

1þ
ffiffi
�
p

1þ� þ 2þ 2
ffiffi
�
p
: Therefore, in this instance

zSF

z�M
� 5

1þ
ffiffi
�
p

1þ� þ 2þ 2
ffiffi
�
p !

5

3
�! 0:

Let zDF be the cost of the Best Double Frequency policy. The following result

holds:

Theorem 3 zDF

z�M
� 16

ffiffiffiffiffiffiffi
3045
p

255
� 37

17
� 1:286 and the bound is tight.

It can be shown that no reduction of the worst-case bound can be achieved by

allowing more than two frequencies. The proof of these results can be found in

Bertazzi et al. (2007), where practical policies have also been designed on the basis

of these theoretical results. Computational results show that these policies are very

effective.

Inventory routing problems 319

123



The discrete case

In the discrete case, the basic assumption is that shipments are performed at

multiples of the minimum intershipment time, i.e., at discrete times if the minimum

intershipment time is normalized to 1.

A simple way to obtain a solution to this problem is to round-off the optimal

solution s�C of the continuous problem to an integer number. Three different

heuristics based on this idea were proposed and analyzed in Bertazzi and Speranza

(2001). In the first, referred to as Sup, s�C is rounded-up; in the second, referred to as

Inf, s�C is rounded-down whenever s�C � 1; while it is rounded-up to 1 otherwise.

Finally, in the third, referred to as Best, the solution at minimum cost between Sup

and Inf is selected. Let zRound be the cost of any of these heuristics and z�D be the

optimal cost of the discrete case. The following result holds:

Theorem 4 zRound

z�D
� 2 and the bound is tight.

This means that in the worst case, any of these rounding heuristics gives a percent

increase in the total cost of 100 % with respect to the optimal one. The proof of the

worst-case performance bound can be found in Bertazzi and Speranza (2001). The

following instance shows that the bound is tight.

Example 4 Consider the instance in which the volume per time unit is v ¼ 1þ 1
M ;

where M� 2 integer. The unit inventory cost per time unit is h ¼ 1
M2 : The

transportation cost per trip c is equal to 1.

The optimal solution of Problem C is s�C ¼ M
Mþ1

: Since s�C\1; the heuristics Sup,

Inf and Best send the products every time unit using two vehicles, with a

corresponding cost hþ 2c ¼ 1
M2 þ 2: A different solution can be obtained by

sending the products every M time using M ? 1 vehicles. The cost of this solution is

hM þ c
M ðM þ 1Þ ¼ 2

M þ 1: Therefore, for this instance

zRound

z�D
�

1
M2 þ 2
2
M þ 1

! 2 M !1:

A better way to solve this problem is to apply the Best Single Frequency policy.

The worst-case performance bound of this policy is simple to be obtained. Indeed,

z�M � z�D;
zSF

z�D
� zSF

z�M
� 5

3
� 1:667: Moreover, as in the instance shown in Example 3,

only solutions with discrete shipping times are considered, the bound is tight.

A practical policy, called Full Load, whose behavior is worth investigating, is to

use fully loaded vehicles at discrete times. A shipment is performed at the first

discrete time not lower than when a full load is reached. Bertazzi and Speranza

(2005) showed that this policy generates in the worst case an infinitely large error

with respect to the optimum, i.e., there exists at least one instance such that zFull

z�D
!

1; where zFull is the cost of the Full Load policy. However, there exist classes of

instances where zFull

z�D
� 2 and zFull

z�D
� 3

2
: In particular, the 3

2
bound holds for all the

320 L. Bertazzi, M. G. Speranza

123



instances where the full load policy is optimal in the continuous problem, i.e., when

s�C ¼ min
ffiffi
c
h

p
; 1

v

� �
¼ 1

v : For this class of instances, the Full Load policy is better than

the Best Single Frequency policy.

The best theoretical performance of a policy was obtained in Bertazzi and Chan

(2011) for the case with a single product, by applying the Best Double Frequency

policy. The authors showed that zDF

z�D
� 123

106
� 1:1603; that the bound is tight and no

improvement can be obtained by allowing more than two frequencies.

The discrete case with given frequencies

The concept of frequency is commonly used in transportation. A service may be

provided daily, or weekly, or monthly, sometimes more often, for example twice a day.

The use of frequency is well accepted in practice because of the regularity of a

frequency-based process that simplifies the organization of both the supplier and the

customer. We have already used the concept of frequency for the Single and Double

Frequency policies. We present here an optimization model that, given a set of possible

frequencies, identifies the best ones. This problem is of interest when the possible

shipment frequencies are not defined by the decision-maker, but by third parties.

The problem was introduced in Speranza and Ukovich (1994) and studied in

Speranza and Ukovich (1996), Bertazzi et al. (2000) and Bertazzi and Speranza

(2002). Each frequency fj; j 2 J; is such that the corresponding intershipment time

tj ¼ 1=fj is discrete. Therefore, shipments are performed at discrete times. The

period of this policy is P ¼ LCMftj; j 2 Jg; where LCM is the Least Common

Multiplier. Let xij be the percentage of product i 2 I to ship at frequency j 2 J and yj

be the number of vehicles to use at frequency j 2 J: The optimization model for this

problem, called Problem F ; is

Problem F

min
X

i2I

X

j2J

hiqitjxij þ
X

j2J

c

tj
yj ð10Þ

X

j2J

xij ¼ 1 i 2 I ð11Þ

X

i2I

viqitjxij� yj j 2 J ð12Þ

xij� 0 i 2 I j 2 J ð13Þ
yj� 0 integer j 2 J ð14Þ

The objective function (10) expresses the minimization of the sum of the average

transportation and inventory costs per time unit. Constraints (11) guarantee that the

products are totally shipped from the supplier to the customer using one or several

frequencies. Constraints (12) guarantee that the number of vehicles used at each

frequency is sufficient. Finally, constraints (13) and (14) define the decision

variables.
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Exact and heuristic algorithms were proposed in Speranza and Ukovich (1996)

and Bertazzi et al. (2000) for the solution of this problem. In the latter paper, a large

set of instances with up to 10,000 different products are solved to optimality.

Moreover, while it is computationally shown that simple heuristics may fail to find

good quality solutions, an effective heuristic is proposed that produces solutions

with average error \0.3 % with respect to the optimal solution.

The discrete case with finite time horizon

A supplier may be sufficiently flexible to accept that any discrete time is a possible

shipping time and be interested in finding the best shipping times over a finite

planning period.

The optimization model for this problem was introduced in Bertazzi and

Speranza (2002). A finite time horizon H is given. The set of possible shipping times

is T ¼ f0; 1; . . .;H � 1g: The problem is to determine the quantity sit of each

product i 2 I to ship at each time t 2 T; the starting inventory level dA
i and dB

i to

make available at the supplier A and the customer B and the number of vehicles yt to

use at each time t 2 T ; in order to minimize the sum of the transportation and

inventory costs over the time horizon H. The optimization problem, referred to as

Problem H; can be formulated as follows:

Problem H

min
X

i2I

hiðdA
i þ dB

i Þ þ
X

t2T

c

H
yt ð15Þ

X

t2T

sit ¼ qiH i 2 I ð16Þ

X

i2I

visit � yt t 2 T ð17Þ

dA
i þ qit �

Xt

k¼0

sik � 0 i 2 I t 2 T ð18Þ

dB
i þ

Xt

k¼0

sik � qiðt þ 1Þ� 0 i 2 I t 2 T ð19Þ

dA
i � 0 dB

i � 0 i 2 I ð20Þ
sit� 0 i 2 I t 2 T ð21Þ

yt� 0 integer t 2 T ð22Þ
The objective function (15) expresses the minimization of the sum of the

inventory and transportation costs. Constraints (16) guarantee that each product is

totally shipped from the supplier to the customer. Constraints (17) guarantee that the

number of vehicles used at each time t is sufficient. Inequalities (18) and (19) are the

stock-out constraints in A and in B. Finally, (20)–(22) define the decision variables.
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Let z�H be the optimal cost of ProblemH: If the period of Problem F and Problem

H is H, then Problem F is a particular case of Problem H: Therefore, z�H � z�F:
Moreover, let z�FðHÞ be the optimal cost of Problem F when the set of frequencies is

composed of all frequencies which are submultiples of H. In this case, there exists

an instance such that
z�FðHÞ

z�H
!1 (see Bertazzi and Speranza 2002).

Decisions over time only: the Inventory Routing Problem with Direct Shipping

When a supplier has several customers, the problem of serving them becomes more

complex. It is interesting to investigate the performance of direct shipments, i.e.,

shipments that visit one customer only at a time. This policy may be very practical

and effective when the demand of the customers is large. We call this problem the

Inventory Routing Problem with Direct Shipping.

The effectiveness of direct shipments was studied by Gallego and Simchi-Levi

(1990) in the case of continuous shipping times. It was shown that the worst-case

performance ratio of direct shipping with respect to a lower bound on the optimal

cost is no more than about 1.061 whenever the Economic Lot Size of each customer

is at least 71 % of the vehicle capacity. Comments and extensions of this analysis

can be found in Hall (1992), Gallego and Simchi-Levi (1994) and Jones and Qian

(1997).

Bertazzi (2008) studied the performance of direct shipping policies where each

link is optimized independently, for the case with discrete shipping times. In the

worst case, the ratio between the cost of the best direct shipping policy and the

optimal cost of the problem where routing is allowed is not greater than 2 whenever

the volume per time unit on each link is not lower than 1/4 of the vehicle capacity.

Moreover, if the volume is not lower than the capacity, the bound is approximately

1.21. These bounds are tight, obtained by making use of at most three shipping

frequencies and cannot be improved using different policies.

Literature

In this section, we briefly overview a set of pioneering papers, i.e., the set of papers

that appeared in the eighties, and introduced in the literature the first IRPs starting

from real applications. We also overview the literature discussed in this paper, i.e.,

the papers that tackle direct shipping problems. Finally, we cite the surveys and the

tutorials on IRPs that cover all the material of this paper and of the forthcoming

paper focused on the decisions over time and space.

Pioneering papers

The expression inventory routing appeared in the literature in a series of papers

published in the eighties (Bell et al. 1983; Federgruen and Zipkin 1984; Golden

et al. 1984; Blumenfeld et al. 1985; Burns et al. 1985; Hall 1985; Maxwell and
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Muckstadt 1985; Roundy 1985; Dror et al. 1985; Dror and Ball 1987). In these

papers, a variety of different problems that were motivated by real applications were

presented. The common element to the problems was the focus on the joint

optimization of transportation and inventory management.

Single link problem

The single link problem has been discussed in depth in this paper. We summarize

here the papers where the problem was studied. The first model for the single link

case, namely the discrete case with given frequencies, was presented in Speranza

and Ukovich (1994) and was motivated by a real application. A subsequent series of

papers followed that paper: Speranza and Ukovich (1996), Bertazzi et al. (2000,

2007), Bertazzi and Speranza (2001, 2002, 2005a, b), Solyalı and Süral (2008),

Bertazzi and Chan (2011).

Only one paper, namely Bertazzi et al. (2001), is available where the

stochasticity of the demand in a single link problem is modeled.

Direct shipping

The problem of evaluating the performance of direct shipping in a distribution

problem from supplier to several customers was studied in Gallego and Simchi-Levi

(1990), Gallego and Simchi-Levi (1994), Hall (1992), Jones and Qian (1997), and

Bertazzi (2008).

Surveys and tutorials

Several surveys on IRPs were published, confirming the level of attention that the

area has attracted in the last decades. The first survey was published by Federgruen

and Simchi-Levi (1995), and was followed by several others: Campbell et al.

(1998), Baita et al. (1998), Campbell et al. (2002), Moin and Salhi (2007). Finally,

two tutorials were published in the last years: Bertazzi et al. (2008) and Bertazzi and

Speranza (2011).
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