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Abstract This paper surveys the most effective mathematical models and exact

algorithms proposed for finding the optimal solution of the well-known Asymmetric

Traveling Salesman Problem (ATSP). The fundamental Integer Linear Program-

ming (ILP) model proposed by Dantzig, Fulkerson and Johnson is first presented, its

classical (assignment, shortest spanning r-arborescence, linear programming)

relaxations are derived, and the most effective branch-and-bound and branch-and-

cut algorithms are described. The polynomial ILP formulations proposed for the

ATSP are then presented and analyzed. The considered algorithms and formulations

are finally experimentally compared on a set of benchmark instances.
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Introduction

Let G = (V, A) be a given complete digraph, where V ¼ f1; . . .; ng is the vertex set

and A ¼ fði; jÞ : i; j 2 Vg the arc set, and let cij be the cost associated with arc

ði; jÞ 2 A (with cii ¼ þ1; for i 2 V). A Hamiltonian circuit (tour) of G is a circuit

visiting each vertex of V exactly once. The Asymmetric Traveling Salesman

Problem (ATSP) is to find a Hamiltonian circuit G� ¼ ðV;A�Þ of G whose costP
ði;jÞ2A� cij is minimum. If the considered graph G is undirected, the corresponding

problem is denoted as Symmetric Traveling Salesman Problem (STSP).
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The ATSP is known to be NP-hard in the strong sense, and has been intensively

studied in the last six decades. In this paper, we will consider and experimentally

compare the most effective Integer Linear Programming (ILP) models and exact

algorithms proposed for finding the optimal solution of the ATSP. Previous surveys

on the subject have been presented by Balas and Toth (1985), Fischetti et al. (2002),

Öncan et al. (2009), D’Ambrosio et al. (2010). Several books dealing with the

traveling salesman problem and its variations have been published. Among them we

mention those by Lawler et al. (1985), Reinelt (1994), Gutin and Punnen (2002),

Applegate et al. (2007).

The paper is organized as follows. In ‘‘The Dantzig-Fulkerson-Johnson

formulation and its relaxations’’, the well-known Dantzig, Fulkerson and Johnson

formulation Dantzig et al. (1954) and its ‘‘classical’’ relaxations are described.

Polynomial formulations, i.e., formulations requiring a number of constraints

polynomial in the number of vertices n, are described in ‘‘Review of polynomial

formulations’’. ‘‘Exact Algorithms’’ reviews the most effective branch-and-bound

and branch-and-cut algorithms proposed for the ATSP. In ‘‘Transformation of ATSP

instances into STSP instances’’, the transformation of an ATSP instance into an

equivalent STSP instance, proposed by Jonker and Volgenant (1983), is presented.

Computational experiments, comparing the considered formulations and exact

algorithms on a set of benchmark instances, are described in ‘‘Computational

results’’.

The Dantzig–Fulkerson–Johnson formulation and its relaxations

Dantzig et al. (1954) proposed the following ILP model (hereafter DFJ), utilizing n2

binary variables xij, for the ATSP:

ðDFJÞ min
Xn

i¼1

Xn

j¼1

cijxij ð1Þ

s.t.
Xn

i¼1

xij ¼ 1; j ¼ 1; . . .; n; ð2Þ

Xn

j¼1

xij ¼ 1; i ¼ 1; . . .; n; ð3Þ

X

i2S

X

j2S

xij� jSj � 1; S � V : S 6¼£; ð4Þ

xij 2 f0; 1g; i; j ¼ 1; . . .; n; ð5Þ

where xij is equal to 1 if and only if arc (i, j) (i ¼ 1; . . .; n; j ¼ 1; . . .; n) is in the

optimal tour. Constraints (2) and (3) impose that the in-degree and out-degree of

each vertex, respectively, is equal to one, while constraints (4) are Subtour Elimi-

nation Constraints (SECs) and impose that no partial circuit exists.
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Moreover, it is well known that one can halve the number of SECs (4) by

replacing them with
X

i2S

X

j2S

xij� jSj � 1; S � Vnfrg : S 6¼£;

where r is any vertex of vertex set V.

Because of constraints (2) and (3), constraints (4) can be equivalently rewritten as

Connectivity constraints:
X

i2S

X

j2VnS
xij� 1; S � V : S 6¼£: ð6Þ

Also in this case, one can halve the number of connectivity constraints (6) by

replacing them with
X

i2S

X

j2VnS
xij� 1; S � V : r 2 S ð7Þ

or with
X

i2S

X

j2VnS
xij� 1; S � V : S 6¼£; r 62 S ð8Þ

where r is any fixed vertex.

A valid lower bound on the optimal solution value of the ATSP can be obtained

by optimally solving the Linear Programming (LP) relaxation of the previous

models (1)–(5) or (1)–(3), (5) and (7), obtained by replacing constraints (5) with

constraints

xij� 0; i; j ¼ 1; . . .; n: ð9Þ
Although the considered ILP models require an exponential number of Subtour

Elimination or Connectivity constraints, their LP relaxations can be efficiently

solved in polynomial time using the effective polynomial separation procedure
proposed by Padberg and Rinaldi (1990a) for the STSP.

Additional lower bounds can be obtained by considering the different substruc-

tures of the ATSP, each associated with a subset of constraints defining a well-

structured relaxation.

Constraints (2), (3) and (9), with objective function (1), define the well-known

min-sum Assignment Problem (AP). Such a problem always has an integer optimal

solution and requires the finding of a minimum-cost collection of vertex-disjoint

subtours visiting all the vertices of G. Relaxation AP can be solved in O(n3) time

(see, e.g., Lawler 1976; Carpaneto and Toth 1987 for an efficient implementation).

Constraints (2), (7) and (9), with objective function (1), define the well known

shortest Spanning r-Arborescence Problem (r-SAP). Such a problem always has an

integer optimal solution, and corresponds to find a minimum-cost spanning

subdigraph �G ¼ ðV; �AÞ of G such that (1) the in-degree of each vertex is exactly

one, and (2) each vertex can be reached from the root vertex r. Relaxation r-SAP

can be solved in O(n2) time by finding the shortest spanning arborescence rooted at
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vertex r (see, e.g., Edmonds 1967; Tarjan 1977; Fischetti and Toth 1993 for an

efficient implementation) and adding the minimum-cost arc entering vertex r.

A third substructure, corresponding to constraints (3), (8) and (9), with objective

function (1), defines the shortest Spanning r-Antiarborescence Problem (r-SAAP).

Such a problem can easily be transformed into r-SAP by simply transposing the

input cost matrix, hence it can be solved in O(n2) time. Different choices of the root

vertex r generally produce different values of the lower bounds corresponding to

relaxations r-SAP and r-SAAP. In addition, these relaxations can be strengthened by

considering the associated Lagrangian relaxations, obtained by embedding, in a

Lagrangian fashion, the relaxed constraints (3) for r-SAP, and (2) for r-SAAP, into

the objective function (1). Near optimal Lagrangian multipliers, leading to good

lower bounds, can be obtained by applying the well-known subgradient optimiza-
tion procedure proposed by Held and Karp (1970) and (1971) for the STSP.

The lower bounds corresponding to relaxations AP, r-SAP and r-SAAP can be

also improved, as proposed by Fischetti and Toth (1992), by combining the

associated substructures according to the so-called additive approach introduced by

Fischetti and Toth (1989).

Review of polynomial formulations

In this section, we consider the papers presenting polynomial formulations for the

ATSP. For each paper, we focus on the formulation producing the tightest

LP-relaxation lower bound. Unlike the exact algorithms described in ‘‘Exact

algorithms’’ the polynomial formulations can be directly solved by a general-

purpose ILP solver. Classifications and comparisons of the polynomial formulations

for the ATSP have been recently presented in Öncan et al. (2009) and Godinho

et al. (2011b).

The earliest polynomial formulation of the ATSP is owed to Miller et al. (1960)

(hereafter MTZ) and is given by (1)–(3), (5) and

ui � uj þ ðn� 1Þxij� n� 2; i; j ¼ 2; . . .; n; ð10Þ

where ui; i ¼ 2; . . .; n; is an arbitrary real number representing the order of vertex i
in the optimal tour, and constraints (10) break subtours. Miller et al. (1960) origi-

nally proposed MTZ without any bound on variables ui. Later on, simple bounds

(e.g., 1� ui� n� 1; i ¼ 2; . . .; n) were introduced to restrict the range of variables

ui. This does not affect the LP bound of MTZ and, in our computational experi-

ments, has shown to increase the computing time, so we leave variables ui

unrestricted.

Gavish and Graves (1978) proposed another formulation (hereafter GG) having

LP relaxation stronger than that of MTZ (see Wong 1980; Padberg and Sung 1991)

but weaker than that of DFJ (see Gouveia 1995). GG is a single-commodity flow
formulation, where subtours are broken by introducing n(n - 1) nonnegative

variables gij (i ¼ 2; . . .; n; j ¼ 1; . . .; n). GG consists of constraints (1)–(3), (5) and

the following constraints:
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Xn

j¼1

gij �
Xn

j¼2

gji ¼ 1; i ¼ 2; . . .; n; ð11Þ

0� gij�ðn� 1Þxij; i ¼ 2; . . .; n; j ¼ 1; . . .; n; ð12Þ

where variables gij can be interpreted as the number of arcs on the path from vertex

1 to arc (i, j) in the optimal tour (see Gouveia and Pires 1999). For fixed values of

the variables xij, constraints (11) and (12) form a network flow problem and,

therefore, variables gij take integer values. The LP relaxation of GG was shown to

be equivalent to that of the two-commodity flow formulation proposed by Finke

et al. (1984) (see Langevin et al. 1990), hereafter FCG.

Fox et al. (1980) proposed three formulations for the time-dependent traveling
salesman problem that are valid for the ATSP. These formulations present n3 binary

variables, rijk, that are equal to 1 if and only if arc (i, j) is in position k in the optimal

tour. The first formulation (therein P1) has 4n constraints, while the second

formulation (hereafter P1b) has 3n constraints and is obtained from the first one by

dropping a set of n constraints. Thus, the LP relaxation of the first formulation is

stronger than that of the second formulation; Gouveia and Voss (1995) showed that

the LP relaxations of both formulations are stronger than that of GG. The third

formulation proposed (therein P2) has only n ? 1 constraints and is obtained from

the first formulation by surrogating the first 3n constraints. Öncan et al. (2009)

showed that the LP relaxation of the third formulation is weaker than that of the

second formulation, whereas Padberg and Sung (1991) proved that the LP relaxation

of the third formulation is also weaker than that of DFJ. We have not reported the

three formulations because, in our computational experiments, they proved to be

ineffective in solving the ATSP.

The first multi-commodity flow (MCF) formulation was proposed by Wong (1980)

(hereafter WONG). WONG considers 2(n - 1) commodities and introduces 2(n3 - n2)

nonnegative continuous variables and 4n3 - 2n2 - 2n constraints. This formulation

was later modified by Langevin (1988) and by Loulou (1988) to obtain two additional

MCF formulations which provide LP relaxations equivalent to that of WONG.

Another MCF formulation with only n - 1 commodities was proposed by Claus

(1984). This formulation (CLAUS) introduces n3 - n2 nonnegative continuous

variables wk
ijði; j ¼ 1; . . .; n; k ¼ 2; . . .; nÞ and 2n3 - n2 - n constraints and consists

of (1)–(3), (5) plus the following constraints to break subtours:

Xn

j¼1

wk
ij �

Xn

j¼1

wk
ji ¼ 0; i; k ¼ 2; . . .; n : i 6¼ k; ð13Þ

Xn

j¼2

wk
1j �

Xn

j¼2

wk
j1 ¼ �1; k ¼ 2; . . .; n; ð14Þ

Xn

j¼1

wi
ij �

Xn

j¼1

wi
ji ¼ 1; i ¼ 2; . . .; n; ð15Þ

0�wk
ij� xij; i; j ¼ 1; . . .; n; k ¼ 2; . . .; n; ð16Þ
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where variable wij
k is equal to 1 if and only if the commodity going from vertex 1 to

vertex k flows on arc (i, j). Langevin et al. (1990) proved that the LP relaxation of

CLAUS is equivalent to that of WONG, whereas Padberg and Sung (1991) proved

that the LP relaxation of CLAUS is also equivalent to that of DFJ.

Formulation MTZ was strengthened by Desrochers and Laporte (1990), who

proposed formulation DL having LP relaxation stronger than that of MTZ and

obtained from MTZ by replacing constraints (10) with the following lifted

constraints:

ui � uj þ ðn� 1Þxij þ ðn� 3Þxji� n� 2; i; j ¼ 2; . . .; n; ð17Þ

�ui þ ðn� 3Þxi1 þ
Xn

j¼2

xji� � 1; i ¼ 2; . . .; n; ð18Þ

ui þ ðn� 3Þx1i þ
Xn

j¼2

xij� n� 1; i ¼ 2; . . .; n: ð19Þ

Gouveia and Pires (1999) presented four formulations of the ATSP (therein called

RMTZ, L1RMTZ, L2RMTZ, and L3RMTZ). The LP relaxation of all these for-

mulations is stronger than that of MTZ. Here, we present formulation L3RMTZ

(hereafter GP), whose LP relaxation is stronger than those of both L1RMTZ and

L2RMTZ, which in turn are stronger than that of RMTZ. Gouveia and Pires (1999)

also showed that the LP relaxations of formulations L1RMTZ and L2MTZ are

weaker than those of MCF formulations, such as WONG and CLAUS. Formulation

GP introduces (n - 1)2 additional nonnegative continuous variables vij

(i; j ¼ 2; . . .; n) that are equal to 1 if and only if vertex i is in the path from vertex 1

to vertex j. GP consists of (1)–(3), (5) plus the following 2n3 - 10n2 ? 18n - 10

constraints to break subtours:

xij � vij� 0; i; j ¼ 2; . . .; n; ð20Þ
xij þ vji� 1; i; j ¼ 2; . . .; n; ð21Þ

xji þ xij þ vki � vkj� 1; i; j; k ¼ 2; . . .; n : i 6¼ j 6¼ k; ð22Þ
xkj þ xik þ xij þ vki � vkj� 1; i; j; k ¼ 2; . . .; n : i 6¼ j 6¼ k: ð23Þ

Gouveia and Pires (2001) presented other formulations for the ATSP, among them

a polynomial formulation (therein MCF?) whose LP relaxation is stronger than

those of CLAUS and GP. As the LP relaxation of MCF? is weaker than that of

formulation SST (which will be introduced later in this section), as shown by Öncan

et al. (2009), and MCF? has more constraints than SST, we do not report a detailed

description of MCF?.

Sherali and Driscoll (2002) strengthened formulation DL by applying a

reformulation-linearization technique and introducing (n - 1)2 additional nonneg-

ative continuous variables yij (i; j ¼ 2; . . .; n), where yij represents the order of arc

(i, j) in the optimal tour. The resulting formulation (SD) replaces constraints (17)–

(19) with the following 4(n2 - n) constraints:
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Xn

j¼2

yij þ ðn� 1Þxi1 � ui ¼ 0; i ¼ 2; . . .; n; ð24Þ

Xn

i¼2

yij � uj ¼ �1; j ¼ 2; . . .; n; ð25Þ

xij � yij� 0; i; j ¼ 2; . . .; n; ð26Þ
yij � ðn� 2Þxij� 0; i; j ¼ 2; . . .; n; ð27Þ

uj þ ðn� 2Þxij þ ðn� 1Þxji � yij � yji� n� 1; i; j ¼ 2; . . .; n; ð28Þ
yij þ yji � uj � xji� � 1; i; j ¼ 2; . . .; n; ð29Þ
�x1j þ ðn� 3Þxj1 � uj� � 2; j ¼ 2; . . .; n; ð30Þ
ðn� 3Þx1j � xj1 þ uj� n� 2; j ¼ 2; . . .; n: ð31Þ

Recently, Öncan et al. (2009) showed that the LP relaxation of SD is also stronger

than that of GG.

Sarin et al. (2005) studied the ATSP with and without precedence constraints and

proposed five polynomial formulations (therein ATSPxy, L1ATSPxy, SL1ATSPxy,

L2ATSPxy and ML1ATSPxy) for the ATSP, whose LP relaxations are stronger than

that of RMTZ. Moreover, Sarin et al. (2005) showed that the LP relaxation of

L1ATSPxy is stronger than that of SL1ATSPxy whose LP relaxation is stronger

than that of ATSPxy; the LP relaxations of L1ATSPxy and L2ATSPxy are also

stronger than those of formulations L1RMTZ and L2RMTZ by Gouveia and Pires

(1999), respectively. Here we report formulation L2ATSPxy (hereafter SSB) only,

which, in our computational experiments, was shown to be the best performer.

Formulation SSB introduces (n - 1)2 nonnegative continuous variables dij

(i; j ¼ 2; . . .; n) and n3 - n2 - n ? 1 constraints, and consists of (1)–(3), (5) and

the following constraints to break subtours:

dij � xij� 0; i; j ¼ 2; . . .; n; ð32Þ
dij þ dji ¼ 1; i; j ¼ 2; . . .; n : i 6¼ j; ð33Þ

x1j þ xj1� 1; j ¼ 2; . . .; n; ð34Þ
xij þ djk þ xkj þ dki þ xik � 2; i; j; k ¼ 2; . . .; n; ð35Þ

Although variable dij (i; j ¼ 2; . . .; n) is continuous, it has a binary connotation and

is equal to 1 if and only if vertex i precedes (not necessarily immediately) vertex j in

the optimal tour. Godinho et al. (2011b) noticed that the meaning of variables dij is

basically the same of variables vij introduced in formulation GP. An analysis of all

the formulations involving variables xij and vij (or dij) can be found in Gouveia and

Pesneau (2006).

Sherali et al. (2006) proposed several polynomial formulations. Here, we present

formulation SST (therein ATSP6) only, which uses (n - 1)3 nonnegative contin-

uous variables tij
k (i; j; k ¼ 2; . . .; n), and consists of (1)–(3), (5), (33) and the

following 3n3 - 11n2 ? 17n - 9 constraints:
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dij þ xji þ djk þ dki� 2; i; j; k ¼ 2; . . .; n; ð36Þ
dij � x1i� 0; i; j ¼ 2; . . .; n; ð37Þ
dji � xi1� 0; i; j ¼ 2; . . .; n; ð38Þ

0� tk
ij� xik; i; j; k ¼ 2; . . .; n : i 6¼ j 6¼ k; ð39Þ

xij þ
Xn

k¼2;k 6¼j

tk
ij ¼ dij; i; j ¼ 2; . . .; n; ð40Þ

x1k þ
Xn

k¼2;i 6¼j

tk
ij ¼ dkj; k; j ¼ 2; . . .; n; ð41Þ

where tij
k is equal to 1 if and only if, in the optimal tour, arc (i, k) is used and vertex k

precedes vertex j. Godinho et al. (2011b) pointed out that variables tij
k can be

interpreted in the same way as the flow variables wij
k used in formulation CLAUS.

Öncan et al. (2009) showed that the LP relaxation of SST is stronger than that of

MCF?, whereas Sherali et al. (2006) proved that the LP relaxation of SST is

stronger than that of L1ATSPxy.

Godinho et al. (2011b) also described, in the context of the ATSP, a sophisticated

formulation, called EC-MCF, that was originally proposed for the time-dependent

traveling salesman problem by Godinho et al. (2011a). Let zij
h (i; j; h ¼ 1; . . .; n) be a

binary variable that is equal to 1 if arc (i, j) is traversed in position h in the optimal

tour, and let rij
hk (i ¼ 1; . . .; n; j; k ¼ 2; . . .; n; h ¼ 1; . . .; n� 1) be a binary variable

that is equal to 1 if arc (i, j) is traversed in position h in the first part of the optimal

tour that links vertex 1 to vertex k. Formulation EC-MCF involves the following

n4 - 4n3 ? 9n2 - 7n ? 2 variables and 2n3 - 9n2 ? 15n - 8 constraints:

min
X

i2V

X

j2V

cij

Xn

h¼1

zh
ij

s.t.
X

j2V

r1k
1j ¼ 1; k 2 Vnf1g;

X

j2Vnf1g
rhþ1;k

ij �
X

j2Vnfkg
rhk

ji ¼ 0; h ¼ 1; . . .; n� 2; k; i 2 Vnf1g : i 6¼ k;

X

j2Vnfkg
zhþ1

kj �
X

j2Vnfkg
rhk

jk ¼ 0; h ¼ 1; . . .; n� 1; k ¼ 2; . . .; n;

X

j2Vnfkg
ðzhþ1

ij � rhþ1;k
ij Þ �

X

j2Vnf1g
ðzh

ji � rhk
ji Þ ¼ 0;

h ¼ 2; . . .; n� 1; k; i 2 Vnf1g : i 6¼ k;

zh
ij 2 f0; 1g; i; j; h ¼ 1; . . .; n;

rhk
ij 2 f0; 1g; j; k 2 Vnf1g; i 2 Vnfkg; h ¼ 1; . . .; n� 1:

Godinho et al. (2011b) showed that the LP relaxation of EC-MCF is stronger than

those of SD, P1, and CLAUS, and is unrelated with that of SST.
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In Fig. 1, we summarize the relationships among the linear relaxations of the

polynomial formulations reviewed in this section. A link going from formulation A

to formulation B means that the LP relaxation of B is stronger than that of A,

whereas a dashed line connecting two formulations means that the relative LP

relaxations are equivalent.

Exact algorithms

Many branch-and-bound algorithms have been proposed to find the optimal solution

of the ATSP. After the seminal paper by Little et al. (1963), where for the first time

the term ‘‘branch-and-bound’’ was coined, other algorithms were proposed by

Bellmore and Malone (1971), Garfinkel (1973), Smith et al. (1977), Carpaneto and

Toth (1980), Balas and Christofides (1981), Miller and Pekny (1989), Pekny et al.

(1991), Pekny and Miller (1992), Fischetti and Toth (1992), Carpaneto et al. (1995).

In the following, two of the most effective branch-and-bound algorithms for the

ATSP, i.e., those proposed by Carpaneto et al. (1995) and by Fischetti and Toth

(1992), are briefly reviewed. The algorithm proposed by Pekny and Miller (1992)

exhibits, on the whole, a performance comparable with that of the approach

described in Carpaneto et al. (1995).

The algorithm proposed by Carpaneto et al. (1995) is a lowest first branch-and-

bound method based on the AP relaxation and the subtour elimination branching
scheme. At the root node of the decision tree, the AP relaxation of the original

problem is solved, the patching heuristic algorithm proposed by Karp (1979) is

Fig. 1 Relations among the linear relaxations of the polynomial formulations and of formulation DFJ
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applied to determine an initial tour of cost z�; and a reduction procedure based on

the AP reduced costs (c0ij) is executed to transform the original complete graph into

a sparse one (by setting xij = 0 if VðAPÞ þ c0ij� z�; where V(AP) is the value of the

optimal solution of the AP relaxation). At each of the other nodes of the decision

tree, the AP relaxation of the subproblem associated with the considered node is

solved, through an effective parametric technique, in O(n2) time. If VðAPÞ� z� the

node is fathomed. Otherwise, if the AP solution contains no subtour (i.e. a feasible

solution has been found) the best solution thus far is updated, z� is set equal to

V(AP) and the node is fathomed. If neither of the two previous cases occur, the

subtour elimination branching scheme proposed by Carpaneto and Toth (1980) is

applied: the subtour S of the AP solution having the minimum number, say h, of not

‘‘imposed’’ arcs is selected, and h descending nodes are generated so as to forbid, by

‘‘imposing’’ and ‘‘excluding’’ proper arc subsets, subtour S for each descending

node.

The algorithm proposed by Fischetti and Toth (1992) is a lowest first branch-and-

bound method based on the branching scheme introduced by Carpaneto and Toth

(1980), and, at each node of the decision tree, computes the corresponding lower

bound by applying the additive approach combining the AP, r-SAP, and r-SAAP

relaxations.

More recently, two effective branch-and-cut algorithms for the ATSP have been

proposed by Fischetti and Toth (1997) and by Fischetti et al. (2003).

The algorithm proposed by Fischetti and Toth (1997) is based on the DFJ model

(1)–(5), and exploits additional classes of facet-inducing inequalities for the ATSP

polytope that proved to be of crucial importance for the solution of some real-world

instances.

An ATSP inequality ax B a0 is called symmetric when aij = aji for all ði; jÞ 2 A:
Symmetric inequalities can be thought of as derived from valid inequalities for the

STSP defined on the complete undirected graph G0 = (V, E). Indeed, let ye = 1 if

edge e 2 E belongs to the optimal STSP solution, ye = 0 otherwise. Every

inequality
P

e2E aeye� a0 valid for the STSP can be transformed into a valid ATSP

inequality by simply replacing ye by xij ? xji for all edges e ¼ fi; jg 2 E: This

produces the symmetric inequality ax B a0, where aij = aji = a{i,j} for all i; j 2
V ; i 6¼ j: Conversely, every symmetric ATSP inequality a x B a0 corresponds to the

valid STSP inequality
P
fi;jg 2 Eaijyfi;jg � a0: The above correspondence implies

that every separation algorithm for the STSP can be used, as a ‘‘black box’’, for the

ATSP as well. Several exact/heuristic separation algorithms for the STSP have been

proposed in recent years, all of which can be used for the ATSP. Only two such

separation tools are used by Fischetti and Toth (1997), namely (1) the Padberg and

Rinaldi (1990a) exact algorithm for SECs; and (2) the simplest heuristic scheme for

2-matching constraints, i.e., for combs with 2-node teeth, where each component H
of the graph induced by the edges e 2 E with fractional y�e is heuristically

considered, in turn, as the handle of the comb. Having fixed H, the most violated

2-matching constraint with handle H is easily found by sorting the edges having one

extreme node in H and the other extreme node in VnH by nonincreasing yij
k , and by

taking the first k such edges to act as teeth, for k ¼ 1; 3; 5; . . .
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In addition, Fischetti and Toth (1997) considered the so-called Dk
? and Dk

-

inequalities proposed by Grötschel and Padberg (1985), and the odd close
alternative trail (odd CAT) inequalities proposed by Balas (1989) (and analyzed

by Fischetti 1991). The separation problem for the classes of the Dk
? and Dk

-

inequalities is a combinatorial optimization problem that can be effectively solved

in practice by an implicit enumeration scheme enhanced by suitable pruning

conditions (see Fischetti and Toth 1997). As for the detection of violated odd CAT

inequalities, Balas (1989) showed that these inequalities correspond to odd cycles in

an auxiliary undirected ‘‘incompatibility’’ graph. An effective heuristic separation

algorithm, based on the computation of a minimum-weight odd cycle going through

a given edge was proposed by Fischetti and Toth (1997). In addition, clique lifting
(see Balas and Fischetti 1993) and shrinking (see Padberg and Rinaldi 1990b)

procedures are applied to simplify the considered separation problems. A detailed

analysis of the polyhedral structure of the ATSP can be found in Balas and Fischetti

(1993).

Pricing is an important ingredient of branch-and-cut codes, since it allows one to

effectively handle LP relaxations involving a huge number of variables. In order to

keep the size of the LP relaxation as small as possible, the following pricing scheme

is commonly used. We determine a (small) core set of arcs, say ~A; and decide to

temporarily fix xij = 0 for all ði; jÞ 2 An ~A: We then solve the corresponding

restricted LP problem, compute the associated LP reduced costs �cij; and check

whether �cij� 0 for all ði; jÞ 2 An ~A: If this is the case, then the LP relaxation has been

solved to optimality. Otherwise, the current core set ~A is enlarged by adding (some

of) the arcs with negative reduced cost, and the whole procedure is iterated.

Fischetti and Toth (1997) proposed an improved pricing technique, called AP
pricing, in which the pricing condition is strengthened by exploiting the fact that

any feasible solution of the current LP relaxation cannot select the arcs with

negative reduced cost in an arbitrary way, as the degree equations, among other

constraints, have to be fulfilled.

The exact algorithm proposed by Fischetti and Toth (1997) is a lowest-first

branch-and-cut method. At each node of the branching tree, the LP relaxation is

initialized by taking all the constraints present in the last LP solved at the father

node (for the root node, only the degree equations are taken). As for the variables,

one retrieves from a scratch file the optimal basis associated with the last LP solved

at the father node, and initializes the core variable set, ~A; by taking all the arcs

belonging to this basis (for the root node, ~A contains the 2n - 1 variables in the

optimal AP basis found by solving AP on the original costs cij). In addition, ~A
contains all the arcs of the best known ATSP solution. Starting with the above

advanced basis, one iteratively solves the current LP relaxation, applies the AP

pricing procedure and repeats if needed.

On exit of the pricing loop the separation algorithms are applied to find, if any,

ATSP inequalities that cut off the current LP optimal solution x�: When violated

cuts are found, one adds them to the current LP relaxation and repeats.

When separation fails and x� is integer, the current best ATSP solution is

updated, and a backtracking step occurs. If x� is fractional, instead, the current LP
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basis is saved in a file, and one branches on the variable xij with 0\x�ij\1 that

maximizes the score rði; jÞ ¼ cij minfx�ij; 1� x�ijg: As a heuristic rule, a large priority

is given to the variables with 0:4� x�ij� 0:6 (if any), so as to produce a significant

change in both descending nodes.

This branching scheme has been enhanced by Fischetti et al. (2003) through the

so-called Fractional Persistency mechanism proposed by Fischetti et al. (2001) for

the solution of crew scheduling and vehicle scheduling problems. The correspond-

ing branch-and-cut algorithm will be denoted as FLT in ‘‘Computational results’’.

Transformation of ATSP instances into STSP instances

It is easy to see that a code for the ATSP can be invoked to solve symmetric TSP

instances. In fact, the reverse also stands by means of the following two

transformations:

• the 3-node transformation proposed by Karp (1972). A complete undirected

graph with 3n vertices is obtained from the original complete directed one by

adding two copies, n ? i and 2n ? i, of each vertex i 2 V ; and by (1) setting to

0 the cost of edges (i, n ? i) and (n ? i,2n ? i) for each i 2 V ; (2) setting to cij

the cost of edge ð2nþ i; jÞ; i; j 2 V ; and (3) setting to þ1 the costs of all

remaining edges;

• the 2-node transformation proposed by Jonker and Volgenant (1983) (see also

Jünger et al. 1995). A complete undirected graph with 2n vertices is obtained

from the original complete directed one by adding a copy, n ? i, of each vertex

i 2 V ; and by (1) setting to 0 the cost of the edge (i, n ? i) for each i 2 V ; (2)

setting to cij ? M the cost of edge ðnþ i; jÞ; i; j 2 V; where M is a sufficiently

large positive value, and (3) setting to þ1 the costs of all the remaining edges.

The transformation value nM has to be subtracted from the STSP optimal cost.

The most effective branch-and-cut algorithm for the STSP is currently the one by

Applegate et al. (2007), and the corresponding code, Applegate et al. (1999), is

publicly available. In Fischetti et al. (2002), this code was used to test the

effectiveness of the approach based on the ATSP-to-STSP transformation. The code

has been used with default parameters. The results have shown that the 2-node

transformation is, in general, more effective than the 3-node one.

Computational results

As a testbed for our computational experiments, we took the 27 ATSP instances

collected in TSPLIB Reinelt (1991) and 5 real-world instances provided by Balas

(2000). All the instances have integer nonnegative costs.

Tables 1 and 2 report on the computational performance of eight polynomial

formulations (namely, MTZ, GG, CLAUS, DL, GP, SD, SSB, and SST) for the

ATSP, described in ‘‘Review of polynomial formulations’’, on ten small-size
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instances from the TSPLIB (namely, instances ftv33, ftv35, ftv38, ftv44, ftv47,

ftv55, ftv64, ftv70, ft70, and ft53), which is the set of instances used by Öncan et al.

(2009) in their computational study. The computational results reported in Tables 1

and 2 were obtained on an Intel Core2 Duo@2.26 GHz by running CPLEX11.2 as

LP and ILP solver. All the computing times reported in the following tables are

expressed in seconds.

Even though none of the LP-bounds of the eight formulations considered in

Tables 1 and 2 is theoretically stronger than the LP-bound of formulation EC-MCF,

we do not report any computational results of EC-MCF because the corresponding

memory requirements were such that we could not compute the LP-bound on any of

the considered test instances. For the computational performance of formulation

EC-MCF, the reader is referred to Godinho et al. (2011a, b).

In Table 1, we compare, on the ten considered instances, the performance of the

eight polynomial formulations for computing the corresponding LP relaxations

using three different LP methods (Primal, Dual and Barrier). For each method and

each formulation, Table 1 reports the number of LP-bounds computed within the

time limit of 1,200 s (column Solved) and the average computing time (column

TLP). In the computation of the average computing time, we considered a computing

time of 1,200 s whenever the LP relaxation of an instance could not be computed

within the time limit or the instance could not be run due to exceeded memory limits

for CPLEX.

Table 1 shows that, for a given formulation, the computing times may

significantly vary using different LP methods. The dual method turned out to be

the best performing method when solving MTZ, DL, GP and SSB, whereas the

barrier method was the best performing one when solving GG, CLAUS, SD and

SST. All the formulations but SST could solve the LP relaxation of all the 10

instances within the time limit imposed.

Table 2 reports, for each of the eight formulations and each of the ten instances,

the percentage gap (computed with respect to the optimal solution value) left after

solving the LP relaxation (column LP), the percentage gap left at the root note of the

search tree of CPLEX (column Rt), and the computing times for solving the LP

Table 1 CPU times for solving the LP relaxations of 8 polynomial formulations using the primal, dual or

barrier method

Primal Dual Barrier

Formulation Solved TLP Solved TLP Solved TLP

MTZ 10 0.16 10 0.03 10 16.30

GG 10 0.25 10 0.56 10 0.14

CLAUS 3 1,018.11 10 353.84 10 95.05

DL 10 0.30 10 0.05 10 17.23

GP 10 48.01 10 3.48 10 232.78

SD 10 7.45 10 5.10 10 0.75

SSB 9 360.49 10 6.68 10 103.59

SST 0 1,200.00 1 1,128.43 3 1,004.75
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relaxation (column TLP), the root node (column TRt), and the ILP formulation itself

(column TILP). For each formulation, we used the LP-method that turned out to be

the best one in the experiments summarized in Table 1. The time limit for solving

the ILP formulation was set equal to 1,800 s. In the rows labeled ‘‘Avg’’, Table 2

reports average values and, in parenthesis, the number of instances solved to

optimality within the time limit. In the computation of the average computing times,

we considered a computing time equal to 1,200 or 1,800 s whenever the LP model

or the ILP model, respectively, could not be solved within the time limit. For

formulation SST the averages refer to the first three instances since the remaining

ones could not be run due to exceeded memory limits for CPLEX.

As to the LP-bounds, Table 2 shows that SST obtains tight lower bounds but

requires larger computing times than the other formulations. Moreover, SST was

able to provide the lower bounds, within the time limit, on only three of the ten

instances considered. Among the other formulations, the one that provides the

tightest LP-bounds is CLAUS, followed by SSB and GP. The other four

formulations (MTZ, GG, DL and SD) obtain, on average, worse LP-bounds than

the previous ones but within shorter computing time (less than one second on

average). GG was the only formulation able to solve, to optimality, all of the ten

instances within the time limit imposed, whereas MTZ, DL and SD could solve, to

optimality, all but one of the instances.

The results reported in Table 2 show that formulations MTZ, GG, and DL are the

best formulations to be directly used within CPLEX. This is probably due to two

main reasons: (1) the limited number of constraints required to break subtours

allows CPLEX to compute the LP-bounds effectively, and (2) the large variety of

cuts embedded in CPLEX lead to root lower bounds competitive with those that can

be obtained with other formulations having stronger LP-bounds but within much

shorter computing times. We stress that the computational analysis reported in

Table 2 is aimed at comparing the suitability of each formulation to be directly

solved with CPLEX. Therefore, any conclusion that can be drawn from the results

reported in Table 2 cannot consider the fitness of each polynomial formulation as

the starting point for more complicated exact algorithms for solving the ATSP. We

also stress that, for each class of formulations, we report only the results obtained by

the formulation providing, on average, the tightest LP-bounds because the other

formulations (i.e., those appearing in Fig. 1 but neglected in this section) were

computationally outperformed by at least one of the eight formulations considered

in this study.

In Table 3, we compare, on the 27 ATSP instances from TSPLIB and the 5

instances provided by Balas, the performance of (a) the branch-and-bound algorithm

by Carpaneto et al. (1995) (hereafter CDT) described in ‘‘Exact algorithms’’, (b) the

branch-and-bound algorithm based on the additive bounding procedure by Fischetti

and Toth (1992) (hereafter FT) described in ‘‘Exact algorithms’’, (c) the branch-and-

cut algorithm by Fischetti et al. (2003) (hereafter FLT) described in ‘‘Exact

algorithms’’, (d) the branch-and-cut algorithm (hereafter Concorde) solving the

STSP instances obtained from the transformation described in ‘‘Transformation of

ATSP instances into STSP instances’’, and (e) the polynomial formulations MTZ,

GG and DL (see ‘‘Review of polynomial formulations’’). For each instance and each
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algorithm, we report the percentage gap of the corresponding lower bound, or the

value of the LP relaxation of the considered formulation, computed at the root node

of the decision tree (column LB) and the computing time for solving the instance to

optimality (column T). The rows labeled ‘‘Avg’’ report average values and, in

parenthesis, the number of instances solved to optimality within the corresponding

time limit. Different time limits were imposed on the algorithms: 1,000 s for CDT

and FT, 10,000 s for FLT and Concorde, 1,800 s for MTZ, GG and DL. For this

reason, in the computation of the average computing time, only the instances solved

to optimality within the imposed time limit are considered. The rows labeled ‘‘Avg

1,000 s’’ report the average computing time and, in parenthesis, the number of

instances solved to optimality within the time limit of 1,000 s (a computing time

equal to 1,000 s is considered when this time limit is reached).

The computational results reported for CDT, FT, FLT and Concorde are taken

from Fischetti et al. (2002) and were obtained on a Digital Alpha 533 MHz with

CPLEX6.5.3 as LP solver, whereas the computational results relative to formula-

tions MTZ, GG and DL were obtained on an Intel Core2 Duo@2.26 GHz by

running CPLEX11.2. We have experimentally found that the latter machine is

approximately 10-12 times faster than that used by Fischetti et al. (2002); therefore,

the computing times reported for MTZ, GG and DL were multiplied by 10 in order

to have a fair comparison.

Table 3 shows that FLT and Concorde were the only two exact methods able to

solve, within the imposed time limit, all the 32 instances to optimality, and are

clearly better performing than the other 5 exact methods considered. Although, on

the considered instances, Concorde generally obtains better lower bounds at the root

node, FLT is always faster. MTZ, GG and DL proved not to be competitive with

either FLT or Concorde, since they solved only 20, 11 and 19 instances,

respectively, and, on the solved instances, their computing times are always much

longer. As for the branch-and-bound algorithms CDT and FT, for which a time limit

of 1,000 s was imposed, it can be noted that they dominate, by considering the

instances solved to optimality within this time limit and the computing times, the

polynomial formulations MTZ, GG and DL. By considering the values of the lower

bounds at the root node, Table 3 shows that (a) the lower bound of CDT (given by

the value of the AP relaxation) is only slightly worse than that of MTZ (i.e., the

addition of constraints (10) to the AP relaxation only marginally improves

the corresponding LP relaxation), (b) the lower bound of FT (corresponding to the

additive bounding procedure) is always better that those of MTZ and GG, and

globally better than that of DL.
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Miller C, Tucker A, Zemlin R (1960) Integer programming formulation of traveling salesman problems.

J Ass Comput Mach 7(4):326–329

Miller D, Pekny J (1989) Results from a parallel branch and bound algorithm for the asymmetric traveling

salesman problem. Oper Res Lett 8(3):129–135
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