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Abstract This paper surveys the most effective mathematical models and exact
algorithms proposed for finding the optimal solution of the well-known Asymmetric
Traveling Salesman Problem (ATSP). The fundamental Integer Linear Program-
ming (ILP) model proposed by Dantzig, Fulkerson and Johnson is first presented, its
classical (assignment, shortest spanning r-arborescence, linear programming)
relaxations are derived, and the most effective branch-and-bound and branch-and-
cut algorithms are described. The polynomial ILP formulations proposed for the
ATSP are then presented and analyzed. The considered algorithms and formulations
are finally experimentally compared on a set of benchmark instances.
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Introduction

Let G = (V, A) be a given complete digraph, where V = {1,...,n} is the vertex set
and A = {(i,j) : i,j € V} the arc set, and let c¢; be the cost associated with arc
(i,j) € A (with ¢;; = 400, for i € V). A Hamiltonian circuit (tour) of G is a circuit
visiting each vertex of V exactly once. The Asymmetric Traveling Salesman
Problem (ATSP) is to find a Hamiltonian circuit G* = (V,A*) of G whose cost
Z([ J)ear Cij is minimum. If the considered graph G is undirected, the corresponding

problem is denoted as Symmetric Traveling Salesman Problem (STSP).

R. Roberti - P. Toth (X))
DEIS, University of Bologna, Viale Risorgimento, 2, 40136 Bologna (BO), Italy
e-mail: paolo.toth@unibo.it

R. Roberti
e-mail: roberto.roberti6 @unibo.it

@ Springer



114 R. Roberti, P. Toth

The ATSP is known to be NP-hard in the strong sense, and has been intensively
studied in the last six decades. In this paper, we will consider and experimentally
compare the most effective Integer Linear Programming (ILP) models and exact
algorithms proposed for finding the optimal solution of the ATSP. Previous surveys
on the subject have been presented by Balas and Toth (1985), Fischetti et al. (2002),
Oncan et al. (2009), D’Ambrosio et al. (2010). Several books dealing with the
traveling salesman problem and its variations have been published. Among them we
mention those by Lawler et al. (1985), Reinelt (1994), Gutin and Punnen (2002),
Applegate et al. (2007).

The paper is organized as follows. In “The Dantzig-Fulkerson-Johnson
formulation and its relaxations”, the well-known Dantzig, Fulkerson and Johnson
formulation Dantzig et al. (1954) and its “classical” relaxations are described.
Polynomial formulations, i.e., formulations requiring a number of constraints
polynomial in the number of vertices n, are described in “Review of polynomial
formulations”. “Exact Algorithms” reviews the most effective branch-and-bound
and branch-and-cut algorithms proposed for the ATSP. In “Transformation of ATSP
instances into STSP instances”, the transformation of an ATSP instance into an
equivalent STSP instance, proposed by Jonker and Volgenant (1983), is presented.
Computational experiments, comparing the considered formulations and exact
algorithms on a set of benchmark instances, are described in “Computational
results”.

The Dantzig-Fulkerson—-Johnson formulation and its relaxations

Dantzig et al. (1954) proposed the following ILP model (hereafter DFJ), utilizing n*
binary variables x;;, for the ATSP:

n n

(DFJ) min " cyxy (1)

i—1 j=1

SN x<IsI-1, ScV:iS£, (4)
ies jes
x;€{0,1}, ij=1,...,n, (5)
where x;; is equal to 1 if and only if arc (i, j) (i=1,...,n;j=1,...,n) is in the

optimal tour. Constraints (2) and (3) impose that the in-degree and out-degree of
each vertex, respectively, is equal to one, while constraints (4) are Subtour Elimi-
nation Constraints (SECs) and impose that no partial circuit exists.
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Moreover, it is well known that one can halve the number of SECs (4) by
replacing them with

YN x<Isl—1, SCcV\{r}:S#£ g,

icS jes

where r is any vertex of vertex set V.
Because of constraints (2) and (3), constraints (4) can be equivalently rewritten as
Connectivity constraints:

>N w1, ScViS#£@. (6)

i€S jeV\S

Also in this case, one can halve the number of connectivity constraints (6) by

replacing them with
> w1, Scv:ires (7)
i€S jeV\S

or with

SN x=l, SCViS£EDrdgs (8)

i€S jeV\S

where r is any fixed vertex.

A valid lower bound on the optimal solution value of the ATSP can be obtained
by optimally solving the Linear Programming (LP) relaxation of the previous
models (1)-(5) or (1)—(3), (5) and (7), obtained by replacing constraints (5) with
constraints

x>0, ij=1,...n (9)

Although the considered ILP models require an exponential number of Subtour
Elimination or Connectivity constraints, their LP relaxations can be efficiently
solved in polynomial time using the effective polynomial separation procedure
proposed by Padberg and Rinaldi (1990a) for the STSP.

Additional lower bounds can be obtained by considering the different substruc-
tures of the ATSP, each associated with a subset of constraints defining a well-
structured relaxation.

Constraints (2), (3) and (9), with objective function (1), define the well-known
min-sum Assignment Problem (AP). Such a problem always has an integer optimal
solution and requires the finding of a minimum-cost collection of vertex-disjoint
subtours visiting all the vertices of G. Relaxation AP can be solved in O(n’) time
(see, e.g., Lawler 1976; Carpaneto and Toth 1987 for an efficient implementation).

Constraints (2), (7) and (9), with objective function (1), define the well known
shortest Spanning r-Arborescence Problem (r-SAP). Such a problem always has an
integer optimal solution, and corresponds to find a minimum-cost spanning
subdigraph G = (V,A) of G such that (1) the in-degree of each vertex is exactly
one, and (2) each vertex can be reached from the root vertex r. Relaxation r-SAP
can be solved in O(n”) time by finding the shortest spanning arborescence rooted at
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vertex r (see, e.g., Edmonds 1967; Tarjan 1977; Fischetti and Toth 1993 for an
efficient implementation) and adding the minimum-cost arc entering vertex r.

A third substructure, corresponding to constraints (3), (8) and (9), with objective
function (1), defines the shortest Spanning r-Antiarborescence Problem (r-SAAP).
Such a problem can easily be transformed into r-SAP by simply transposing the
input cost matrix, hence it can be solved in O(nz) time. Different choices of the root
vertex r generally produce different values of the lower bounds corresponding to
relaxations r-SAP and r-SAAP. In addition, these relaxations can be strengthened by
considering the associated Lagrangian relaxations, obtained by embedding, in a
Lagrangian fashion, the relaxed constraints (3) for r-SAP, and (2) for r-SAAP, into
the objective function (1). Near optimal Lagrangian multipliers, leading to good
lower bounds, can be obtained by applying the well-known subgradient optimiza-
tion procedure proposed by Held and Karp (1970) and (1971) for the STSP.

The lower bounds corresponding to relaxations AP, r-SAP and r-SAAP can be
also improved, as proposed by Fischetti and Toth (1992), by combining the
associated substructures according to the so-called additive approach introduced by
Fischetti and Toth (1989).

Review of polynomial formulations

In this section, we consider the papers presenting polynomial formulations for the
ATSP. For each paper, we focus on the formulation producing the tightest
LP-relaxation lower bound. Unlike the exact algorithms described in “Exact
algorithms” the polynomial formulations can be directly solved by a general-
purpose ILP solver. Classifications and comparisons of the polynomial formulations
for the ATSP have been recently presented in Oncan et al. (2009) and Godinho
et al. (2011b).

The earliest polynomial formulation of the ATSP is owed to Miller et al. (1960)
(hereafter MTZ) and is given by (1)—(3), (5) and

ui—wj+n—Dx;<n—2, i,j=2,...,n, (10)

where u;,i = 2,...,n,is an arbitrary real number representing the order of vertex i
in the optimal tour, and constraints (10) break subtours. Miller et al. (1960) origi-
nally proposed MTZ without any bound on variables u;. Later on, simple bounds
(e.g., 1<u;<n—1,i=2,...,n) were introduced to restrict the range of variables
u;. This does not affect the LP bound of MTZ and, in our computational experi-
ments, has shown to increase the computing time, so we leave variables u;
unrestricted.

Gavish and Graves (1978) proposed another formulation (hereafter GG) having
LP relaxation stronger than that of MTZ (see Wong 1980; Padberg and Sung 1991)
but weaker than that of DFJ (see Gouveia 1995). GG is a single-commodity flow
formulation, where subtours are broken by introducing n(n — 1) nonnegative
variables g; i =2,...,n;j=1,...,n). GG consists of constraints (1)—(3), (5) and
the following constraints:
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dgi—Y gi=1, i=2,...n, (11)
j=1 j=2

0<gj<(mn—1)xy, i=2,..,n,j=1,...n, (12)

where variables g;; can be interpreted as the number of arcs on the path from vertex
1 to arc (i, j) in the optimal tour (see Gouveia and Pires 1999). For fixed values of
the variables x;, constraints (11) and (12) form a network flow problem and,
therefore, variables gij take integer values. The LP relaxation of GG was shown to
be equivalent to that of the rwo-commodity flow formulation proposed by Finke
et al. (1984) (see Langevin et al. 1990), hereafter FCG.

Fox et al. (1980) proposed three formulations for the time-dependent traveling
salesman problem that are valid for the ATSP. These formulations present n> binary
variables, r;;, that are equal to 1 if and only if arc (i, j) is in position £ in the optimal
tour. The first formulation (therein P1) has 4n constraints, while the second
formulation (hereafter P1b) has 3n constraints and is obtained from the first one by
dropping a set of n constraints. Thus, the LP relaxation of the first formulation is
stronger than that of the second formulation; Gouveia and Voss (1995) showed that
the LP relaxations of both formulations are stronger than that of GG. The third
formulation proposed (therein P2) has only n + 1 constraints and is obtained from
the first formulation by surrogating the first 37 constraints. Oncan et al. (2009)
showed that the LP relaxation of the third formulation is weaker than that of the
second formulation, whereas Padberg and Sung (1991) proved that the LP relaxation
of the third formulation is also weaker than that of DFJ. We have not reported the
three formulations because, in our computational experiments, they proved to be
ineffective in solving the ATSP.

The first multi-commodity flow (MCF) formulation was proposed by Wong (1980)
(hereafter WONG). WONG considers 2(n — 1) commodities and introduces 2(n° — n?)
nonnegative continuous variables and 4n°> — 2n> — 2n constraints. This formulation
was later modified by Langevin (1988) and by Loulou (1988) to obtain two additional
MCEF formulations which provide LP relaxations equivalent to that of WONG.

Another MCF formulation with only n — 1 commodities was proposed by Claus
(1984). This formulation (CLAUS) introduces n’ — n® nonnegative continuous
variables w} ( i,j=1,...,nk=2,...,n) and 2n° — n* — n constraints and consists

of (1)-(3), (5) plus the following constraints to break subtours:

ZWU Zw =0, i,k=2,...n:i#k, (13)
zn:w’;j—zn:wﬁ:—l, k=2,...,n, (14)
j=2 j=2
zn:w Zw =1, i=2,...n, (15)
j=1

k ..
O0<w;<xj i,j=1...nk=2,...
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where variable wf‘, is equal to 1 if and only if the commodity going from vertex 1 to
vertex k flows on arc (7, j). Langevin et al. (1990) proved that the LP relaxation of
CLAUS is equivalent to that of WONG, whereas Padberg and Sung (1991) proved
that the LP relaxation of CLAUS is also equivalent to that of DF]J.

Formulation MTZ was strengthened by Desrochers and Laporte (1990), who
proposed formulation DL having LP relaxation stronger than that of MTZ and
obtained from MTZ by replacing constraints (10) with the following lifted
constraints:

ui—uwj+n—Dxj+n—-3x;<n—-2, i,j=2,...,n, (17)
fui+(n73)x,-1+2xji§ 71, i:2,...,n, (18)
=
ui+(n—3)x1i+2xij§n—l, i=2,...,n. (19)
=

Gouveia and Pires (1999) presented four formulations of the ATSP (therein called

RMTZ, LIRMTZ, L2RMTZ, and L3RMTZ). The LP relaxation of all these for-
mulations is stronger than that of MTZ. Here, we present formulation L3RMTZ
(hereafter GP), whose LP relaxation is stronger than those of both LIRMTZ and
L2RMTZ, which in turn are stronger than that of RMTZ. Gouveia and Pires (1999)
also showed that the LP relaxations of formulations LIRMTZ and L2MTZ are
weaker than those of MCF formulations, such as WONG and CLAUS. Formulation
GP introduces (n — 1)*> additional nonnegative continuous variables v;;
(i,j =2,...,n) that are equal to 1 if and only if vertex i is in the path from vertex 1
to vertex j. GP consists of (1)—(3), (5) plus the following 2n® — 10n> + 18n — 10
constraints to break subtours:

Xj—vi <0, ij=2,...n, (20)
Xpvi<l, ij=2,...n, (21
Gitxjtve—vg<l, Ljk=2,...n:iFjFEk (22)
X+ Xk +x v —vg <1, i j k=2 n:iFjEk (23)

Gouveia and Pires (2001) presented other formulations for the ATSP, among them
a polynomial formulation (therein MCF+) whose LP relaxation is stronger than
those of CLAUS and GP. As the LP relaxation of MCF+ is weaker than that of
formulation SST (which will be introduced later in this section), as shown by Oncan
et al. (2009), and MCF+ has more constraints than SST, we do not report a detailed
description of MCF+.

Sherali and Driscoll (2002) strengthened formulation DL by applying a
reformulation-linearization technique and introducing (n — 1)* additional nonneg-
ative continuous variables y; (i,j = 2,...,n), where y;; represents the order of arc
(i, j) in the optimal tour. The resulting formulation (SD) replaces constraints (17)—
(19) with the following 4(n* — n) constraints:
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Zyl, (m=1Dxy—uw; =0, i=2,..,n, (24)
vi—w=-1, j=2,...n, (25)

i—2
x,j—y,-j§07 i,j=2,...,n7 (26)
yi— (n—2)x; <0, i,j=2,...,n, (27)
uj+(n—2)xij+(n—l)xj,-—y,-j—yj,-gn—l, iLj=2,...,n, (28)
yl] +yjl - x]t S - ] l7.] = 27 s I (29)
—x1j+(n—3)xj1—uj§—2, j=2,...,n, (30)
(n—3)x1j—xj1—|—l4,-§n—2, j:2,...,}’l (31)

Recently, Oncan et al. (2009) showed that the LP relaxation of SD is also stronger
than that of GG.

Sarin et al. (2005) studied the ATSP with and without precedence constraints and
proposed five polynomial formulations (therein ATSPxy, L1ATSPxy, SL1ATSPxy,
L2ATSPxy and ML1ATSPxy) for the ATSP, whose LP relaxations are stronger than
that of RMTZ. Moreover, Sarin et al. (2005) showed that the LP relaxation of
LIATSPxy is stronger than that of SLIATSPxy whose LP relaxation is stronger
than that of ATSPxy; the LP relaxations of LIATSPxy and L2ATSPxy are also
stronger than those of formulations LIRMTZ and L2ZRMTZ by Gouveia and Pires
(1999), respectively. Here we report formulation L2ZATSPxy (hereafter SSB) only,
which, in our computational experiments, was shown to be the best performer.
Formulation SSB introduces (n — 1)° nonnegative continuous variables d;
(i,j=2,...,n) and n®> — n* — n + 1 constraints, and consists of (1)~(3), (5) and
the following constraints to break subtours:

dj —x;>0, i,j=2,...,n, (32)

di+di=1, i,j=2,...n:i#], (33)

xj+x1 <1, j=2,...,n, (34)

Xj+dp +xg+dy+xa<2, i,jk=2,...,n, (35)

Although variable d;; (i,j = 2,...,n) is continuous, it has a binary connotation and

is equal to 1 if and only if vertex i precedes (not necessarily immediately) vertex j in
the optimal tour. Godinho et al. (2011b) noticed that the meaning of variables d;; is
basically the same of variables v;; introduced in formulation GP. An analysis of all
the formulations involving variables x;; and v;; (or d;;) can be found in Gouveia and
Pesneau (2006).

Sherali et al. (2006) proposed several polynomial formulations. Here, we present
formulation SST (therein ATSP6) only, which uses (n — D3 nonnegative contin-
uous variables tfj (i,j,k=2,...,n), and consists of (1)-(3), (5), (33) and the
following 3n° — 11n* + 17n — 9 constraints:
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di+xi+dp+du <2, i,jk=2,...,n (36)

dij —x1; 20, i,j=2,...n, (37)

djj —xp 20, i,j=2,...n, (38)

0<th<xu, ijk=2,.. n:i#j#k, (39)

X+ oy th=dy, Lj=2,...n (40)
k=2:k£j

vt D d=dy, kj=2...n (41)
k=2;i#j

where tg is equal to 1 if and only if, in the optimal tour, arc (i, k) is used and vertex k
precedes vertex j. Godinho et al. (2011b) pointed out that variables t@ can be
interpreted in the same way as the flow variables wg» used in formulation CLAUS.
Oncan et al. (2009) showed that the LP relaxation of SST is stronger than that of
MCF+-, whereas Sherali et al. (2006) proved that the LP relaxation of SST is
stronger than that of L1ATSPxy.

Godinho et al. (2011b) also described, in the context of the ATSP, a sophisticated
formulation, called EC-MCEF, that was originally proposed for the time-dependent
traveling salesman problem by Godinho et al. (2011a). Let zf-;- (i,j,h=1,...,n)bea
binary variable that is equal to 1 if arc (i, j) is traversed in position 4 in the optimal
tour, and let rf}k G=1,...,mj,k=2,...,n;h=1,...,n— 1) be a binary variable
that is equal to 1 if arc (i, j) is traversed in position # in the first part of the optimal
tour that links vertex 1 to vertex k. Formulation EC-MCEF involves the following
n* — 4n® 4+ 9n* — Tn + 2 variables and 2n°> — 9n* 4+ 151 — 8 constraints:

n

minE ECUE zg

i€V jev  h=1

sty rf =1, ke V\{1},

jev
r;‘,ﬂ,k_ "ﬁ‘kzo’ h=1,...,n—2kiecV\{1}:i#k,

jevi{1} JeV\{k}

STt N =0, h=1,..0-1k=2,..n,
JeV\{k} jev\{k}

h+1.k

S @A - S @ o

JeV\{k} jev\{1}

h=2,...n—1kicV\{1}:i#k,
de{o?l}’ i)j)h:17"'?n?
it e{0,1}, jkeV\{1},ie V\{k},h=1,..,n—1.

Godinho et al. (2011b) showed that the LP relaxation of EC-MCEF is stronger than
those of SD, P1, and CLAUS, and is unrelated with that of SST.
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E B is stronger than A

- - 7 A and B are equivalent EC-MCF [30] SST [62]
P1 [26] Langevin [44] — — — = Loulou [49] MCF+ [34] L2ATSPxy [60 L1ATSPxy [60]
S T~ 7 ~
| N ~
| RN I
T (e I
P1b [26] DFJ [14] - — — — — WONG [65] /£ - — = CLAUS 2] GP 33] SLIATSPxy [60]
P2 [26] SD [61] LZRMTZ [ss LlRMTZ [ss] ATSPxy [60]
FCG [17] - — — - — - GG [28] DL [15] RMTZ [33]
MTZ [50]
[12] Claus (1984) [30] Godinho et al (2011) [50] Miller et al (1960)
[14] Dantzig et al (1954) [33] Gouveia and Pires (1999) [60] Sarin et al (2005)
[15] Desrochers and Laporte (1990)  [34] Gouveia and Pires (2001) [61] Sherali and Driscoll (2002)
[17] Finke et al (1984) [44] Langevin (1988) [62] Sherali et al (2006)
[26] Fox et al (1980) [49] Loulou (1988) [65] Wong (1980)
[28] Gavish and Graves (1978)

Fig. 1 Relations among the linear relaxations of the polynomial formulations and of formulation DFJ

In Fig. 1, we summarize the relationships among the linear relaxations of the
polynomial formulations reviewed in this section. A link going from formulation A
to formulation B means that the LP relaxation of B is stronger than that of A,
whereas a dashed line connecting two formulations means that the relative LP
relaxations are equivalent.

Exact algorithms

Many branch-and-bound algorithms have been proposed to find the optimal solution
of the ATSP. After the seminal paper by Little et al. (1963), where for the first time
the term “branch-and-bound” was coined, other algorithms were proposed by
Bellmore and Malone (1971), Garfinkel (1973), Smith et al. (1977), Carpaneto and
Toth (1980), Balas and Christofides (1981), Miller and Pekny (1989), Pekny et al.
(1991), Pekny and Miller (1992), Fischetti and Toth (1992), Carpaneto et al. (1995).
In the following, two of the most effective branch-and-bound algorithms for the
ATSP, i.e., those proposed by Carpaneto et al. (1995) and by Fischetti and Toth
(1992), are briefly reviewed. The algorithm proposed by Pekny and Miller (1992)
exhibits, on the whole, a performance comparable with that of the approach
described in Carpaneto et al. (1995).

The algorithm proposed by Carpaneto et al. (1995) is a lowest first branch-and-
bound method based on the AP relaxation and the subtour elimination branching
scheme. At the root node of the decision tree, the AP relaxation of the original
problem is solved, the patching heuristic algorithm proposed by Karp (1979) is

@ Springer



122 R. Roberti, P. Toth

applied to determine an initial tour of cost z*, and a reduction procedure based on
the AP reduced costs (c’;) is executed to transform the original complete graph into
a sparse one (by setting x; = 0 if V(AP) + cgj > 7*, where V(AP) is the value of the
optimal solution of the AP relaxation). At each of the other nodes of the decision
tree, the AP relaxation of the subproblem associated with the considered node is
solved, through an effective parametric technique, in O(n?) time. If V(AP) > z* the
node is fathomed. Otherwise, if the AP solution contains no subtour (i.e. a feasible
solution has been found) the best solution thus far is updated, z* is set equal to
V(AP) and the node is fathomed. If neither of the two previous cases occur, the
subtour elimination branching scheme proposed by Carpaneto and Toth (1980) is
applied: the subtour S of the AP solution having the minimum number, say /4, of not
“imposed” arcs is selected, and / descending nodes are generated so as to forbid, by
“imposing” and “excluding” proper arc subsets, subtour S for each descending
node.

The algorithm proposed by Fischetti and Toth (1992) is a lowest first branch-and-
bound method based on the branching scheme introduced by Carpaneto and Toth
(1980), and, at each node of the decision tree, computes the corresponding lower
bound by applying the additive approach combining the AP, r-SAP, and r-SAAP
relaxations.

More recently, two effective branch-and-cut algorithms for the ATSP have been
proposed by Fischetti and Toth (1997) and by Fischetti et al. (2003).

The algorithm proposed by Fischetti and Toth (1997) is based on the DFJ model
(1)—(5), and exploits additional classes of facet-inducing inequalities for the ATSP
polytope that proved to be of crucial importance for the solution of some real-world
instances.

An ATSP inequality ax < o is called symmetric when o; = o, for all (i,/) € A.
Symmetric inequalities can be thought of as derived from valid inequalities for the
STSP defined on the complete undirected graph G’ = (V, E). Indeed, let y, = 1 if
edge e € E belongs to the optimal STSP solution, y, = 0 otherwise. Every
inequality >, . %.y. < o valid for the STSP can be transformed into a valid ATSP
inequality by simply replacing y, by x; + x; for all edges e = {i,j} € E. This
produces the symmetric inequality ox < o, where o; = o;; = oy; 5, for all i,j €
V,i # j. Conversely, every symmetric ATSP inequality o x < o corresponds to the
valid STSP inequality > iy € Eoygijy < %o. The above correspondence implies
that every separation algorithm for the STSP can be used, as a “black box”, for the
ATSP as well. Several exact/heuristic separation algorithms for the STSP have been
proposed in recent years, all of which can be used for the ATSP. Only two such
separation tools are used by Fischetti and Toth (1997), namely (1) the Padberg and
Rinaldi (1990a) exact algorithm for SECs; and (2) the simplest heuristic scheme for
2-matching constraints, i.e., for combs with 2-node teeth, where each component H
of the graph induced by the edges e € E with fractional y; is heuristically
considered, in turn, as the handle of the comb. Having fixed H, the most violated
2-matching constraint with handle H is easily found by sorting the edges having one
extreme node in H and the other extreme node in V\H by nonincreasing yfj-, and by
taking the first k£ such edges to act as teeth, for k = 1,3,5,...
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In addition, Fischetti and Toth (1997) considered the so-called Di and Dj
inequalities proposed by Grotschel and Padberg (1985), and the odd close
alternative trail (odd CAT) inequalities proposed by Balas (1989) (and analyzed
by Fischetti 1991). The separation problem for the classes of the D} and Dj
inequalities is a combinatorial optimization problem that can be effectively solved
in practice by an implicit enumeration scheme enhanced by suitable pruning
conditions (see Fischetti and Toth 1997). As for the detection of violated odd CAT
inequalities, Balas (1989) showed that these inequalities correspond to odd cycles in
an auxiliary undirected “incompatibility” graph. An effective heuristic separation
algorithm, based on the computation of a minimum-weight odd cycle going through
a given edge was proposed by Fischetti and Toth (1997). In addition, clique lifting
(see Balas and Fischetti 1993) and shrinking (see Padberg and Rinaldi 1990b)
procedures are applied to simplify the considered separation problems. A detailed
analysis of the polyhedral structure of the ATSP can be found in Balas and Fischetti
(1993).

Pricing is an important ingredient of branch-and-cut codes, since it allows one to
effectively handle LP relaxations involving a huge number of variables. In order to
keep the size of the LP relaxation as small as possible, the following pricing scheme
is commonly used. We determine a (small) core set of arcs, say A~, and decide to
temporarily fix x; =0 for all (i,j) € A\A~. We then solve the corresponding
restricted LP problem, compute the associated LP reduced costs ¢;;, and check
whether ¢; > 0 for all (i,5) € A\A. If this is the case, then the LP relaxation has been
solved to optimality. Otherwise, the current core set A is enlarged by adding (some
of) the arcs with negative reduced cost, and the whole procedure is iterated.

Fischetti and Toth (1997) proposed an improved pricing technique, called AP
pricing, in which the pricing condition is strengthened by exploiting the fact that
any feasible solution of the current LP relaxation cannot select the arcs with
negative reduced cost in an arbitrary way, as the degree equations, among other
constraints, have to be fulfilled.

The exact algorithm proposed by Fischetti and Toth (1997) is a lowest-first
branch-and-cut method. At each node of the branching tree, the LP relaxation is
initialized by taking all the constraints present in the last LP solved at the father
node (for the root node, only the degree equations are taken). As for the variables,
one retrieves from a scratch file the optimal basis associated with the last LP solved
at the father node, and initializes the core variable set, A, by taking all the arcs
belonging to this basis (for the root node, A contains the 2n — 1 variables in the
optimal AP basis found by solving AP on the original costs c¢;). In addition, A
contains all the arcs of the best known ATSP solution. Starting with the above
advanced basis, one iteratively solves the current LP relaxation, applies the AP
pricing procedure and repeats if needed.

On exit of the pricing loop the separation algorithms are applied to find, if any,
ATSP inequalities that cut off the current LP optimal solution x*. When violated
cuts are found, one adds them to the current LP relaxation and repeats.

When separation fails and x* is integer, the current best ATSP solution is
updated, and a backtracking step occurs. If x* is fractional, instead, the current LP
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basis is saved in a file, and one branches on the variable x; with O<x;§<1 that
maximizes the score (i, /) = ¢; min{x};, 1 —x;;}. As a heuristic rule, a large priority
is given to the variables with 0.4 gx;;- < 0.6 (if any), so as to produce a significant
change in both descending nodes.

This branching scheme has been enhanced by Fischetti et al. (2003) through the
so-called Fractional Persistency mechanism proposed by Fischetti et al. (2001) for
the solution of crew scheduling and vehicle scheduling problems. The correspond-
ing branch-and-cut algorithm will be denoted as FLT in “Computational results”.

Transformation of ATSP instances into STSP instances

It is easy to see that a code for the ATSP can be invoked to solve symmetric TSP
instances. In fact, the reverse also stands by means of the following two
transformations:

e the 3-node transformation proposed by Karp (1972). A complete undirected
graph with 3n vertices is obtained from the original complete directed one by
adding two copies, n + i and 2n + i, of each vertex i € V, and by (1) setting to
0 the cost of edges (i, n + i) and (n + i,2n + i) for each i € V, (2) setting to ¢;;
the cost of edge (2n+1i,j),i,j € V, and (3) setting to +oo the costs of all
remaining edges;

e the 2-node transformation proposed by Jonker and Volgenant (1983) (see also
Jiinger et al. 1995). A complete undirected graph with 2n vertices is obtained
from the original complete directed one by adding a copy, n + i, of each vertex
i € V, and by (1) setting to O the cost of the edge (i, n + i) for each i € V, (2)
setting to ¢; + M the cost of edge (n+1,j),i,j € V, where M is a sufficiently
large positive value, and (3) setting to 4-co the costs of all the remaining edges.
The transformation value nM has to be subtracted from the STSP optimal cost.

The most effective branch-and-cut algorithm for the STSP is currently the one by
Applegate et al. (2007), and the corresponding code, Applegate et al. (1999), is
publicly available. In Fischetti et al. (2002), this code was used to test the
effectiveness of the approach based on the ATSP-to-STSP transformation. The code
has been used with default parameters. The results have shown that the 2-node
transformation is, in general, more effective than the 3-node one.

Computational results

As a testbed for our computational experiments, we took the 27 ATSP instances
collected in TSPLIB Reinelt (1991) and 5 real-world instances provided by Balas
(2000). All the instances have integer nonnegative costs.

Tables 1 and 2 report on the computational performance of eight polynomial
formulations (namely, MTZ, GG, CLAUS, DL, GP, SD, SSB, and SST) for the
ATSP, described in “Review of polynomial formulations”, on ten small-size
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Table 1 CPU times for solving the LP relaxations of 8 polynomial formulations using the primal, dual or
barrier method

Primal Dual Barrier

Formulation Solved Tip Solved Tip Solved Tip

MTZ 10 0.16 10 0.03 10 16.30
GG 10 0.25 10 0.56 10 0.14
CLAUS 3 1,018.11 10 353.84 10 95.05
DL 10 0.30 10 0.05 10 17.23
GP 10 48.01 10 3.48 10 232.78
SD 10 7.45 10 5.10 10 0.75
SSB 9 360.49 10 6.68 10 103.59
SST 0 1,200.00 1 1,128.43 3 1,004.75

instances from the TSPLIB (namely, instances ftv33, ftv35, ftv38, ftv44, ftv47,
ftvs5, ftvo4, ftv70, ft70, and ft53), which is the set of instances used by Oncan et al.
(2009) in their computational study. The computational results reported in Tables 1
and 2 were obtained on an Intel Core2 Duo@2.26 GHz by running CPLEX11.2 as
LP and ILP solver. All the computing times reported in the following tables are
expressed in seconds.

Even though none of the LP-bounds of the eight formulations considered in
Tables 1 and 2 is theoretically stronger than the LP-bound of formulation EC-MCF,
we do not report any computational results of EC-MCF because the corresponding
memory requirements were such that we could not compute the LP-bound on any of
the considered test instances. For the computational performance of formulation
EC-MCEF, the reader is referred to Godinho et al. (2011a, b).

In Table 1, we compare, on the ten considered instances, the performance of the
eight polynomial formulations for computing the corresponding LP relaxations
using three different LP methods (Primal, Dual and Barrier). For each method and
each formulation, Table 1 reports the number of LP-bounds computed within the
time limit of 1,200 s (column Solved) and the average computing time (column
Trp). In the computation of the average computing time, we considered a computing
time of 1,200 s whenever the LP relaxation of an instance could not be computed
within the time limit or the instance could not be run due to exceeded memory limits
for CPLEX.

Table 1 shows that, for a given formulation, the computing times may
significantly vary using different LP methods. The dual method turned out to be
the best performing method when solving MTZ, DL, GP and SSB, whereas the
barrier method was the best performing one when solving GG, CLAUS, SD and
SST. All the formulations but SST could solve the LP relaxation of all the 10
instances within the time limit imposed.

Table 2 reports, for each of the eight formulations and each of the ten instances,
the percentage gap (computed with respect to the optimal solution value) left after
solving the LP relaxation (column LP), the percentage gap left at the root note of the
search tree of CPLEX (column Rt), and the computing times for solving the LP
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relaxation (column 7i p), the root node (column T%,), and the ILP formulation itself
(column Ty p). For each formulation, we used the LP-method that turned out to be
the best one in the experiments summarized in Table 1. The time limit for solving
the ILP formulation was set equal to 1,800 s. In the rows labeled “Avg”, Table 2
reports average values and, in parenthesis, the number of instances solved to
optimality within the time limit. In the computation of the average computing times,
we considered a computing time equal to 1,200 or 1,800 s whenever the LP model
or the ILP model, respectively, could not be solved within the time limit. For
formulation SST the averages refer to the first three instances since the remaining
ones could not be run due to exceeded memory limits for CPLEX.

As to the LP-bounds, Table 2 shows that SST obtains tight lower bounds but
requires larger computing times than the other formulations. Moreover, SST was
able to provide the lower bounds, within the time limit, on only three of the ten
instances considered. Among the other formulations, the one that provides the
tightest LP-bounds is CLAUS, followed by SSB and GP. The other four
formulations (MTZ, GG, DL and SD) obtain, on average, worse LP-bounds than
the previous ones but within shorter computing time (less than one second on
average). GG was the only formulation able to solve, to optimality, all of the ten
instances within the time limit imposed, whereas MTZ, DL and SD could solve, to
optimality, all but one of the instances.

The results reported in Table 2 show that formulations MTZ, GG, and DL are the
best formulations to be directly used within CPLEX. This is probably due to two
main reasons: (1) the limited number of constraints required to break subtours
allows CPLEX to compute the LP-bounds effectively, and (2) the large variety of
cuts embedded in CPLEX lead to root lower bounds competitive with those that can
be obtained with other formulations having stronger LP-bounds but within much
shorter computing times. We stress that the computational analysis reported in
Table 2 is aimed at comparing the suitability of each formulation to be directly
solved with CPLEX. Therefore, any conclusion that can be drawn from the results
reported in Table 2 cannot consider the fitness of each polynomial formulation as
the starting point for more complicated exact algorithms for solving the ATSP. We
also stress that, for each class of formulations, we report only the results obtained by
the formulation providing, on average, the tightest LP-bounds because the other
formulations (i.e., those appearing in Fig. 1 but neglected in this section) were
computationally outperformed by at least one of the eight formulations considered
in this study.

In Table 3, we compare, on the 27 ATSP instances from TSPLIB and the 5
instances provided by Balas, the performance of (a) the branch-and-bound algorithm
by Carpaneto et al. (1995) (hereafter CDT) described in “Exact algorithms”, (b) the
branch-and-bound algorithm based on the additive bounding procedure by Fischetti
and Toth (1992) (hereafter FT) described in “Exact algorithms”, (c) the branch-and-
cut algorithm by Fischetti et al. (2003) (hereafter FLT) described in “Exact
algorithms”, (d) the branch-and-cut algorithm (hereafter Concorde) solving the
STSP instances obtained from the transformation described in “Transformation of
ATSP instances into STSP instances”, and (e) the polynomial formulations MTZ,
GG and DL (see “Review of polynomial formulations™). For each instance and each
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algorithm, we report the percentage gap of the corresponding lower bound, or the
value of the LP relaxation of the considered formulation, computed at the root node
of the decision tree (column LB) and the computing time for solving the instance to
optimality (column 7). The rows labeled “Avg” report average values and, in
parenthesis, the number of instances solved to optimality within the corresponding
time limit. Different time limits were imposed on the algorithms: 1,000 s for CDT
and FT, 10,000 s for FLT and Concorde, 1,800 s for MTZ, GG and DL. For this
reason, in the computation of the average computing time, only the instances solved
to optimality within the imposed time limit are considered. The rows labeled “Avg
1,000 s” report the average computing time and, in parenthesis, the number of
instances solved to optimality within the time limit of 1,000 s (a computing time
equal to 1,000 s is considered when this time limit is reached).

The computational results reported for CDT, FT, FLT and Concorde are taken
from Fischetti et al. (2002) and were obtained on a Digital Alpha 533 MHz with
CPLEX6.5.3 as LP solver, whereas the computational results relative to formula-
tions MTZ, GG and DL were obtained on an Intel Core2 Duo@2.26 GHz by
running CPLEX11.2. We have experimentally found that the latter machine is
approximately 10-12 times faster than that used by Fischetti et al. (2002); therefore,
the computing times reported for MTZ, GG and DL were multiplied by 10 in order
to have a fair comparison.

Table 3 shows that FLT and Concorde were the only two exact methods able to
solve, within the imposed time limit, all the 32 instances to optimality, and are
clearly better performing than the other 5 exact methods considered. Although, on
the considered instances, Concorde generally obtains better lower bounds at the root
node, FLT is always faster. MTZ, GG and DL proved not to be competitive with
either FLT or Concorde, since they solved only 20, 11 and 19 instances,
respectively, and, on the solved instances, their computing times are always much
longer. As for the branch-and-bound algorithms CDT and FT, for which a time limit
of 1,000 s was imposed, it can be noted that they dominate, by considering the
instances solved to optimality within this time limit and the computing times, the
polynomial formulations MTZ, GG and DL. By considering the values of the lower
bounds at the root node, Table 3 shows that (a) the lower bound of CDT (given by
the value of the AP relaxation) is only slightly worse than that of MTZ (i.e., the
addition of constraints (10) to the AP relaxation only marginally improves
the corresponding LP relaxation), (b) the lower bound of FT (corresponding to the
additive bounding procedure) is always better that those of MTZ and GG, and
globally better than that of DL.
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