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Abstract Collision-free vehicle routing occurs in many applications from robot

movements via scheduling multiple cranes in steel logistics to the transport of containers

by automated guided vehicles. In cooperation with the HHLA Container Terminal

Altenwerder (CTA), we have developed a dynamic online routing algorithm that

computes collision-free routes for AGVs by considering implicit time-expanded net-

works. This approach proved to be very efficient in scenarios with a high traffic density.

This is in contrast to the more frequent static approaches that use routes computed in the

static graph—i.e., without time expansion—and employ additional methods for collision

avoidance during execution of the static routes. These static approaches have the

advantage that they are quite robust against disturbances but are rather unpredictable

because of the usually heuristic collision avoidance rules that may even run into dead-

locks in high traffic scenarios. In this paper, we study if the static approach can be suitably

enhanced to meet the performance of the dynamic approach and become predictable and

collision and deadlock-free. Our approach is based on online static route computations

combined with load balancing techniques and graph algorithms for guaranteed deadlock

avoidance. We evaluate our static algorithm on routing scenarios from the HHLA CTA.

It turns out that the performance of our static router is slightly superior in low and

medium traffic scenarios, but loses against the dynamic router in high traffic scenarios.
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Introduction

Collision-free routing occurs in many applications from robot movements via

scheduling multiple cranes in steel logistics to the transport of containers with

automated guided vehicles (AGVs). Typically, AGVs are not equipped with an

intelligent local-collision-avoidance system and rely solely on cental control. This is

usually done by static approaches that first compute routes in the underlying routing

graph and then use additional methods during route execution for collision

avoidance. These rules are usually heuristic and thus may lead to unpredictable

arrival times and even deadlocks.

In cooperation with the HHLA container terminal altenwerder (CTA), Gawrilow

et al. (2008) have developed a dynamic routing algorithm that computes collision-

free routes for AGVs by considering implicit time-expanded networks. This

approach proved to be very efficient in scenarios with a high traffic density.

However, due to the time-sensitive nature of dynamic routes, this approach requires

recomputation of routes when delays of AGVs and other disturbances occur. In

contrast, the static approach has the advantage that the computed routes do not

change and are thus robust against disturbances.

In this paper, we study if the static approach can be suitably enhanced to meet the

performance of the dynamic approach and become collision and deadlock-free. Our

approach is based on static route computations combined with a subsequent

collision avoidance that employs a particular reservation procedure of parts of the

precomputed routes, called claiming. It is realized in two stages. In the first stage we

use load balancing algorithms to compute suitable static routes that keep the load on

the edges of the routing graph small. To that end, we consider an online load
balancing problem with bounded stretch factor and develop an optimal algorithm

with respect to a specific performance ratio, the stretch factor restricted competitive

ratio, see ‘‘Online load balancing with bounded stretch factor’’. Herein, we use

methods from Aspnes et al. (1997) and Gao and Zhang (2004).

In a second phase, we then develop in ‘‘Reservation schedules and deadlock

prevention’’ a claiming mechanism that fully avoids collisions and deadlocks. Based

on the computed static routes, we define a reservation schedule that assigns

exclusive claims to parts of an AGV’s route, and an associated deadlock avoidance

graph for making the reservation schedule deadlock-free. It turns out that detecting

deadlocks in this graph is closely related to detecting so-called colorful cycles in

graphs, a problem investigated by Alon et al. (1995). Based on their results, we

show that deadlock detection is NP-complete and develop an algorithm for deadlock

detection that is polynomial in the size of the routing graph, and exponential only in

the number of transportation requests.

In ‘‘Computational results’’, we evaluate the combined algorithm on routing

scenarios from the HHLA CTA. It turns out that, for a suitable choice of the stretch
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factor in the load balancing part, the performance of our static router with

guaranteed collision and deadlock avoidance is slightly superior in low and medium

traffic scenarios. But it loses against the dynamic router in high traffic scenarios, i.e.,

for the same number of transportation requests but with increasing number of

blocked lanes in the routing graph.

In the remainder of this section, we will give an introduction into our model, our

results, and previous work. A closer look at related work and the discussion of our

results will be given in the corresponding sections on online load balancing with

bounded stretch factor (‘‘Online load balancing with bounded stretch factor’’), on

reservation schedules and deadlock prevention (‘‘Reservation schedules and

deadlock prevention’’), and on computational results (‘‘Computational results’’).

The model

The routing graph is a directed graph G = (V, E). Its edges e 2 E describe the lanes

or streets in the routing area. Each edge e 2 E has a constant transit time s(e) that

indicates the time needed to traverse this edge. The node set V models the crossings

of the lanes.

Transportation requests are arriving over time in an online fashion and are

modeled by a sequence r ¼ r1; . . .; rk of requests. Each request ri consists of a start

node si, a target node ti, and a specific AGV to carry out that transport. Note that we

do not consider the assignment of vehicles to requests. We assume that this is done

by a higher-level management system. The goal is to compute in an online fashion,

routes (paths) for the AGVs that are collision-free, i.e., at any time, no two AGVs

meet on an edge or in a node of the routing graph. We call this problem an online

disjoint vehicle routing problem.

Static approaches for such online disjoint vehicle routing problems work as

follows. One computes static paths in the network, ignoring the movement of AGVs

over time. More precisely, one computes shortest paths for each request, e.g., using

Dijkstra’s algorithm, with respect to arc costs consisting of the transit times

s(e) plus a load dependent penalty cost that is a function of the number of previously

computed routes that are already using this edge.

By the static nature of this approach, the computed routes may lead to collisions

at execution time. Hence, one needs an additional conflict management system that,

at execution time of the routes, guarantees that no collisions occur. This can be done

by iteratively allocating to a vehicle the next part of its route (the reserved area) and

block it for all other vehicles (reservation) until it has been traversed, see Fig. 1.

The other vehicles must then wait along their route until they are allocated the next

part of their route.

Static approaches have the advantage that the routes are known in advance and

do not depend on the actual travel behavior of the vehicles. They are thus robust

against small delays and other disturbances. However, the necessary conflict

management system at execution time may have a deteriorating effect on the system

performance. It may lead to unpredictable arrival times, which is bad for the next

transportation request assigned to that vehicle, to detours, to a higher congestion, or

even to deadlocks. A deadlock is a situation in which a group of vehicles wish to
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reserve a set of edges which are already occupied by other vehicles in this group

such that none of them is able to continue its route and thus the system is blocked.

See Fig. 2 for the smallest possible such deadlock.

In contrast, the dynamic routing algorithm of Gawrilow et al. (2008) computes

collision-free routes already at computation time by considering an implicit time-

expansion of the routing graph. These time-dependent routes permit waiting at the

start position and on edges along theirs path. In order to ensure robustness against

delays and other disturbances, it applies a rerouting at execution time when

disturbances occur, which may lead to additional waiting along an AGV’s path, or

even a new route from an AGV’s current position. It is therefore more flexible at the

cost of a higher computational overhead that requires a very fast dynamic router

during execution time.

Our approach and results

We develop a two-phase static algorithm. The first phase computes static routes, and

the second phase computes a reservation schedule that assigns exclusive claims to

parts of an AGV’s route, such that the execution of the routes is collision and

deadlock-free.

For computing the static routes, we use load balancing techniques that balance

the load on the edges of the routing graph such that the resulting paths remain short

with respect to the given transit times. This leads in ‘‘Online load balancing with

bounded stretch factor’’ to an online load-balancing algorithm that, among all online

Fig. 2 Simplified deadlock
situation. Both vehicles are
trying to occupy the same
portion/edges of the network,
thereby blocking each other

Fig. 1 Reservation procedure.
Each vehicle reserves the next
part of its route. Mutually
exclusive reservations guarantee
a collision-free execution of
computed (static) paths
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algorithms, achieves the best possible load subject to a length constraint on the

chosen paths (the stretch factor).

In a second phase we construct from these paths a reservation schedule that

assigns exclusive claims to parts of a vehicle’s route and thus avoids collisions, and

an associated deadlock avoidance graph for making the reservation schedule also

deadlock-free.

For dealing with the physical dimensions of the vehicles we use polygons PðeÞ
for each edge e that describe the blocked area when a vehicle (more precisely, the

center of a vehicle) is located on edge e (Fig. 3). Thus, it is prohibited to use two

edges at the same time if the corresponding polygons intersect. We represent this

mutual exclusion by sets confl(e) of so-called conflicting edges for each edge e.

We show in ‘‘Deadlock prevention algorithm’’ that deadlock detection is NP-hard

and develop an algorithm for deadlock detection that is polynomial in the size of the

routing graph, but exponential in the number of transportation requests. To show

these results, we adapt techniques from a paper on colorful cycles in graphs by Alon

et al. (1995) to our setting.

Algorithm 1 gives a high-level description of our combined algorithm. We

evaluate it on several routing scenarios from the HHLA CTA. We first report on the

average travel time along the computed paths and the computation times to obtain

them. In order to analyze our load balancing algorithm, we also report on the (static)
length of the computed paths and the resulting load on the edges of the routing

graph. Finally, we evaluate the number and the length of the cycles found by the

deadlock detection algorithm.

A
C

D

B

Fig. 3 The figure illustrates the
polygons that are claimed by a
vehicle that moves on the
indicated edge. Polygons B and
C intersect each other while
polygons A and D do not
intersect any other polygon
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Previous work

So far, only Guan and Moorthy (2000) investigated different penalty costs for the

online disjoint vehicle routing problem. They considered constant additive penalty

costs together with distance-dependent costs. They report on an experimental

evaluation, but do not provide theoretical performance guarantees. Their experi-

ments do not show any major effect.

The detection and prevention of deadlocks has been investigated by Lee and Lin

(1995) who considered Petri net approaches. Other, graph theoretic models have

been investigated by Cho et al. (1995); Guan and Moorthy (2000); Kim et al.

(2006); Yeh and Yeh (1998). For details about these approaches we refer to

‘‘Reservation schedules and deadlock prevention’’.

Online load balancing with bounded stretch factor

Introduction

Online load balancing problems have been investigated since the introduction of

online algorithms, see e.g., Aspnes et al. (1997); Borodin and El-Yaniv (1998).

Consider a directed graph G = (V, E) and a sequence of routing requests r ¼
ðr1 ¼ ðs1; t1Þ; . . .; rk ¼ ðsk; tkÞÞ; where si and ti denote the source and target node of

request i, respectively. Sometimes a request is assigned an additional bandwidth

that may depend on the edges used. We will focus on the case where this bandwidth

is equal to one. In this case, the load on an edge e after the i-th request (loadiðeÞ) is

defined as the number of requests already routed over e. The task is to minimize the

maximum load over all edges, i.e., min maxe2EloadkðeÞ; where k denotes the total

number of requests.

Online load balancing problem

Instance Directed graph G = (V, E), sequence of requests r = (r1,…, rk)

Task Minimize the maximum load over all edges e [ E, i.e., min maxe[Eloadk(e)

Aspnes et al. (1997) presented an O(log(|E|))-competitive algorithm for this

problem and, using a lower bound of Azar et al. (1992) for online assignment,

showed that their approach is optimal for online load balancing (in the sense of

achieving the best possible competitive ratio over all online algorithms).

This standard load balancing problem has been extended by Gao and Zhang

(2004) to permit transit times s(e) on the edges and constraints on the lengths of the

chosen path. They introduced a so-called stretch factor B [ 1 that bounds the length

of a chosen si - ti-path, i.e., the length (measured as transit time) of each si - ti-
path is less than B times the length of a shortest path between si and ti. We call this

problem the online load balancing problem with bounded stretch factor.
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Online load balancing problem with bounded stretch factor

Instance Directed graph G = (V, E), transit times s : E! R; stretch factor B, sequence of requests

r = (r1, …, rk).

Task Minimize the maximum load over all edges e [ E, i.e., min maxe [ Eloadk(e), subject to

length(Pi) \ B�length(SPi) for each chosen si - ti-path Pi, where here length(SPi) denotes

the length of a shortest path between si and ti measured as transit time.

Gao and Zhang (2004) modified the approach of Aspnes et al. (1997) and

obtained similar results concerning the competitive ratio for this problem. In

particular, they also provide an O(log(|E|))-competitive algorithm. Note that their

algorithm has an exponential run time since they compute resource-constrained

shortest paths.

We also consider the online load balancing problem with bounded stretch

factor, but focus on a different analysis. Instead of comparing the solution of a

particular online algorithm with the optimal solution for that problem (in the

sense of competitive analysis), we compare it with an optimal solution of the

standard load balancing problem, i.e., the offline version without stretch factor

constraints. We are interested in this ratio since an optimal load balancing

solution in our sense presents the best choice with respect to the congestion

generated by our static routing algorithm STATE-ROUTE (Algorithm 1). We

refer to it as the stretch factor restricted (sfr) competitive ratio and transfer the

notation from the standard competitive analysis introduced in Borodin and

El-Yaniv (1998) to our criterion.

Definition 1 An online algorithm ALG for the online load balancing problem with

bounded stretch factor is c-stretch-factor-restricted-competitive (c-sfr-competitive

for short) for a constant c if, for any problem instance I ; it computes a solution

ALGðIÞ with

ALGðIÞ� c � OPTðIÞ;

where OPTðIÞ denotes the optimal value of the offline version of the online load

balancing problem.

The stretch factor restricted (sfr) competitive ratio of ALG is the infimum over all

c such that ALG is c-competitive.

In addition, we assume that the number of requests k, or at least a good upper

bound on k, is given in advance. Seiden et al. (2000) call such approaches semi-

online. In our application a good upper bound might be the number of vehicles since

there cannot be more ‘active’ requests than vehicles.

Below we develop a semi-online algorithm and show that it is optimal with

respect to its sfr competitive ratio.
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Load balancing algorithm

We present an

Oðlog ffiffiffi

Bk
p ðmaxðk; jEj;max

e2E
sðeÞ=min

e2E
sðeÞÞÞÞ-sfr-competitive

algorithm (Algorithm 2) for online load balancing with bounded stretch factor. The

algorithm works in phases. In each phase we consider a certain upper bound UB on

the optimal load with respect to the already routed requests in this phase. This upper

bound is adjusted depending on the current maximum load produced by the algo-

rithm. Whenever it cannot be guaranteed that UB is still an upper bound, cf.

Theorem 1, we double the bound and enter a new phase.

For each request the algorithm computes a shortest path with respect to the cost

function cðeÞ ¼ sðeÞ � b
loadðeÞ

UB ; where b is the k-th root of the given stretch factor B.

Afterwards, the load on all edges that conflict with an edge of the selected path P is

increased by one. These are all edges in conflðPÞ :¼
S

e2P conflðeÞ:
In order to analyze the performance ratio of Algorithm 2 (BAL-BOUND) we

consider a generic phase and formulate it in greater detail in Algorithm 3 (SUB-

BAL-BOUND).
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Theorem 1 gives a performance guarantee for Algorithm 3 that depends on the

given upper bound UB

Theorem 1 Consider a problem instance I and a fixed upper bound UB [OPT.
Then

SUB-BAL-BOUNDðIÞ� logb bkþ1 � jEj �maxe2E sðeÞ
mine2E sðeÞ

� �

� UB:

Proof Let Pi
* and Pi be an optimal path and the path selected by algorithm SUB-

BAL-BOUND, respectively. Recall that loadiðeÞ is the load generated by SUB-

BAL-BOUND on edge e after i requests. Since the algorithm chooses the shortest

path with respect to the costs c(e), it follows for all i that
X

e2Pi

cðeÞ�
X

e2P�i

cðeÞ

,
X

e2Pi

sðeÞb
loadi�1ðeÞ

UB �
X

e2P�i

sðeÞb
loadi�1ðeÞ

UB

)
X

e2Pi

sðeÞb
loadi�1ðeÞ

UB �
X

e2P�i

sðeÞb k
UB:

We used here that the load on each edge is bounded by k (by definition a static path

contains no cycle). Summing up over all requests gives

X

k

i¼1

X

e2Pi

sðeÞb
loadi�1ðeÞ

UB �
X

k

i¼1

X

e2P�i

sðeÞb k
UB ð1Þ

,
X

e2E

X

i:e2Pi

sðeÞb
loadi�1ðeÞ

UB �
X

e2E

X

i:e2P�i

sðeÞb k
UB ð2Þ
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Multiplying the left hand side of (2) with b
1

UB � 1 we obtain

ðb 1
UB � 1Þ �

X

i:e2Pi

sðeÞb
loadi�1ðeÞ

UB ¼
X

i:e2Pi

sðeÞ b
loadi�1ðeÞþ1

UB � b
loadi�1ðeÞ

UB

� �

ð3Þ

ðb 1
UB � 1Þ �

X

i:e2Pi

sðeÞb
loadi�1ðeÞ

UB �
X

i:e2Pi

sðeÞ � b
loadiðeÞ

UB � b
loadi�1ðeÞ

UB

� �

ð4Þ

ðb 1
UB � 1Þ �

X

i:e2Pi

sðeÞb
loadi�1ðeÞ

UB ¼ sðeÞ � ðb
loadkðeÞ

UB � 1Þ: ð5Þ

The telescoping sum in (4) follows by observing that the load on an edge e
increases by at most one in a single step (loadiðeÞ� loadi�1ðeÞ þ 1).

We now multiply the right hand side of (2) also with ðb k
UB � 1Þ and obtain

ðb 1
UB � 1Þ �

X

e2E

X

i:e2P�i

sðeÞb k
UB� b

UB
�
X

e2E

X

i:e2P�i

sðeÞb k
UB ð6Þ

ðb 1
UB � 1Þ �

X

e2E

X

i:e2P�i

sðeÞb k
UB ¼ b

k
UBb �

X

e2E

sðeÞ
X

i:e2P�i

1

UB
ð7Þ

ðb 1
UB � 1Þ �

X

e2E

X

i:e2P�i

sðeÞb k
UB� b

k
UBb �

X

e2E

sðeÞ: ð8Þ

ðb 1
UB � 1Þ �

X

e2E

X

i:e2P�i

sðeÞb k
UB� b

k
UB
þ1 �

X

e2E

sðeÞ: ð9Þ

The inequality in (6) holds since b
1

UB � 1� b
UB : To see this, replace UB by n.

Then the inequality in (6) is equivalent to b�ð1þ b
nÞ

n: For fixed b C 1 and n!1;
the r.h.s. converges monotonously to eb. Since b�ð1þ b

nÞ
n

already for n = 1, the

inequality follows.

Inequality (7) B (8) holds since the number of paths that are routed over a certain edge

in an optimal solution is bounded by UB. Finally, (9) uses that b [ 1 and UB [ 1.

Combining the inequalities for the l.h.s. and the r.h.s. we show the claimed

performance guarantee by simple arithmetic transformations [similar to those in

Aspnes et al. (1997)]:
X

e2E

sðeÞðb
loadk ðeÞ

UB � 1Þ� b
k

UB
þ1 �

X

e2E

sðeÞ

,
X

e2E

sðeÞb
loadk ðeÞ

UB �ðb k
UB
þ1 þ 1Þ �

X

e2E

sðeÞ

)
X

e2E

sðeÞb
loadk ðeÞ

UB \bkþ1 �
X

e2E

sðeÞ

) min
e2E

sðeÞ
X

e2E

b
loadk ðeÞ

UB � bkþ1 � jEj �max
e2E

sðeÞ
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,
X

e2E

b
loadk ðeÞ

UB � bkþ1 � jEj �maxe2E sðeÞ
mine2E sðeÞ

) max
e2E

b
loadk ðeÞ

UB � bkþ1 � jEj �maxe2E sðeÞ
mine2E sðeÞ

, max
e2E

loadkðeÞ� logbðbkþ1 � jEj �maxe2E sðeÞ
mine2E sðeÞÞ � UB:

The above proof assumes a fixed upper bound UB. Aspnes et al. (1997) showed

that adapting the upper bound appropriately in the different phases increases

the competitive ratio by at most a factor of 4. We use their approach to prove

Theorem 2.

Theorem 2 Algorithm BAL-BOUND is 4 � logbðbkþ1 � jEj � maxe2E sðeÞ
mine2E sðeÞÞ-sfr-compet-

itive. Thus, the stretch factor restricted competitive ratio is in

O max k; log ffiffiffi

Bk
p jEj; log ffiffiffi

Bk
p maxe2E sðeÞ

mine2E sðeÞ

� �� �

:

Proof For readability we introduce some notation. BAL-BOUNDUB refers to

Algorithm 2 with fixed upper bound UB. Let c :¼ logbðbkþ1 � jEj � maxe2E sðeÞ
mine2E sðeÞÞ be the

performance ratio of SUB-BAL-BOUND from Theorem 1 and recall that algorithm

SUB-BAL-BOUND can be viewed as a subroutine of BAL-BOUND.

Let r(‘) denote the subsequence of requests in phase ‘ of algorithm BAL-

BOUND. Note that there are at most 2‘ many requests in such a subsequence. Then

consider phase h in which algorithm BAL-BOUND terminates. If this is the first

phase (h = 0), we have

BAL-BOUNDðrÞ ¼ BAL-BOUNDðrð0ÞÞ � c:

So let h C 1. Consider the subsequence r(h-1) and the first request r1
h in phase h.

This is the request that terminated phase h - 1. Thus

BAL-BOUND2h�1ðrðh�1Þ; rh
1Þ[ c � 2h�1:

Theorem 1 gives

OPTðrÞ�OPTðrðh�1Þ; rh
1Þ[ 2h�1:

Summing up over all phases leads to the claimed stretch factor restricted compet-

itive ratio:

BAL-BOUNDðrÞ ¼
X

h

‘¼1

BAL-BOUND2‘ðrð‘ÞÞ

�
X

h

‘¼1

c � 2‘ ¼ ð2hþ1 � 1Þ � c

\4 � c � 2h�1\4 � c � OPTðrÞ:
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It remains to show that every path computed by BAL-BOUND respects the

stretch factor.

Theorem 3 The length of each path selected by algorithm BAL-BOUND is less
than B times the length of a shortest path between the same nodes.

Proof Let Pi be the si - ti-path selected by the algorithm for the i-th request and

let SPi be a shortest si - ti-path. Then
X

e2Pi

cðeÞ�
X

e2SPi

cðeÞ

,
X

e2Pi

sðeÞ � b
loadi�1ðeÞ

UB �
X

e2SPi

sðeÞ � b
loadi�1ðeÞ

UB :

Since static shortest paths do not contain cycles, loadi�1ðeÞ\i for all i. This leads

to the following inequality for each i:
X

e2Pi

sðeÞ � b0\
X

e2SPi

sðeÞ � bi

, lengthsðPiÞ\bi � distðsi; tiÞ:

Using b ¼
ffiffiffi

Bk
p

, we obtain the claimed bound on the path lengths, i.e.,

lengthsðPiÞ\B � distðsi; tiÞ for all i:

A lower bound on the performance guarantee

In order to show that no (online) algorithm can achieve a better performance

guarantee concerning the stretch factor restricted competitive ratio we consider the

following example.

Example 1 Consider an instance of the load balancing problem with bounded

stretch factor with stretch factor B and k requests from s to t in the graph illustrated

in Fig. 4. The graph consists of two nodes, s and t, and k parallel edges. On k - 1 of

these edges the transit time is set to B while the remaining edge has transit time 1.

In this example, only the edge with transit time 1 can be used since routing over

any other edge would violate the stretch factor constraint. Instead, an optimal

Fig. 4 Graph used in
Example 1
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solution without this constraint would assign requests to different edges, which

leads to a load of 1. Thus the sfr competitive ratio is bounded from below by

jEj ¼ k ¼ log ffiffiffi

Bk
p ðBÞ ¼ log ffiffiffi

Bk
p maxe2E sðeÞ

mine2E sðeÞ

� �

for any online algorithm for the online load balancing problem with bounded stretch

factor.

This shows that Algorithm 2 is (asymptotically) optimal with respect to the ratio

presented in Theorem 2.

Remark 1 Note that even an offline algorithm that respects the stretch factor

constraint would not be able to perform better for the instance of Example 1.

Reservation schedules and deadlock prevention

Introduction

Although the routes computed by Algorithm 2 (BAL-BOUND) are good in the sense

that they balance the load on the edges of the given graph, we still need a mechanism to

avoid conflicts. In ‘‘The model’’ we introduce a reservation schedule that prevents the

vehicles from colliding. Reservation is done by requesting edges before occupying

them. Such a schedule in time-independent and can be interpreted as an instruction for

constructing a dynamic path at execution time. Since this procedure may cause

deadlocks, we additionally have to take care to avoid such situations.

Since deadlocks are devastating in logistic processes, many approaches for

deadlock avoidance have been investigated in the recent years, e.g., based on Petri

net approaches by Lee and Lin (1995); Wu and Zhou (2000), or on graph theoretic

models as by Cho et al. (1995); Guan and Moorthy (2000); Kim et al. (2006); Yeh

and Yeh (1998), see also the overview by Vis (2006).

Most of these approaches use so-called zone controls. They assume that vehicles

move between non-intersecting zones of adequate size. This is obviously not a

suitable model for our purpose since it is not possible to partition our traffic network

into such zones. Kim et al. (2006) introduce a finer zoning of the network, but, just

as the other zone control approaches, their algorithm is not able to deal with large

vehicle fleets.

Our deadlock prevention algorithm provides both, a fine discretization (vehicles

move on edges of the graph) and a fast routing in large networks with many

vehicles. The algorithm is based on the detection of specific cycles, instead of

standard cycles as in Cho et al. (1995); Kim et al. (2006); Yeh and Yeh (1998), in a

graph that is in a one-to-one correspondence with the considered reservation

schedule. We call this graph the deadlock detection graph. Moreover, in contrast to

Guan and Moorthy (2000) we already avoid deadlocks at the time of the route

computation and not during the execution of the route.

This section is structured as follows. After the description of our model we

introduce the deadlock detection graph in ‘‘The deadlock detection graph’’ and
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present the deadlock prevention algorithm in ‘‘Deadlock prevention algorithm’’.

Computational results and conclusions are given afterwards.

The model

We consider a set P ¼ fP1; . . .;Pkg of static paths that that must be scheduled

without deadlocks. A reservation schedule SðPÞ ¼ fRP1
; . . .;RPk

g for these paths

considers the set of requested edges RP : EðPÞ ! 2E for each path P 2 P: These

edge sets RP(e) contain those edges that must be free, i.e., not occupied by another

vehicle, before edge e is left. If this is the case, these edges are reserved. For the

polygons used in practice (see Fig. 3), these reservation of edges must be adapted to

reserving the polygon associated with the considered AGV. Note that for each path

P ¼ ðe1; . . .; enÞ; the set RP(en) of requested edges of the last edge en is always

empty.

To guarantee a conflict-free execution of a reservation schedule, every edge on a

certain path must be requested/reserved before it is entered. Such a reservation

schedule is-called valid.

Definition 2 (Valid reservation schedule) A reservation schedule SðPÞ is valid if

every edge on any path P ¼ ðe1; . . .; enÞ 2 P is reserved by some earlier edge in

P, i.e., for each edge ei 2 P there is an edge ej 2 P n fe1; . . .ei�1g such that

ei 2 RPðejÞ:

We assume that the first edge of a path need not be reserved since it is already

occupied by the vehicle at its start. Therefore, we may also assume that the first edge

is not used by another vehicle.

Assumption 1 (Reservation of the first edge) The first edge of a path P 2 P
contained in a reservation schedule SðPÞ is not used and not requested by any other

path P0 2 P:

A reserved edge is freed when the vehicle leaves that edge. To model this,

we define the set of occupied edges OP(ei). An edge is occupied by edge ei

if it has already been reserved by earlier edges on the path but not yet been

freed, i.e.,

OPðeiÞ ¼ feig [
[

k\i

fej 2 RPðekÞj j [ ig
 !

: ð10Þ

Note that the edges in RP(e) can only be reserved if the corresponding conflicting

edges confl ðRPðeÞÞ :¼
S

f2RPðeÞ conflðf Þ are not occupied. Therefore, all these edges

must also be requested. But they need not be reserved and are therefore not occupied

after the request. To this end, we will always distinguish between requested edges in

RP(e) and conflicting edges in confl(RP(e)).

Since we look for reservation schedules that avoid deadlocks, we need to identify

any potential deadlock situation. Here, ‘potential’ means that the identified situation

need not appear, but cannot be excluded. This ambiguity is due to the fact that

deadlocks depend also on the order in which vehicles pass potential conflict points.
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Since reservation schedules are time-independent, they have no influence on the

order. Therefore, a time-independent deadlock definition needs to take all possible

orders of the vehicles into account.

Definition 3 Let SðPÞ be a reservation schedule. A set of paths fP1; . . .;Pmg � P
is called deadlock-ridden if, for each i 2 f1; . . .;mg; there exists an edge ePi

such

that

conflðRPi
ðePi
ÞÞ \

[

j2f1;...;mg:j6¼i

OPj
ðePj
Þ 6¼ ;:

SðPÞ is called deadlock-free if it does not contain a deadlock-ridden subset.

Note that this characterizes potential deadlocks. Actual deadlocks will only occur

at run-time if the affected vehicles are stopped, which is the case if requested edges

are not free.

Based on the above model we will now develop methods for deadlock detection

and prevention.

The deadlock detection graph

We will show that potential deadlocks, i.e., deadlock-ridden sets of paths in a given

reservation schedule, correspond to cycles with a specific properties in the deadlock

detection graph defined below.

The deadlock detection graph GD = (VD, ED) is derived from a reservation

schedule SðPÞ: Its node set VD consists of all edges of the given layout graph

G = (V, E), i.e., VD = E. Its edge set ED consists of edges ((e, f), c), where c 2 C
denotes a particular color that corresponds to requests of edges made in the

given reservation schedule SðPÞ: The color set C contains a separate color for each

path of the set P: We denote the color of path P by cP. The precise definition is as

follows.

Definition 4 (Deadlock detection graph) Consider a graph G = (V, E) and a

reservation schedule SðPÞ: Then, the corresponding deadlock detection graph

GD = (VD, ED) is constructed as follows:

1. VD = E.

2. ED ¼ fððe; f Þ; cPÞj9g 2 E such that f 2 conflðRPðgÞÞ and e 2 OPðgÞg:

Figure 5 illustrates the construction of the deadlock detection graph from a

reservation schedule SðPÞ; i.e., from a collection of sets of requested edges. By

definition, e 2 OPðeÞ; so there are loops at every node of GD corresponding to an

edge in a path P 2 P (these are not depicted in Fig. 5). Also every requested edge

f 2 conflðRPðeÞÞ leads to an edge ((e, f), cP) GD. But there are more edges resulting

from the conflict sets.

The deadlock detection graph is defined for arbitrary reservation schedules. We

will use use it to detect potential deadlocks. To this end, we define colorful paths

and cycles similar to Alon et al. (1995), who considered the corresponding node

version in a different context.
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Definition 5 (Colorful path, colorful cycle) Consider a graph G with colored

edges. Then, a colorful path is a static path P in G with the property that any two

edges of P are colored differently. A colorful cycle is a cycle with the same

property.

We will show in Theorem 4 below that a colorful cycle in a deadlock detection

graph characterizes a deadlock-ridden set of paths in the corresponding reservation

schedule.

Theorem 4 A reservation schedule SðPÞ for a graph G = (V, E) is deadlock-free
if and only if the corresponding deadlock detection graph GD = (VD, ED) contains
no colorful cycle.

Proof By Definition 4, the deadlock detection graph contains an edge ((e, f), cP) if

and only if there is an edge g 2 E with

f 2 conflðRPðgÞÞ and e 2 OPðgÞ: ð11Þ

Assume now that there is a colorful cycle ððe1; e2Þ; cP1
Þ; . . .; ððem; emþ1 ¼

e1Þ; cPm
Þ in the deadlock detection graph. From Eq. 11 we obtain that there is an

edge ePi
2 E for each path Pi 2 Pði ¼ 1; . . .;m) such that

ei 2 conflðRPi
ðePi
ÞÞ and eiþ1 2 OPi

ðePi
Þ:

Therefore, the set of paths fP1; . . .;Pmg � P is deadlock-ridden (cf. Definition 3)

since

eiþ1 2 conflðRPiþ1
ðePiþ1

ÞÞ \ OPi
ðePi
Þ 8i ¼ 1; . . .;m:

Conversely, assume that there is a deadlock-ridden set of paths P1; . . .;Pm � P;
i.e., each path Pi contains an edge ePi

such that

conflðRPi
ðePi
ÞÞ \

[

j2f1;...;mg:j 6¼i

OPj
ðePj
Þ 6¼ ; 8i 2 f1; . . .;mg:

Thus, for all i 2 f1; . . .;mg there is an edge ei with

ei 2 conflðRPi
ðePi
ÞÞ \ OPjðiÞ ðePjðiÞ Þ

Fig. 5 Illustration of a deadlock detection graph that corresponds to the reservation schedule (shown on
the right) for a single path P = (h, g, e, f). The thin loop at a node, say g, with the inscription cf
(g) represent the conflict set confl(g) of edge g, and the dotted arcs point towards all edges in these
conflict sets. The black edges result from the set of requested edges, while the red/light gray edges are due
to the fact that edge e is in OP(g) and f is requested from g, respectively
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for some jðiÞ 2 f1; . . .;mg: Using Eq. 11 we obtain that, for all i 2 f1; . . .;mg; there

exist an edge ((ei, ej(i)), cPi
) and a corresponding jðiÞ 2 f1; . . .;mg in the deadlock

detection graph since

ejðiÞ 2 conflðRPjðiÞ ðePjðiÞ ÞÞ and ei 2 OPjðiÞ ðePjðiÞ Þ:

Thus, the deadlock detection graph contains a colorful cycle.

Note that not every cycle constructed that way must contain an edge for each path

in P1; . . .;Pm since we do not demand in Definition 3 that a deadlock-ridden set of

paths is inclusion minimal.

Deadlock prevention algorithm

Theorem 4 shows that the recognition of colorful cycles is the key ingredient of any

deadlock prevention algorithm that uses the given model. So when we make

reservations one by one, Theorem 4 tells us that we need to check whether a new

reservation closes a colorful cycle in the deadlock detection graph. To this end, we

consider the colorful path problem. Again, Alon et al. (1995) investigated a node

variant of that problem.

Colorful path problem

Instance Directed graph G = (V, E) with edges colored with colors from C; a specific color c 2 C;
target node t [ V, set of start nodes S , V

Task Is there a colorful path from some s [ S to t that does not use the specific color c 2 C?

The colorful path problem is NP-complete since the edge version of the path

with forbidden pairs problem is known to be NP-complete, see Garey and Johnson

(1979), and can be reduced to this problem.

Path with forbidden pairs

Instance Directed graph G = (V, E), start node and target node s, t [ V, collection D ¼
fða1; b1Þ; . . .; ðan; bnÞg of pairwise disjoint pairs of edges from E

Task Is there a path from s to t in G that contains at most one edge from each pair in D?

Theorem 5 The colorful path problem is NP-complete.

Proof Consider an instance I of the path with forbidden pairs problem with

collection D: We construct an instance I0 of the colorful path problem by assigning

each of the two edges of a pair in the collection D the same color and contracting all

edges that are not contained in D: Additionally, we choose a dummy color that is

not contained in the graph as the forbidden color c 2 C and set S = {s}.

Then, obviously, a colorful s - t-path in I0 corresponds to a path with forbidden

pairs in I and vice versa.

Algorithm 4 below solves the colorful path problem. The algorithm is related to the

one introduced by Alon et al. (1995) for the corresponding node version.
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It iteratively computes all colorful paths from length 1 to length jCj � 1; or, more

precisely, it maintains the information which nodes can be reached via a colorful

path. To that end, we use node labels that contain the colors used on the

corresponding path. Note that we do not propagate labels with redundant

information, i.e., we do not add the same label again. This can be guaranteed by

a lookup table that provides, for each possible combination of colors, the

information of whether this combination has already been represented by a label

on a certain node.

Since we, in contrast to Alon, Yuster and Zwick, consider multiple sources and

only a single target, the graph is traversed backwards; i.e., the algorithm starts from

the given target node and considers the ingoing edges for each label taken from the

set Qold, which, in phase i of the algorithm, contains the collection of possible

colorful paths of length i - 1.

The algorithm obviously determines all possible colorful paths that do not

contain the forbidden color and therefore solves the colorful path problem. For the

analysis of its run time we refer to Alon et al. (1995) since it is similar to the node

version. Our additional consideration of a forbidden color and a set of start nodes

(instead of a single node) does not change the analysis. The key observation in their

proof is that the number of labels in each node after i iterations is bounded by

jCj
i

� �

:

Theorem 6 Algorithm 4 solves the colorful path problem in OðjCj � 2jCj � jEjÞ time.
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Remark 2 (Additional heuristic) Because of the exponential run time of the

algorithm we also developed a faster, heuristic version of Algorithm 4, which uses

an upper bound on the size of the set Qnew. The algorithm is modified such that it

returns false when this bound is reached.

Now we are able to formulate our deadlock prevention algorithm (Algorithm 5).

Given a sequence of (static) paths, the algorithm computes a deadlock-free

reservation schedule by iteratively adding these paths to the deadlock detection

graph. This is done by Algorithm 6 (INSERT-ROUTE).

INSERT-ROUTE constructs a deadlock detection graph that contains no colorful

cycle. This is done by calling Algorithm 4 in line CP. Simultaneously, a

corresponding reservation schedule is constructed in line RS. By Theorem 4 we

know that such a reservation schedule is deadlock-free. Therefore, we only have to

argue that the deadlock detection graph is constructed correctly and that the

reservation schedule is valid.
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Theorem 7 The reservation schedule that is constructed by Algorithm 5 is valid
and deadlock-free.

Proof First, we observe that the constructed reservation schedule is valid. Due to

Assumption 1, the first edge of the considered path is not contained in a colorful

cycle. Therefore, each edge can be requested at least from that edge. Moreover,

by construction of the algorithm (the invariant i \ j holds in each iteration), each

edge (and the corresponding set of conflicting edges) is requested from a preceding

edge.

To obtain that the constructed reservation schedule is deadlock-free it is

sufficient to prove that the deadlock detection graph is constructed correctly, i.e., to

show that it corresponds to the computed reservation schedule. Correctness then

follows from Theorem 4.

To show correctness of the construction, we observe that edges are requested in

blocks (line RS of the algorithm). This means that, whenever we insert edges to a set

RP(ei), it is guaranteed that no edges ek with k [ i are already (or will be) requested

from an edge e‘ with ‘\ i. Therefore, upon termination of the algorithm, each edge

ei of the given path fulfills

RPðeiÞ ¼ ; _ OPðeiÞ ¼ feig: ð12Þ

Thus, whenever there is an edge ej with

ek 2 conflðRPðejÞÞ and ei 2 OP0 ðejÞ;

we have ek 2 conflðRPðeiÞÞ: Hence, by Definition 4, it is sufficient to insert those

reservations to the deadlock detection graph that represent requests of edges in the

corresponding reservation schedule (line RS), cf. Fig. 6. This is done in line DG of

the algorithm.

We conclude that the deadlock detection graph constructed during the

algorithm corresponds to the determined reservation schedule. Since the deadlock

detection graph has no colorful cycles by construction (line CP), this completes the

proof.

For the analysis of the run time we observe that Algorithm 4 is called at most |P|

times in Algorithm 6, where |P| denotes the number of edges on that path.

Fig. 6 Construction of a reservation schedule (deadlock detection graph) for path P = (h, g, e, f) by
Algorithm 5. In contrast to the schedule illustrated in Fig. 5 only edges that directly result from the set of
requested edges are inserted into the deadlock detection graph
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Computational results

For our experiments we consider the HHLA CTA at Hamburg Harbor which is

operated by the Hamburger Hafen und Logistik AG (HHLA). It is the most modern

container terminal worldwide regarding the level of automation. In particular, the

containers are transported between ship and storage area using AGVs. The AGVs

are controlled centrally and do not have any kind of intelligent local-collision-

avoidance system built in. The task to route them is thus an instance of our online

disjoint vehicle routing problem.

We investigate a particular real-life scenario (SCEN-A) for the evaluation of the

presented static routing approach (see Fig. 7a). In this scenario, 72 vehicles serve

requests between 22 delivery points and 12 pick-up points in a bidirected grid-like

graph.

The additional scenarios BL-A, 2/3L, and 1/3L, are created by excluding parts of

the underlying graph, cf. Fig. 7. This is done to measure the performance under

different traffic densities.

BL-A: We consider two blocked areas that cover essential parts of the grid such

that there are only one third of the lanes left in these parts (Fig. 7b).

2/3L: SCEN-A with two thirds of the horizontal lanes (Fig. 7c).

1/3L: SCEN-A with one third of the horizontal lanes (Fig. 7d).

To measure the performance of our approach we investigate the average transit

time of the determined paths, i.e., the time needed to serve a request on average. For

every of these four scenarios, this average is taken over 10 runs with 6,000 routing

requests each. Hence each number is an average of 60,000 container movements.

These requests were also provided by HHLA and taken from real life data.

We also considered a comparison with the static routing algorithm by Kim et al.

(2006), which is the most advanced based on zone control. However, we could not

produce results for our size of instances with 72 AGVs within reasonable time.

(a) (b)

(c) (d)

Fig. 7 Illustration of the scenarios investigated for the evaluation of the static routing approach. Besides
the plain scenario SCEN-A we consider scenario BL-A with two blocked areas (in red/dark gray) and two
scenarios 2/3L and 1/3L with reduced numbers of horizontal lanes in the bidirected grid-like graph
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Their approach seems to need rather coarse zones and they report on computational

experience with only 16 AGVs. In our approach, a zone is as small as an edge of the

routing graph, or, more precisely, as the polygons induced be the AGVs as in Fig. 3.

Our main focus is on computation times.1 Additionally, in order to analyze our

load balancing approach (see ‘‘Online load balancing with bounded stretch factor’’),

we measure the (static) length of the computed paths and the load on the edges of

the graph. Finally, we also report on the number and length of the cycles found by

the deadlock detection algorithm.

Due to our initial evaluations described in Remark 3, we restricted the route

computation by orienting the horizontal lanes alternatingly and computed the static

paths in that modified directed graph. These orientations of horizontal lanes are also

used at the HHLA CTA.

Remark 3 [Evaluations in the bidirected grid-like graph] It turned out that the

static routing algorithm is not competitive for the bidirected grid-like graph SCEN-A.

The systems almost stalls and therefore we omit detailed evaluations.

The reason for the bad performance is the frequent appearance of so-called head-

to-head conflicts when two vehicles want to pass a portion of the graph in opposite

directions. Therefore at least one of these vehicles has to reserve to whole area. This

leads to large reserved areas that makes deadlock detection computationally

expensive.

The evaluation is divided into two parts. We first analyze the performance under

variation of the stretch factor B, cf. ‘‘Online load balancing with bounded stretch

factor’’, in SCEN-A. Then we report on the impact of the traffic intensity on the

performance using the three additional scenarios.

Variation of the stretch factor

In ‘‘Online load balancing with bounded stretch factor’’ we presented Algorithm 2

(BAL-BOUND) for the route computation in our static routing approach. The cost

function of the algorithm depends on the given length constraint on the determined

paths, i.e., on the stretch factor B. Table 1 illustrates the evaluation of the

performance under variation of B.

It turns out that the results are very similar for a stretch factor greater than 1. The

differences are only minor. In contrast, simply computing a static shortest path for

each request (B = 1) leads to significantly different results. While the static path

length is, of course, shorter than in the other cases, the maximum load on the edges

is higher. This leads to a more complicated deadlock prevention, as there are many

more detected cycles. These, in turn, generate larger reserved areas, since each

detected cycle requires an earlier reservation. Thus it is not surprising that the

average transit time is longer in this case. Moreover, the detected cycles are longer

than those in the more balanced cases, which results in larger computation times.

Thus, we conclude that load balancing in the route computation of our routing

approach definitely improves the performance of the routing algorithm. But, at least

1 Hardware: Intel Pentium 4 2,8 GHz with 1024 MB RAM.
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in the considered bidirected grid-like graph, the stretch factor does not play an

important role.

Since the smallest average transit time is achieved with a stretch factor B = 1.2,

we choose this setting for the evaluations in ‘‘Comparison with the dynamic routing

approach’’.

Comparison with the dynamic routing approach

Now, we focus on the question which routing approach—the static one or the

dynamic one introduced by Gawrilow et al. (2008)—performs better with respect to

the average transit time. Again, these averages are taken over 10 runs with 6,000

container movements each.

The results of Table 2 show that the average transit time highly depends on the

traffic density. While the static router shows a slightly smaller average transit time

than the dynamic router in scenarios SCEN-A and 2/3L with low traffic volume, it is

clearly inferior in scenarios with high traffic volume. The static router performs

particularly bad in the most narrow scenario 1/3L, while the average transit

measured for the dynamic router is not much higher than in the other scenarios.

Moreover, contrary to the dynamic router, the computation times of the static router

increase with the traffic density.

The reason for the bad performance of the static routing approach in scenarios

with high traffic volume becomes clear if we consider the behavior of the deadlock

detection shown in Table 3 and keep in mind that the deadlock prevention algorithm

has an exponential run time. The number and the length of the detected cycles

increase with the traffic density, which leads to large computation times. For these

computations we used the heuristic mentioned in Remark 2 and set the upper bound

to 500 in order to keep computation times small. The number of cases where this

bound is reached also increases and becomes very large in scenario 1/3L. We also

tried to evaluate that instance without using the heuristic, but the performance was

even worse since the system almost stalled from time to time due to large

computation times for a single reservation (more than 60 s). The length of the

reservations obviously increases with the number of found cycles and the number of

canceled searches for a colorful path in the heuristic, respectively. It is not

surprising that this leads to a loss of performance.

Table 1 Evaluation of the static routing approach for different stretch factors B

B Average

duration (s)

average path

length (m)

Max.

load

Cycle length # cycles per

request

Comp. time

Avg. Max. Avg. (s) max. (s)

1.0 209.46 298.43 29 3.79 12 1.27 0.11 1.24

1.1 170.77 299.81 26 2.98 9 0.35 0.09 0.82

1.2 169.01 300.46 25 2.85 9 0.33 0.09 0.70

1.3 172.26 300.99 26 2.84 9 0.40 0.09 0.59

1.4 169.89 304.65 26 2.93 9 0.35 0.10 0.72
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But why does the static approach perform better in scenarios with low traffic

density? The reason for this, perhaps surprising, result is the greedy reservation

strategy used in the static router. The next portion of the route is reserved as soon as

possible disregarding that this may interfere other vehicles, cf. Fig. 8. In contrast,

Table 2 Comparison of the static routing approach with the dynamic routing approach with respect to

average duration (transit time) and computation time

Static approach Dynamic approach

Average duration (s) Computation time Average duration (s) Computation time

Avg. (s) Max. (s) Avg. (s) Max. (s)

SCEN-A 169.01 0.09 0.70 182.26 0.08 0.83

2/3L 186.91 0.12 3.86 190.70 0.08 0.98

BL-A 255.79 0.17 1.84 212.31 0.08 1.14

1/3L 693.14 0.31 4.48 259.72 0.08 1.24

Table 3 Evaluation of the deadlock detection algorithm with respect to different traffic densities

Cycle length # cycles per request # upper bound reached per request

Average Maximum

SCEN-A 2.85 9 0.33 0.00

2/3L 3.15 10 0.78 0.23

BL-A 4.72 13 1.24 0.33

1/3L 4.25 14 1.35 8.59

(a) (b)

(c)

Fig. 8 Illustration of the greedy reservation procedure used in the static routing approach. Due to the
greedy reservation procedure each small time window is used
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the dynamic routing algorithm does not make use of such gaps since the reservations

are made before the vehicles start traveling and it is forbidden to use time windows

that cannot be left before the next vehicle is scheduled on that area.

To conclude the evaluation, we remark that the static routing approach is good as

long as there are only a few potential deadlocks that have to be avoided. The greedy

reservation procedure pays off in this case. But when the reserved areas become

large because of a more complicated deadlock prevention, the static router becomes

inferior.

An evaluation of our approach based in a simulation system developed for the

HHLA CTA (Gawrilow et al. 2008) has shown that it is basically suitable for real-

time use. Actually, as far as we know, this is the first static routing approach that

prevents deadlocks before the computed route is executed and is able to cope with

large-scale vehicle fleets.

Acknowledgments We thank the referees for their valuable comments and for pointing out a flaw in the

proof of Theorem 1.
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