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Abstract A model with few variables is said to be parsimonious. If it is also

analytically tractable, physically realistic, and conceptually insightful, it is said to be

effective. Effective parsimonious models have long been used in fields such as

economics and applied physics to describe the aggregate behavior of systems as

opposed to the behavior of their individual parts. In transportation, these models are

particularly well suited to address big picture questions because they provide

insights that might be lost when focusing on details. This paper presents an

abbreviated history of effective parsimonious models in the transportation field,

classified by sub-area: regional and urban economics, traffic flow, queuing theory,

network dynamics, town planning, public transportation, logistics, and infrastructure

management. The paper also discusses the benefits of these models—fewer data

requirements, reduced computational complexity, improved system representation,

insightfulness—and ways of constructing them. Two examples, one from logistics

and one from urban transportation, are used to illustrate these points. Finally, the

paper discusses ways of expanding the application of effective parsimonious models

in the transportation field.

Keywords Effective parsimonious models � Macroscopic modeling �
Continuum approximations � Logistics � Urban mobility

C. F. Daganzo

University of California, 416A McLaughlin Hall, Berkeley, CA, USA

e-mail: daganzo@ce.berkeley.edu

V. V. Gayah (&)

University of California, 416G McLaughlin Hall, Berkeley, CA, USA

e-mail: vikash@berkeley.edu

E. J. Gonzales

Rutgers University, CAIT 120, Piscataway, NJ, USA

e-mail: eric.gonzales@rutgers.edu

123

EURO J Transp Logist (2012) 1:47–65

DOI 10.1007/s13676-012-0003-z



Mathematics Subject Classification 41A99

Introduction

Transportation professionals are often tasked with answering big picture questions

about large scale systems. There are a number of different approaches for

understanding, analyzing, and addressing these problems, ranging from the very

detailed to the very coarse. This paper examines the potential of parsimonious

models to study large-scale transportation systems. Parsimonious models rely on

few assumptions and have relatively few degrees of freedom or input parameters

(see, e.g., Gabaix and Laibson 2008). However, to be truly useful parsimonious

models should also be tractable, physically realistic, and conceptually insightful in

the sense of Gabaix and Laibson (2008). A model is tractable if it is easy to work

with (such as an analytical formula), physically realistic if it is consistent with real-

world behavior, and conceptually insightful if it reveals fundamental properties of

the system of interest. In this paper, parsimonious models that meet these three

conditions are called ‘‘effective’’.

Effective parsimonious models, if they exist, are particularly useful to describe

the aggregate behavior of large systems with many agents. For this type of model to

exist, some aggregate features of the system it represents should exhibit orderly

behavior despite any underlying complexity at the individual agent level. This turns

out to be the case for many systems. Organized aggregate behavior can be unveiled

in two ways: either by analysis (using approximations to smooth out details and

obtain simple analytical formulae) or by experimentation (observing relationships

between system variables in empirical or simulated data). Big picture questions

about large systems that exhibit this organized behavior can often be answered

without detailed information about the system and its agents. For example, a freight

company can use effective parsimonious models to determine the optimal number of

storage facilities to build without knowing the exact locations of customers that

need to be served. Similarly, transportation engineers can use these types of models

to design network-wide strategies to allocate scarce street space to buses and cars

without detailed information about travel demand patterns or bus routes.

Parsimonious models are not the norm in transportation where, perhaps because

of advances in computing power, the trend is toward increasingly detailed models

that can describe the behavior of individual components very well. Although

detailed models may be able to predict how particular components of a system will

behave, they are not well suited for searching a large space of policy options or

revealing general insights about a system. Detailed models are most useful to

evaluate specific policy options when detailed information is available and

disaggregate predictions of individual elements are desired. These models can also

be used to unveil orderly aggregate behavior that can be described with effective

parsimonious models if it exists and just as importantly to identify when it does not.

This paper explores the benefits of using effective parsimonious models to study

large transport systems. ‘‘Past use of effective parsimonious models’’ discusses past

use of these models in the fields of transportation economics, traffic, public transit,
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logistics, and infrastructure management. ‘‘Benefits of effective parsimonious

models’’ illustrates the benefits of effective parsimonious models in two domains

where these models exist: logistics and urban transportation. Finally, ‘‘Conclusion’’

suggests possible research directions.

Past use of effective parsimonious models

Effective parsimonious models have long been used to study phenomena when the

behavior of a population in aggregate is more important than the behavior of each

individual agent. Standard economic models typically look at the demand and

consumption behavior of groups of people rather than tracking each individual.

Similarly, models in applied physics fields such as fluid mechanics and thermo-

dynamics typically deal with groups of particles rather than each individual part in

detail. For example, fluids are modeled in a macroscopic way because the

relationship between useful aggregate properties such as temperature, pressure, and

velocity can often be predicted, whereas the path of each molecule is unknowable.

Transportation has much in common with economics and physics because

transportation systems typically involve many individual agents and also because

model users are primarily interested in the agents’ aggregate impact. The recent

trend in modeling transportation systems has been to develop increasingly detailed,

microscopic, and computationally intensive mathematical programs that take

advantage of developments in computing power. However, there is also some

history of using effective parsimonious models in many fields related to

transportation. These include regional and urban economics, traffic flow, queuing

theory, network dynamics, town planning, public transportation, logistics, and

infrastructure management.

Urban economics and regional science grew out of the field of economics and asked

questions about population groups and towns rather than individuals. Some early

models (e.g., Christaller 1933; Beckmann 1968) looked at the impacts of transpor-

tation costs on regional development. Starting in the 1960s, researchers began to ask

how urban space is organically self-allocated between development and transporta-

tion. Alonso (1964), for example, examined the trade-off between land rents and

transportation costs in a monocentric city by extending earlier work on agricultural

land use (Von Thünen 1826) to urban development. Economic equilibrium models

have been extended to (1) recognize the aggregate spatial requirements of

transportation infrastructure (Solow and Vickrey 1971), (2) identify the costs and

externalities of transportation, including the effects of congestion (Solow 1972, 1973),

and (3) describe equilibrium urban land use patterns (Anas et al. 1998).

Parsimonious traffic models also have a long history. They were created to

describe the effects of vehicle interactions within a traffic stream. Perhaps the most

famous example is Greenshields (1935) which used a conjectured linear relationship

between the average speed and density of vehicles traveling on a road to derive an

aggregate speed-flow relationship. A related third relationship between flow and

density has come to be known as the ‘‘fundamental diagram.’’ Parsimonious models

of traffic flow have also been created to describe the spatio-temporal dynamics of
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traffic on a single road using fluid approximations, e.g., the LWR model of Lighthill

and Whitham (1955) and Richards (1956). As demonstrated in Newell (1961), these

models are very good aggregate approximations of detailed car-following models in

the genre of Chandler et al. (1958).

Also noteworthy is the connection between traffic flow theory and models of

queuing systems. Moskowitz (1965) showed how vehicle trajectories on a link could

be jointly represented as a three-dimensional surface from which cumulative curves

of vehicle counts at discrete locations may be extracted to analyze various

phenomena. Cumulative curves date back to Edie and Foote (1959). They turned out

to be particularly useful to describe queuing phenomena in an aggregate way

(Newell 1971), and to express the LWR theory of traffic flow in queuing terms

(Newell 1993a, b, c). These queuing models can also be combined with

parsimonious economic equilibrium models to derive insights into commuters’

arrival and departure times at a road’s single bottleneck when the physical extents of

the queues are ignored, e.g., as in the original model by Vickrey (1969) and the

many works that followed it. Recently, these models have been extended to multi-

bottleneck freeways leading to a CBD, accounting for the effect of queue spillovers

and merging (Lago 2003).

Models that are parsimonious in one context may not be parsimonious in others.

For example, traffic models that parsimoniously describe vehicle interactions along

a link are not parsimonious when used to describe vehicle interactions on networks

because the resulting models then require require time-dependent origin-destination

tables and produce link by link results. Parsimonious models for networks should be

even more abstract because they must describe traffic behavior aggregated across

many links, e.g., an entire CBD. Early efforts to unveil network-level (i.e.,

macroscopic parsimonious models), such as Smeed (1963, 1966), used aggregated

traffic data to identify macroscopic relationships between road area and the

network’s capacity to serve traffic. Other macroscopic network models have sought

to relate average traffic speeds with network flows based on properties of the

network (Thomson 1967; Wardrop 1968; Zahavi 1972a, 1972b). The ‘two-fluid’

model based on the fraction of vehicles that are moving and stopped (Herman and

Prigogine 1979; Herman and Ardekani 1984) also described macroscopic relation-

ships between network-level traffic variables. Godfrey (1969) investigated the

relationship between network flow and network vehicle density and appears to be

the first to have developed a macroscopic relationship that realistically includes

congested conditions in urban networks by allowing for low speeds and high

densities for low flows. More recently, Daganzo (2007) proposed an aggregate

theory of network dynamics based on conjectured macroscopic relationships

between average network density, average network flow, and average network exit

rate. These relationships were confirmed to exist on networks with well-connected

streets and well-informed drivers (Geroliminis and Daganzo 2008). The relationship

between network density and network flow has come to be known as the

‘‘macroscopic fundamental diagram’’ (MFD). The relationship between network

density and network exit rate will be called here the ‘‘network exit function’’ (NEF).

Daganzo and Geroliminis (2008) stipulated conditions under which a network

should exhibit both an MFD and a NEF. This reference also showed how these
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relations are theoretically related to network characteristics such as its total length,

the number of intersections, and the average trip length.

In addition to describing the behavior of transportation systems, parsimonious

models have also been used to optimize their design. For example, there is a history

of using these kinds of models to design roadway networks. Several studies, perhaps

spurred on by the new town planning movement following World War II, used

principles of geometric probability to develop analytical relationships between some

of the network’s geometric properties, e.g., its arterial and freeway spacings, and its

performance (Creighton et al. 1960; Smeed 1963; Tanner 1968; Reynolds 1971;

Newell 1980). The insights from these models are useful both for designing and

explaining the geometry of road networks.

Effective parsimonious models have also been used to design public transit

systems. Holroyd (1967) presented analytical formulae to optimize the bus route

spacing and service frequency of a grid network. Subsequently, similar analyses of

transit networks have considered different geometry and demand patterns (Byrne

1975; Newell 1979; Wirasinghe and Ghoneim 1981; Daganzo 2010). Parsimonious

approaches have even been applied in a multimodal context to design coordinated

bus and rail transit systems (Wirasinghe et al. 1977). Estrada et al. (2011) extended

the model in Daganzo (2010), showed how to translate the model results into

detailed plans, and demonstrated that the aggregate cost predictions of the

parsimonious model were realistic.

Aggregate analysis methods have also been used to develop effective parsimo-

nious models to solve optimal facility location (Newell 1973), vehicle routing

(Eilon et al. 1971; Daganzo 1984a, b), and other problems arising in logistics, e.g.,

Larson and Odoni (1981) and Daganzo (1991). The latter presented ways to design

logistics systems with aggregate methods and demonstrated the value of macro-

scopic methods for modeling goods movement and distribution on a large scale. A

review of parsimonious models for logistics systems design as of 1996 can be found

in Langevin et al. (1996). More recent work in this area has dealt with applications

such as vehicle routing problems with service frequency decisions (Francis and

Smilowitz 2006) and facility location considering network resiliency (Cui et al.

2010). All the works in this genre are associated with analytical models in contrast

to the detailed genre, which uses mathematical programming to generate designs.

Hybrid methods that use analytic models to obtain preliminary designs and

numerical methods to iron out the final details have also proven useful in both

vehicle routing and facility location problems (Robusté et al. 1990; Ouyang and

Daganzo 2006).

Effective parsimonious models have also been used for transportation system

infrastructure management. Golabi et al. (1982) proposed a pavement management

system that groups highways across Arizona into performance states based on the

condition of the pavement. By also assigning maintenance activities actions to

groups rather than to individual facilities, the system is described so parsimoniously

that it can be easily monitored and optimized. Similar aggregation techniques have

been applied to bridge management systems (Golabi and Shepard 1997). Others

have extended the models to consider uncertainty in measurements and forecasts

(Smilowitz and Madanat 2000; Kuhn and Madanat 2005).
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The main advantage of parsimony in the above formulations for optimizing

facility location, logistics, and infrastructure systems is that they change very

difficult problems involving integer variables and uncertainty into much simpler

ones with continuous variables and differentiable functions.

Benefits of effective parsimonious models

Effective parsimonious models potentially offer five types of benefits: fewer data

requirements, reduced computational complexity, improved system representation,

transparency, and insightfulness. The first benefit is obvious since by definition

parsimonious models have very few degrees of freedom and require little data. Note

that when these data consist of system-wide averages of agent and network

characteristics, as is often the case, the amount of data is invariant with system size.

The second benefit is also obvious since effective models are analytically tractable.

Thus, they are computationally simple. Furthermore, effective parsimonious models

can sometimes be combined to represent a large system in terms of linked analytic

modules, and in this role they also simplify computation. The third benefit is less

obvious. Parsimonious models can sometimes represent a large system more

accurately than detailed models because statistical relations needed to capture

uncertainty can often be expressed more realistically at the aggregate level—and in

some cases can only be formulated at this level. Moreover, due to the law of large

numbers, statistical relations become simpler and more robust with increased

aggregation. ‘‘Logistics: designing a system of warehouses’’ expands on this idea.

The final two benefits follow from the simple nature of the models. Transparent,

generic insights are obtained because relationships between important parameters

are encapsulated by transparent formulas. This can help improve understanding and

lead to the identification of simple and effective policies.

By contrast, detailed models require information about each of the agents within

a system. The amount of required data increases with the size of the system. For

many systems this includes information that is ultimately unknowable, like detailed

time-dependent origin-destination data of trips that have not yet occurred on urban

traffic networks. By their nature, detailed models require computers and complex

numerical methods to be applied. As a result, the models are less transparent,

difficult to verify and can only be queried if one has access to the machine. This can

be problematic because, even though these models can describe the behavior of

individual components very accurately, inaccuracies can still arise due to the

underlying assumptions, uncertainty in the data, and errors in data collection or

entry. If these pitfalls are not recognized, detailed models might give the user a false

sense of precision. Note as well that the stochastic nature of many detailed

simulations often makes it difficult to separate noise in the output from the

meaningful relationships that are of interest; and that the results of these models are

numerical lists, which tend to obscure insight. Still, detailed models, used

meticulously, are useful for testing designs and policies with complete and accurate

data and for fine-tuning them over small solution spaces.
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The remainder of this section illustrates some of the benefits of effective

parsimonious models with two examples. ‘‘Logistics: designing a system of

warehouses’’ uses the surprising interplay between modeling approximations and

uncertain data to derive analytically an effective parsimonious model that can be

used to optimize the design of a network of warehouses more easily and more

accurately than with a more detailed approach. ‘‘Urban mobility: management of an

urban network with multiple modes’’ uses a two-module parsimonious model to

show how an urban street network can be optimally configured and managed during

a rush-hour to accommodate both private and public transportation. One of the

modules is derived analytically, while the other is derived empirically.

Example 1, Logistics: designing a system of warehouses

Before considering the design problem, we first examine the distribution costs from

a single warehouse. ‘‘Accuracy of continuous approximations in the presence of

uncertainty’’ shows that if the warehouse’s shipment sizes are uncertain, more

accurate cost estimates are obtained by smoothing the exact, discontinuous relation

between shipment cost and shipment size. This demonstrates that accuracy is not

necessarily sacrificed (i.e., system representation improves) when approximations

are used to derive a parsimonious model. ‘‘Continuous approximations for design of

large systems’’ then uses this approximation to derive a multi-warehouse

parsimonious model and optimize the configuration of a warehouse system. It also

demonstrates how the parsimonious model produces insights while reducing data

requirements and computational complexity.

Accuracy of continuous approximations in the presence of uncertainty

The following example is adapted from Daganzo (1987, 1991). Consider a local

warehouse that ships items to I customers every day. Individual customers are

indexed by i where i ¼ 1; :::; I; and are located at a distance di (km) from the

warehouse. On any given day, n, where n ¼ 1; :::;N; customer i requires vi;n

truckloads of items. Trucks dispatched from the warehouse visit only one customer

per trip; therefore, a whole truck must be dispatched to carry the partial load if vi;n is

not an integer. The transportation cost required to serve customer i on day n is:

ci;n ¼ vi;n

� �
ðcs þ cddiÞ; ð1Þ

where vi;n

� �
is the smallest integer greater than or equal to vi;n; cs ¼ 100 ($/truck) is

the fixed cost to dispatch a single truck and cd ¼ 1 ($/truck-km) is the variable cost

per truck-kilometer traveled.

Customer demand is known at the end of the day when trucks are dispatched and

the cost to serve all I customers can be calculated exactly only at this time. Suppose,

however, that for other decision-making purposes costs need to be estimated in

advance. At this time, an estimate of customer demand, ui;n; is available. This

estimate differs from the actual demand by a random amount ei;n so that for any

given demand, vi;n; the estimated amount is ui;n ¼ vi;n þ ei;n: We assume that the ei;n
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are independent draws of a normal random variable with mean 0 and variance r2
e :

Since the ei;n are unknown, the cost to serve each customer can be estimated by

replacing the unknown demand in (1) with its estimate:

ei;n ¼ ui;n

� �
ðcs þ cddiÞ: ð2Þ

Note that ui;n

� �
is a discontinuous function with discrete jumps. It might be

convenient in our application to smooth out this term by approximating it with

another that is continuous with respect to ui;n: To this end, we choose the linear

function that minimizes the maximum error with respect to (2):

e0i;n ¼ ðui;n þ 0:5Þðcs þ cddiÞ: ð3Þ

We wish to determine how well (2) and (3) estimate actual transportation costs in

the system. To this end, let ci;n � ei;n _¼ di;n and ci;n � e0i;n _¼ d0i;n; and denote the sum

of these two error variables over all i as dn and d0n; respectively. The accuracy of the

cost estimates for day n can be determined by comparing the expected mean square

errors Mn of dn and d0n for a given value of re:
Consider the data presented in Table 1 for N ¼ 1 and I ¼ 5 and assume for now

that re ¼ 0:2: For this low standard deviation, each di;n is a scaled Bernoulli random

variable, so it is easy to calculate its mean and variance. The resulting five means

and variances can then be composed to yield M1ðd1Þ ¼ 87; 928 ($2). We also find

that d0i;n is a normal random variable, and using the same method we calculate that

M1ðd01Þ ¼ 40; 900 ($2). Note that the mean square error of the discrete formulation

is significantly greater than that of the continuous approximation, even though the

former is ‘‘exact.’’ The reason for this perhaps counterintuitive result is that when

the discrete cost expression makes an error, the error amounts to the cost of a full

truckload, whereas the errors in the continuous approximation are always relatively

small. It turns out that infrequent large errors are more damaging to accuracy than

persistent smaller ones.

The reader may wonder whether this result is due to the collection fvi;1g chosen for

day 1, but this is not the case. To see this, consider now the accuracy of the two

approximations for arbitrary I when days are statistically identical, N is large and vi;n

varies with n. We assume that vi;n ¼ vi þ ci;n where only the vi are known and the ci;n

are independent draws of a normal random variable with mean 0 and variance r2
c � 1:

Under these conditions, the average round up amount in vi;n

� �
(i.e., the difference

between vi;n

� �
and vi;n) is approximately 0.5 so Enð vi;n

� �
Þ � vi þ 0:5: The ui;n are

now ui;n ¼ vi þ di;n þ ei;n; so they too are independent random draws of a normal

random variable with mean vi and large variance, r2
c þ r2

e � 1: As a result,

Enð ui;n

� �
Þ � vi þ 0:5 in this case too. Therefore, Enðdi;nÞ ¼ Enðd0i;nÞ ¼ 0 ($), and

Table 1 Store location and demand data

i 1 2 3 4 5

di (km) 100 200 300 400 500

vi,1 (actual truckloads) 5.5 7.2 5.7 2.3 1.8
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both formulas provide an unbiased estimate of cost. Additional manipulations can

be performed to find that the mean squared error for any location and day is

Mnðdi;nÞ � 0:8reðcs þ cddiÞ2 forre� 0:4; and

ðr2
e þ 1=6Þðcs þ cddiÞ2 forre [ 0:4;

�
ð4Þ

and:

Mnðd0i;nÞ ¼ ðr2
e þ 1=12Þðcs þ cddiÞ2: ð5Þ

Inspection of (4) and (5) reveals that the continuous approximation provides better

estimates every day at every location if re [ 0:123: Thus, the exact discrete

formulation performs better only when errors in the demand estimation are quite small.

If significant uncertainty exists, the approximation is more precise. This result

illustrates a broader principle: that if there is uncertainty in the input data of an

optimization problem, smoothing a discrete objective function may not just simplify

the problem formulation but may also improve accuracy. This observation applies

both to ‘‘one-shot’’ estimation problems arising in system design problems and to

‘‘multi-period’’ estimation problems arising in dynamic operations and control

problems.

Continuous approximations for design of large systems

We now examine the effect of smoothing discrete variables over both time and

space and use this approximation to estimate the distribution costs of a system of

warehouses serving many customers. We then show how this type of approximation

can be used to optimize the design of this system—something which may be very

difficult to do without an approximation. The following is based on Newell (1973)

and Daganzo and Newell (1986):

For long term planning, neither the vi nor the di may be known; so there is

additional uncertainty. It is assumed, however, that the distribution of customers and

the spatio-temporal distribution of demand across some service region are known.

As before, we deal with uncertainty using expected values.

As an example, assume that customers are randomly (but uniformly) distributed

across space, and first consider the distribution cost for a single warehouse serving I
customers in a region of area A (km2). Assume that the warehouse is fairly centered

in this region, and that the region is fairly round in shape, so that EiðdiÞ can be

expressed as a function of A; dðAÞ: Also assume that as in the previous section

vi;n ¼ vi þ ci;n; but since the vi are unknown they are now independent draws from a

normal random variable with known mean v and variance r2
v � 1:

The (unknown) actual transportation cost to serve all I customers over N days is

then

C ¼
XN

n¼1

XI

i¼1

vi;n

� �
ðcs þ cddiÞ; ð6Þ

which for design purposes is approximated by the knowable quantity:
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E ¼ EðCÞ ¼
XN

n¼1

XI

i¼1

Ei;nð vi;n

� �
Þðcs þ cddðAÞÞ: ð7Þ

As before, E i;n vi;n

� �
� vþ 0:5 since the vi;n are independent random draws from

a normal distribution with mean v and variance r2
v þ r2

c � 1: And, for example, if

distances are given by an L1 metric and the region is approximately diamond-

shaped, then

dðAÞ ¼ 2
ffiffiffi
2
p

6

ffiffiffi
A
p

: ð8Þ

(For other shapes only the coefficient of (8) changes, but this change is slight if the

shape is approximately round.) Thus, (7) reduces to:

E � IN ðvþ 0:5Þ cs þ cd
2
ffiffiffi
2
p

6

ffiffiffi
A
p� �� 	

: ð9Þ

Equation (9) shows that the total transportation cost over N days can be

approximated knowing very little data: just the average daily customer demand (v),

the total number of customers (I), and the size of the region (A). Equation (9) is an

unbiased estimate of cost since EðCÞ ¼ E by construction. Additionally, since

var(C) is proportional to IN (see 6) and ðEÞ2 is proportional to ðINÞ2 (see 9), it

follows that varðC=EÞ ! 0 as ðINÞ ! 1: Thus, C=E ! 1 in probability as IN !
1: This shows that the accuracy of (9) improves with the scale of the system.

Let us now see how to use this approximation to optimize the design of a system

of warehouses. Suppose that in order to reduce total costs, a distribution company

wishes to build an undetermined number of warehouses, T, in a service region of

area R (km2) containing J customers. Each additional warehouse costs cT ($/day) to

operate, but additional warehouses also reduce transportation costs because items

can be shipped to customers over a shorter distance. We wish to determine the

optimal number and location of warehouses that should be built to minimize the

sum of transportation and operating costs, Z.

Without approximations, determining the optimal number of warehouses could

be a very difficult problem. Even if the location of each customer and its demand

were known exactly (i.e., the set fdi; vi;ng was known for all i and n), the cost and

optimal warehouse locations would have to be determined for each value of T to

determine the optimal number of warehouses, T�: This could be done by

formulating a tessellation problem with discrete locations and solving this problem

with a mixed-integer mathematical program. If uncertainty is included, the solution

becomes even more difficult. Stochastic programming methods could be used but

these tend to limit the solution space and as a result yield sub-optimal solutions.

Thus, finding an optimum solution may be quite difficult, perhaps even impossible,

when uncertainty is included.

On the other hand, (9) can very easily be used to construct a differentiable

objective function. If the warehouses are evenly distributed in the service region so

that each warehouse serves an approximately round area of size A � R=T with
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I � J=T customers each, the objective function becomes Z � ET þ NcT T; where E
is given by (9). The result is

Z � csJNðvþ 0:5Þ þ JNcdðvþ 0:5Þ 2
ffiffiffi
2
p

6

ffiffiffiffi
R

T

r

þ cTNT : ð10Þ

Note that (10) can be used even before knowing the warehouse locations. In

particular, we can find

T� ¼ cdJðvþ 0:5Þ
ffiffiffiffiffiffi
2R
p

6cT

� 	2=3

; and ð11aÞ

Z� ¼ csJNðvþ 0:5Þ þ N 21=3 þ 24=3

 � cdJðvþ 0:5Þ

ffiffiffiffiffiffiffiffi
RcT

p

6

� 	2=3

: ð11bÞ

Equations (11a) and (11b) yield insights that could not be easily observed with

numerical methods, even if these methods could yield the optimal solution. For

example, we see at a glance that if freight rates drop by a factor a and the remaining

data take any values whatsoever but stay invariant, then the number of warehouses

should be reduced by a factor a2=3; and this reduction in the number of warehouses

cuts the variable part of Z� by the same factor.

We expect for the same reasons as before that the accuracy of (11b) would

increase with the scale of the system. Note as well that for this particular problem,

the results in (11a) and (11b) are the same both with and without uncertainty.

Problems do exist where the results differ if uncertainty is included, but the same

basic ideas apply. Simulations in Cui et al. (2010) confirm that the accuracy of this

type of approximation improves with scale in these cases too.

Equation (11a) provides a good approximation of the optimal number of

warehouses but does not pinpoint their location. Since these locations should define

approximately round service areas of equal size, they can be determined with

gradual improvement heuristics based on this property, e.g., with the ‘‘flexible disk’’

method in Ouyang and Daganzo (2006). If appropriate, one may then refine the

resulting pattern using the exact formulation and another improvement algorithm.

The ideas of this example can and have been used for other transportation design

problems, including many where the demand is not uniform, e.g., considering

inventories and inbound costs into the warehouses, hierarchies of warehouses,

complex multi-modal transportation systems, and real-time dispatching problems.

The common idea is that analytical approximations are used to narrow the range of

potential solutions to obtain a tentative design; exact, detailed methods are then used

to fine-tune the design.

Example 2, Urban mobility: management of an urban network with multiple

modes

Let us now consider an urban mobility problem involving cars and buses.

‘‘Minimizing delay to cars during a rush hour’’ shows how an effective

parsimonious model of urban traffic derived from empirical data can be used to
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manage an urban network during a rush-hour period when only cars are present.

‘‘Optimizing allocation of urban street space to two modes’’ extends the results to

determine how much of the existing car network should be dedicated to transit. This

example again demonstrates the benefits of effective parsimonious models in terms

of data requirements, computational complexity, and conceptual insightfulness.

Minimizing delay to cars during a rush hour

The following example is based on data for Yokohama, Japan (Geroliminis and

Daganzo 2008); see Fig. 1. The street network of Yokohama has a total length of

L ¼ 157 (lane-km) and has been shown to exhibit both a consistent MFD and

constant average trip lengths, d ¼ 2:3 (km). Thus, the network has a consistent

NEF, f ¼ FðnÞ; where f is the predicted rate at which vehicles complete trips and

exit the network, and n is the total number of vehicles on the network. Over the

range of observed traffic states, the data of Fig. 1 can be approximated by the

following NEF:

FðnÞ ¼ 2:28� 10�8n3 � 8:62� 10�4n2 þ 9:58n; for n 2 ½0; 14; 100	; ð12Þ

which fits the data with R2 ¼ 0:99: Note that FðnÞ is concave with a maximum exit

rate l ¼ 33; 168 (veh/h), achieved for no ¼ 8; 271 (veh).

Equation (12) is specific to Yokohama. A city’s NEF depends on network

properties such as total network length, block lengths, signal timings, and free-flow
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Fig. 1 Network exit function for Yokohama, Japan (source: Geroliminis and Daganzo 2008)
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speeds. In particular, if only L0 (lane-km) of the total network length L is made

available for car use in a way that does not change the MFD significantly, then the

new NEF, F0ðnÞ; should be related to the old by

F0ðnÞ � L0

L
F

L

L0
n

� �
: ð13Þ

The new maximum exit rate will then be

l0 ¼ L0

L
l; ð14Þ

and this should occur for an accumulation n0o ¼ ðL0=LÞno:
Assume for now that cars are allowed to use the entire network length (L0 ¼ L).

Consider an idealized rush-hour period in which the network starts out empty,

experiences a demand of rate kc until Nc cars have arrived, and then the demand rate

drops to zero. A control scheme is proposed to limit the rate at which arriving cars

are allowed to enter the network to keep it from becoming congested. It is assumed

that the control scheme induces cars to wait where they do no harm, e.g., on access

streets outside the network or at the trip origins themselves. We wish to determine

the optimal cumulative number of cars that should be allowed to enter the network

at all times, G(t) or equivalently the time-dependent entry rate, _GðtÞ: The goal is to

minimize the total time that users spend in the system including both time waiting to

enter and time being ‘‘served’’ (i.e., traveling) in the network. Since cars exit the

network at rate F(n), their average ‘‘service time’’ is n=FðnÞ if conditions change

slowly with time, as per Little’s formula.

It is known (Daganzo 2007) that for any cumulative arrival curve, the optimal

control strategy is intuitive and quite simple: allow as many cars to enter the network

as possible without ever allowing the accumulation to exceed no. For our single-peak

rush hour, this strategy consists of three stages: (1) at the beginning of the rush, cars

are allowed to enter the network as quickly as they arrive, _G�ðtÞ ¼ kc; to saturate the

network to n ¼ no; (2) once accumulation reaches no, entrance to the network is

limited to _G�ðtÞ ¼ l; and since F(no) = l the accumulation no is maintained during

the heart of the rush while the system’s service rate is maximized; (3) at the end of the

rush, when there are not enough cars to maintain the critical accumulation no, cars

are again allowed to enter the network as they arrive.

An advantage of this strategy is that it only requires one piece of information

(no), and no modeling. If desired, proxies for no that are easy to measure such as a

critical average speed or critical average occupancy across a sample of relevant

detectors can be used. If a significant number of trips originate outside the central

network, the control instrument can be a ring of traffic signals which can be used to

restrict entry rate. A drawback of this approach is that it can create queues blocking

the roads outside the controlled area. Alternatively, dynamic prices equivalent in

magnitude to the queuing cost for each trip can be charged to convert queuing time

into productive revenue and incentivize travelers to wait at home.

Figure 2 presents the queuing diagram with the optimal result for our example.

The solid black line represents the (given) cumulative arrivals and the dashed black

The potential of parsimonious models 59

123



line the optimum cumulative entries (G�ðtÞ), and the solid gray line the cumulative

exits corresponding to the optimal control.1 The shaded region in this figure

represents the total wait outside the network, and the unshaded region below is the

total service time inside the network. Using this queuing diagram, we approximate

the total car delay (including wait and service time) as:

Tc �
N2

c

2

1

l
� 1

kc

� �
for k[ l: ð15Þ

Note that the total delay is proportional to the square of the number of car users in

the rush hour and that it decreases with the service rate, l.

In this example, a parsimonious model of traffic on an urban network allowed us

to identify an efficient control strategy without the extensive data collection, data

entry, computation requirements, and possible human errors of microscopic

approaches. The part of the Yokohama network under consideration covers an

area of A = 10 (km2) and consists of over 1,000 directional links. In order to

analyze the effect of a control strategy on the system-wide queuing time and service

time with detailed simulation models, each of these links and their intersections

would need to be explicitly modeled. This would require data on the properties of

each street and traffic signal, as well as detailed time-dependent origin destination

information which is expensive and difficult to obtain. Modeling assumptions about

the behavior of traffic would also have to be made. It should be clear that a control

policy developed on the basis of simulations is not just difficult to optimize, but may

not perform as anticipated if the detailed model on which it is based contains

significant errors.
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Fig. 2 Queuing diagram for
cars during the morning rush
hour

1 The solid gray line in Fig. 2 is slightly curved at the beginning and end of the rush since network

accumulations are increasing and decreasing at those times. The curved portions are only an

approximation, however, because the NEF model does not describe well situations where the network

accumulation changes rapidly. We shall therefore treat the departure curve as if it was linear. The

resulting error is not of much consequence when the middle period is long.
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Optimizing allocation of urban street space to two modes

Let us now study how much of Yokohama’s network should be devoted to transit.

To do this macroscopically, focus on the fraction a of the streets dedicated to transit.

The more street space that is dedicated for transit, the lower the cost to users of the

transit system. However, this lower transit cost comes with a trade-off—higher cost

for cars. Thus, the issue is one of balancing costs to users of both modes. The trade-

off is explored by linking together two parsimonious models: one analytically

constructed for transit and one empirically constructed for cars.

Consider transit users first. We assume that transit is uniformly deployed across

the network, exists only on the a L (km) of dedicated lanes, and does not interact with

car traffic. If the transit system has a fixed number of users, Nt, and operates with a

fixed headway and constant commercial speed, independent of the amount of space

provided for transit, then the total costs to transit users is fixed except for the user

access cost which depends on the spatial coverage, i.e., on a. Since the total length of

the transit network is a L and the system is uniformly distributed across the city, users

must travel an average distance of approximately A=ð2aL) to access the system on

each end of a trip. The average access time for each transit trip is A=ðaLvwÞ;where vw

is an effective average walking speed including delays at crosswalks and recognizing

that people dislike walking more than riding. Since each transit user experiences this

access time, the a-dependent part of the total transit cost is:

TtðaÞ ¼
NtA

aLvw
: ð16Þ

Now consider the Nc car users. For simplicity, we define total costs to these users

as the total vehicle delay experienced during our idealized rush-hour period. In this

bi-modal network, cars can only travel on L0 ¼ ð1� aÞL (km) of the street network.

We assume the optimal control strategy is used to limit vehicle entry into the

network. Therefore, total car delay can be calculated with (15) after replacing l
with l0 ¼ ðL0=LÞl ¼ ð1� aÞl; as per (14), assuming the optimal control strategy is

used to limit vehicle entry into the network. Thus, the total costs to car users when a

portion a of streets is dedicated to transit is

TcðaÞ ¼
N2

c

2

1

ð1� aÞl�
1

kc

� �
: ð17Þ

Note that the transit costs (16) increase with Nt whereas car costs (17) increase with

the square of the number of car users. This happens because only cars suffer from

congestion.

For a given number of users, the optimal allocation of space is associated with the

value of a that minimizes TðaÞ ¼ TcðaÞ þ TtðaÞ: Manipulation of (17) and (16)

yields closed form expressions for the optimal values, a* and T*:

a� ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c Lvw

2NtAl

s !�1

; and ð18aÞ
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T� ¼

ffiffiffiffiffiffi
N2

c

2l

s

þ
ffiffiffiffiffiffiffiffi
NtA

Lvw

r !2

�N2
c

2k
: ð18bÞ

Now suppose that the number of morning trips made by car and transit in Yokohama

are the same, Nc ¼ Nt ¼ 70; 000 (trips), that each car only carries a single passenger

and that users access the transit network at an average speed of vw ¼ 1:5 (km/h).2

Using the Yokohama data, we find that a� ¼ 0:167: This means that about 26.2

lane-km of road space should be allocated for transit, and this would be associated

with a total cost of T� ¼ 36; 476 (pax-h).

Equations (18a) and (18b) yield space-allocation insights that would be hard to

obtain using detailed microscopic tools. For example, using first-order Taylor series

approximations of (18a) and (18b) one can find the elasticities of a� and T� with

respect to Nc and Nt, and evaluate the effect of switching e
 Nc;Nt users from car

to transit. For the Yokohama scenario, such a switch would increase the optimal

street space devoted to transit 4:68e� 10�4 (km) and decrease the resulting total

user cost by 0:280e (pax-h). So each individual switch saves 0.28 h of travel to

society if it is accompanied by 0.47 m of extra bus-lane length.

This model can also be extended to determine an equilibrium distribution of car

and transit trips for the city if the demand for each mode can be approximated by a

function of their cost, i.e., if ðNc;NtÞ � DðTc; TtÞ: The reader can verify with this

type of macroscopic equilibrium analysis that transit investments in a crowded city

benefit everyone, including car users. However, investments in car infrastructure are

essentially wasted because they attract people who would otherwise ride transit, and

as a result cannot reduce total user cost.

More sophisticated transit cost functions have been developed and can be used in

general cases where bus headways and commercial speeds are not fixed; see

Gonzales (2011). However, the basic point remains. Effective parsimonious models

developed with aggregated data can be used to develop tentative space-allocation

policies without considering which specific streets and lanes will be used by the

transit vehicles. These details can be formalized once a policy has been chosen. A

final detailed evaluation should confirm what the analyst already knows.

Conclusion

There is a history of using effective parsimonious models to describe large systems

in the transportation field, especially in disciplines such as economics, planning,

traffic, logistics, and urban transportation. By focusing on aggregate behavior and

ignoring fine details, analysts in these disciplines have developed models that are

tractable and can be used to answer big picture questions. Properly formulated, these

2 We imagine that Nt includes all transit users for half of the day while Nc includes only the car users for

the rush-hour period. This is because the spatial coverage of transit affects transit users during both peak

and off-peak periods, while it only affects car users for the periods when the network is congested (i.e.,

during the rush). Since two rush-hour periods occur every day, we associate half of the daily transit users

with each rush.
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models can be physically realistic and quite accurate and in some cases, particularly

if uncertainty is an issue, even more so than their detailed counterparts. Futhermore,

since effective parsimonious models are simple and conceptually insightful, they

readily yield optimal designs and policies. Although they are not a substitute for

detailed approaches, effective parsimonious models of large systems complement

more detailed analysis methods. Large-scale preliminary planning or strategic

decisions can be made based on these models, fully recognizing a problem’s

uncertainty. More detailed numerical techniques can then be used to refine the

preliminary strategies into detailed final plans.

For the future, it should be useful to identify through analytical methods and

empirical experiments additional transportation systems whose large-scale behavior

is sufficiently reproducible to be captured by effective parsimonious models. Not all

systems fall in this category. If a system’s aggregate behavior is unstable or chaotic,

as occurs for congested freeway networks, we may have to accept that some of the

system’s macroscopic features cannot be predicted. However, even in this case, we

may look for policies that make the system predictable and for parsimonious models

of the resulting behavior. After all, policies of this type are the ones most likely to

be desirable. Efforts should also be made to better understand the acuracy of these

models.

Applications that combine parsimonious models of different types also seem

worth exploring. Examples are the combinations of: transit and cars in cities as in

‘‘Optimizing allocation of urban street space to two modes’’; urban logistics and

urban traffic; transit scheduling and control; country-wide port and land transport

policies; and the distribution and use of new forms of energy for automobility.

Efforts should also be made on the numerical front. Detailed numerical tools

typically ignore the reproducible system behavior at the aggregate level. Therefore,

research into fine-tuning design algorithms that use the information obtained from

parsimonious models to obtain detailed implementable solutions is worthwhile.

Some fine-tuning tools of this type have been shown to perform well, as was

discussed in the review portion of this paper, but these tools do not exist for every

application.

In summary, for many high-level planning, design and management problems,

effective parsimonious models based on aggregate values provide a fast and

accurate method to search across a wide space of possible solutions. Effective

parsimonious models of large systems will be one of the tools necessary to address

the emerging big picture problems in the transportation field.
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