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Abstract We consider the design of a passive optical telecommunication access
network, where clients have to be connected to an intermediate level of distribution
points (DPs) and further on to some central offices (COs) in a tree-like fashion. Each
client demands a given number of fiber connections to its CO. Passive optical splitters
installed at the DPs allow k connections to share a single common fiber between the
DP and the CO. We consider fixed charge costs for the use of an edge of the underly-
ing street network, of a DP, and of a CO and variable costs for installing fibers along
the street edges and for installing splitters at the DPs. We present two Lagrangian
decomposition approaches that decompose the problem based on the network struc-
ture and on the cost structure, respectively. The subproblems are solved using mixed
integer programming (MIP) techniques. We report computational results for realistic
instances and compare the efficiency of the Lagrangian approaches to the solutions of
an integrated MIP model.
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Introduction

Motivation In the deployment of passive optical networks (PONs), optical splitters
are used to enable a single optical fiber to serve multiple premises. Optical line ter-
minals (OLTs) are placed at the service provider’s central offices (COs) and a number
of optical network units (ONUs) is placed either at the location of end users (FTTH
deployment) or close to them (FTTC/FTTB deployment). Splitters of different types
(e.g., 1:16, 1:32, or 1:64) are placed at the distribution points (DPs) between ONUs and
OLTs and several splitters can be aggregated in a single cabinet. A great advantage of
PONs compared to point-to-point network architectures is that it reduces the amount of
fiber and the overall set-up costs required for serving the end premises. Telecommuni-
cation providers are interested in minimizing the investment costs for building a PON,
while providing the required services. The main planning task consists of deciding on
the location and capacity of ONUs and DPs and the routing paths to lay down the opti-
cal fiber, so that the required services are available at the end premises. This problem is
of great relevance for the deployment of new generation telecommunication networks.
In this paper, we will introduce a new network design problem that we will refer to
as the Two-Level FFTx Network Design Problem (2FTTx). This problem captures the
most important optimization aspects of the deployment of PONs with a single layer
of splitters between ONUs and OLTs. At the same time, our problem simplifies the
very complex costs and capacity structure stemming from the modular cable and duct
types installed on the links. Rather than assuming that the cable cost of each link
is a stepwise increasing function of the number of optical fibers, we linearize those
values and assume that a fixed price has to be paid for each single fiber installed on an
edge. In terms of cost, we only distinguish between fibers connecting ONUs to DPs
and DPs to OLTs to account for the typically different cable and duct configurations
used in these subnetworks. We will refer to the end premises as the end customers. A
subnetwork containing the routing paths between COs and DPs is called the feeder
network (FN), and a subnetwork containing the routing paths between DPs and end
customers is called the distribution network (DN). In our setting, we assume that both
the feeder network and the distribution network must have tree (or, more precisely,
forest) topologies. Although there are no technological reasons for this restriction,
this requirement is typically imposed by the network operator for practical reasons.
With a tree-like network structure, deployment, upgrade and maintenance of a PON
become much simpler and less error-prone in practice. For the same reason, operators
usually also forbid to use the same cable (fiber bundle) for both feeder network and
distribution network fibers, for fibers heading into different directions, or for fibers
heading towards different COs. Figure 1 illustrates an example instance.

Our main goal in this paper is to develop computational methods that enable practi-
tioners to (approximately) solve very large instances of the 2FTTx problem with very
little computing time. Such methods are of particular interest in the early stages of the
long-term strategic network planning, when numerous planning scenarios with vary-
ing technological assumptions and demand, cost, or revenue predictions are evaluated.
These are then used to identify the most important parameters and make the global
strategic decisions concerning technology vendors, the use of existing or the building
of new infrastructures, or the long-term evolution of the network, for example. These
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(a) (b)

Fig. 1 a An example of the input graph. Triangles are customers, squares are potential DPs, pentagons are
potential COs and circles are the remaining nodes. Numbers below triangles are customer demands. b A
feasible solution. Two COs and three DPs are opened. Numbers next to the DPs are the splitter ratios—one
splitter per DP location is installed. Consequently, flow along thick edges is one

case studies require methods that are able to solve the 2FTTx network design problem
for very large network regions consisting of several PON areas very fast and with
a sufficiently small optimality gap, but not necessarily to optimality. The proposed
Lagrangian decomposition approaches perfectly meet these requirements. They are
also very useful to quickly compute good bounds and approximate solutions in later
planning stages. For the final network and hardware configuration planning, which is
typically performed only once for each of the much smaller single PON areas, it is,
however, advisable and computationally feasible to use a more accurate model of the
various technical elements (such as the different duct and cable types) to fully exploit
all potential savings.

Problem definition

More formally, the 2FTTx is defined as follows: We are given an undirected graph G =
(V, E) with the set of nodes V partitioned into customers (VC), potential distribution
points (VD), potential central offices (VCO) and the remaining nodes (VO). At least one
central office has to be opened, and each customer v ∈ VC has to be provided with at
least dv ≥ 0 fibers. Fiber connections run from a CO, following a path through at least
one DP, until they reach an end customer. Splitters are installed at DPs so that every
single fiber emanating from a CO can be split into multiple fibers continuing towards
customers according to the splitting ratios of the given splitter types. A fiber path
emanating from a CO must pass through exactly one splitter at some DP on its way
towards a customer. This splitter ’splits’ the path into its feeder sub-path between the
CO and the DP where this splitter is located and the distribution sub-path between the
DP and the customer. Other DPs that are installed along the fiber path are bypassed by
the feeder and the distribution sub-path. Note that we assume the node sets VC, VD, and
VCO to be disjoint in our input to properly model the different functionalities and costs
associated with the elements at ONUs, splitters and OLTs in the considered two-level
hierarchy. A network location that may contain a central office or a distribution point or
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both, for example, is represented by two co-located (and connected) nodes belonging
to VC and VD, respectively. The approach of using different nodes representing the
different functionalities that a network location may have is extremely powerful, as it
enables practitioners to selectively permit or forbid such combinations depending on
the individual location. Also note that (some of the) fibers can simply bypass nodes
in VD or in VC and VCO without being split or without being terminated, respectively.

We consider various capacities and fixed and variable costs related to the setup
of the infrastructure and to the installation of fibers and components of the network.
Along each edge (trail) e ∈ E , at most ue fibers can be installed in the feeder network
and at most ue fibers can be installed in the distribution network. The fixed-charge
cost for setting up edge e ∈ E is ce. The cost of installing a single feeder network fiber
along edge e ∈ E is c f

e and the cost of a single distribution network fiber is cg
e . We

assume different costs for feeder and distribution fibers to account for the typically
different cable and duct configurations used in these subnetworks in practice.

At the potential distribution point and each central office, we consider the following
capacity restrictions and costs. At each CO v ∈ VCO, a total number of at most uv

feeder fibers may be terminated. Setting up CO v ∈ VCO induces a fixed cost of
cv . As each fiber that emanates from a CO is terminated (or, more precisely, split)
by exactly one splitter at some DP, we do not introduce an individual parameter for
the cost of terminating a single fiber at a CO. Instead, this cost is included in the
cost of the splitter device that necessarily has to be installed at the other end of the
fiber.

Similarly, at each DP v ∈ VD, a total number of at most uv distribution fibers may
be terminated (or, more precisely, connected to a splitter) and setting up v ∈ VD costs
cv . Using different values for uv and cv , different classes of DPs, such as street cabinets
or underground closures, can be easily modeled. If several classes are possible at the
same location, these can be modeled via different co-located nodes in the graph. Let T
denote the set of all available splitter types that can be installed in any of the considered
potential DPs. For each t ∈ T , let st be the splitter ratio. As not all splitter types can
be installed in all DPs, given node-dependent upper bounds Jt,v , t ∈ T and v ∈ DP,
describe how many splitters of which type can be installed at the different potential
DPs. The costs of installing one splitter of type t ∈ T at DP v ∈ DP is ct,v . Recall that
this cost also includes the termination cost at the CO for the feeder fiber supplying
this splitter.

Our model also permits to limit the number of chosen DPs and COs, which has
been of practical interest, especially in multi-period network deployment studies. For
this, the input parameters ND and NCO express the maximum total number of allowed
DPs and COs, respectively. In the computational experiments reported in this paper,
however, these parameters are infinity.

The optimization goal consists of deciding which COs and which DPs to open,
which splitters to install at the DPs, and how to route paths in the FN and the DN so
that demands of all customers are satisfied at minimum cost. Thereby, DP and CO
locations can be traversed as intermediate nodes, in which case, no opening costs need
to be paid for them. In addition, even if the feeder and the distribution network both
use the same edge, the fixed-charge cost ce is paid only once. Moreover, FN and DN
are required to have tree topologies.
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Related Literature. There are several problems studied in the literature that deal with
the design of FTTx networks. Connected Facility Location, for example, considers
the design of a tree–star network, where facilities (e.g., splitters) are connected to
customers in a star-like fashion. There are no splitter- or edge-capacities and fiber
costs are discarded, so that the optimization goal consists of determining the network
topology that minimizes the facility opening plus edge set-up costs. This problem has
been studied in Eisenbrand et al. (2010), Gollowitzer and Ljubić (2011), Leitner and
Raidl (2011), to mention a few recent references.

Another related problem that combines network design and facility location aspects
is the Two Level Network Design (TLND) problem. In this problem, we are given two
technologies and two types of nodes that need to be served by them, and the goal
consists of building a tree–tree network such that facilities are installed at the transition
points between the two technologies (see Gollowitzer et al. (2013)). In Balakrishnan
et al. (1994), the two level network design problem without facilities is studied. The
2FTTx can be seen as a generalization of the TLND problem: if sufficiently large
splitter- and edge-capacities are assumed, and the fiber costs are zero, the 2FTTx
reduces to the TLND problem.

The Local Access Network Design (LAND) problem is a problem that combines
the topological design of the network with the decisions on routing the fibers in order
to serve customer demands, while respecting edge capacities (see, e.g., Salman 2000,
Putz 2012). This problem captures the capacity aspects of our problem, but assumes
that there are no splitters installed on the way between the COs and the end premisses.

Finally, we point out that there are also other works in the literature focusing on
other designing aspects of FTTx networks. For example, in recent works presented in
Gualandi et al. (2010a), 2010b, Kim et al. (2011), Chardy et al. (2012), the authors
concentrate on splitter location and dimensioning aspects by assuming that the routing
paths are given and, therefore, can be replaced by assignment arcs.

More practice-oriented approaches have been studied in Martens et al. (2009). Using
a two-step approach with suitable mixed integer programming (MIP) formulations, it
is possible to optimize fiber-optic networks in realistic scenarios (see Martens et al.
2010). Also Orlowski et al. (2011) conducted various practice-oriented case studies
that originated from planning scenarios by a German carrier. Finally, a survey by
Grötschel et al. (2013) provides a comprehensive overview on optimization approaches
used in the deployment of optical access networks.

Our Contribution. We first propose an integrated MIP model (cf. “MIP model”)
and present families of strengthening valid inequalities for it. To deal with the size
and complexity of the problem, we then propose two Lagrangian decomposition
approaches for solving the 2FTTx (cf. “Lagrangian decomposition into feeder and
distribution part” and “Lagrangian decomposition into fixed-charge and flow-cost
part”). The first approach decomposes the problem based on the network struc-
ture and the second approach decomposes the problem based on the cost structure.
The subproblems are solved using MIP techniques. A combination of Lagrangian
heuristics (presented in “Lagrangian Framework and Heuristics”) and MIP techniques
allows us to solve some of the real-world network planning instances within a few
percent of optimality. Detailed computational results are shown in “Computational
results”.
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MIP model

Let A be the set of arcs obtained by bidirecting edges from E . We will use binary
variables xv ∈ {0, 1} for each v ∈ VD to indicate whether splitters are installed
at location v or not. Similarly, binary variables zv ∈ {0, 1} will indicate whether a
central office v ∈ VCO is opened or not. The number of splitters of type t installed at
the DP location v ∈ VD will be counted using integer variables yt,v . Finally, for each
edge e ∈ E , binary variables we will indicate whether the edge e is used or not, and
the number of fibers in the DN and the FN installed along arc a ∈ A is counted using
variables ga and fa , respectively. Using these variables, our objective function can be
described as follows:

Objective function

min
∑

v∈VCO

cvzv +
∑

v∈VD

cvxv +
∑

e∈E

cewe +
∑

v∈VD

∑

t∈T

ct,v yt,v +
∑

a∈A

(cf
a fa + cg

aga)

The first two terms are the installation costs for COs and DPs, followed by the installa-
tion costs for the edges, followed by the splitter installation costs. The last summation
corresponds to the total fiber costs installed in the DN and the FN.

Bounds on splitter installations, DPs and COs. The bounds regarding the total num-
ber of allowed DPs and COs are expressed using constraints (1) and (2), respectively,
and the bounds regarding the maximal number of splitters of type t at the DP node v

are expressed using (3):

∑

v∈VD

xv ≤ ND (1)

∑

v∈VCO

zv ≤ NCO (2)

yt,v ≤ Jt,vxv v ∈ VD, t ∈ T (3)

Each splitter installed at a DP location requires a single fiber from a CO (where a
transceiver needs to be placed). The overall number of splitters installed at a DP
determines its upstream-fiber demand. The overall number of fibers available in the
DN and obtained after splitting at a certain DP location determines its downstream-
fiber supply. Before we present the remaining constraints of our MIP model, we
introduce auxiliary variables that help simplify the notation:

Fv ∈ Q ∀v ∈ VD the number of upstream-fibers at the DPv

Gv ∈ Q ∀v ∈ VD the number of downstream-fibers at the DPv

Hv ∈ Q ∀v ∈ VCO the number of transceivers installed at the COv

w
f

a ∈ {0, 1} ∀a ∈ A 1 if the arc a is used by the f -flow
w

g
a ∈ {0, 1} ∀a ∈ A 1 if the arc a is used by the g-flow

Flow conservation in distribution and feeder network. To ensure a feasible routing
in the DN, the following flow-preservation constraints (4) are used. They also state
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that the total customer demand has to be satisfied using the supply of the downstream
fibers that are available at distribution points. Constraints (5) and (6) make sure that
the g-flow is routed along e only if the edge e is installed.

∑

a∈δ−(v)

ga −
∑

a∈δ+(v)

ga =
⎧
⎨

⎩

dv v ∈ VC
−Gv v ∈ VD
0 else

v ∈ V (4)

gi j ≤ uew
g
i j (i, j) ∈ A (5)

w
g
i j + w

g
ji ≤ we {i, j} ∈ E (6)

At the first glance, variables w
g
a can be omitted. However, they are used later on to

derive cuts that will strengthen the LP relaxation.
To make sure that the routing between COs and DPs is feasible, we consider con-

straints (7). These constraints also make sure that the overall upstream-demand at
distribution points (expressed using Fv variables) is to be satisfied by installing a suf-
ficient number of transceivers at the corresponding COs (Hv variables). Constraints (8)
and (9) make sure that the f -flow is routed along e only if the edge e is installed.

∑

a∈δ−(v)

fa −
∑

a∈δ+(v)

fa =
⎧
⎨

⎩

Fv v ∈ VD
−Hv v ∈ VCO
0 else

v ∈ V (7)

fi j ≤ uew
f

i j (i, j) ∈ A (8)

w
f

i j + w
f
j i ≤ we {i, j} ∈ E (9)

Notice that in this model, since f (g) is a single commodity flow, the flows of the
opposite directions cancel out. However, it might happen that along an edge e = {i, j},
f sends flow in direction (i, j) and g sends flow in direction ( j, i) (see Fig. 1b where
this happens along the edge {u, v}).

Moreover, the tree topologies of FN and DN are guaranteed using the following
in-degree constraints:

∑

a∈δ−(i)

w
f

a ≤ 1, i ∈ V (10)

∑

a∈δ−(i)

w
g
a ≤ 1, i ∈ V (11)

Upstream-demand and downstream-capacity at DPs. For each installed splitter at a
DP v ∈ VD, a single fiber in the FN is required, and the total upstream-demand at v is
calculated using constraints (12). The number of downstream-fibers available at the
DP v is bounded by the total number of installed splitters and their capacity, see (13):

Fv =
∑

t∈T

yt,v v ∈ VD (12)
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Gv ≤
∑

t∈T

st yt,v v ∈ VD (13)

Note that these constraints link the distribution network and the feeder network. The
total flow arriving at the customer nodes in the distribution network can never exceed
the flow into the distribution points, except by factors introduced by the splitting ratios
of the splitters available in the model.

Finally, the number of available downstream fibers at DPs and COs v is also bounded
by uv , i.e.,:

Gv ≤ uvxv v ∈ VD (14)

Hv ≤ uvzv v ∈ VCO (15)

Without loss of generality, we assume that uv ≤ ∑
t∈T st Jt,v .

The set of feasible 2FTTx solutions is completely described using constraints (1)–
(15). This MIP model will be called the aggregated MIP model. It contains a large
number of variables and constraints and, therefore, it is quite unrealistic that using
this model one will be able to solve instances arising in the practical application.
Besides, the lower bounds obtained by this model may be quite weak, due to involved
“bigM”-constraints: (5), (8), (14), (15). To overcome the problems with the weak lower
bounds, in the following subsection, we will first present families of strengthening valid
inequalities. In the second half of the paper, to deal with the size and complexity of
the problem, we will propose two Lagrangian decomposition approaches. These will
enable us to solve some of the real-world network planning instances very close to
optimality.

Valid inequalities for the aggregated MIP model

Connectivity constraints

Connectivity constraints in the DN. We observe that the flow conservation con-
straints (4) together with the capacity constraints (5) define a single-commodity flow
problem in the distribution network. For the problem to be feasible, for each customer
v ∈ VC, dv units of flow need to be transported from a distribution point with xk = 1
to v. This also implies that the distribution network has to be connected. The following
connectivity constraints in the DN are, therefore, valid for our problem. Solutions to
the problem have to fulfill them for every node subset W that contains at least one
customer node.

∑

k∈W∩VD

xk +
∑

(i, j)∈δ−(W )

w
g
i j ≥ 1 W ⊂ V, W ∩ VC �= ∅ (16)

Here, W is an arbitrary node subset that contains at least one customer node. These
constraints basically state that for each customer i there has to exist an open DP k such
that they can be connected by a directed path from k to i in the subgraph of G induced
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by wg variables. These inequalities are not implied by the previous model and can be
used to strengthen the LP bounds (see, e.g., Ljubić et al. 2012).

Connectivity constraints in the FN. Similarly, the flow conservation constraints (7)
together with the capacity constraints (8) define a single-commodity flow problem in
the feeder network. For the problem to be feasible, for each DP k ∈ VD, Fk flow units
need to be transported from a central office with z� = 1 to k. As above, the following
connectivity constraints in the FN are, therefore, valid. Solutions to the problem have
to fulfill them for every node subset W that contains at least one distribution point:

∑

�∈W∩VCO

z� +
∑

(i, j)∈δ−(W )

w
f

i j ≥ xk W ⊂ V, k ∈ W ∩ VD (17)

They ensure that open COs and open DPs belong to a connected network, and even
more, that for each open DP k there has to exist an open CO � such that they can
be connected by a directed path from � to k in the subgraph of G induced by w f

variables. Also these inequalities are not implied by the previous model and can be
used to strengthen the LP bounds.

Global connectivity constraints. These constraints are based on the observation
that the overall solution has to be connected. Furthermore, since the edges e ∈ E can
be oriented in one or the other direction, and the costs for the installation are paid only
once, no matter if the same edge is used twice (once in the FN, and once in the DN),
the following directed connectivity cuts are valid and are not implied by the previously
introduced cuts. Solutions to the problem have to fulfill them for every node subset W
that contains at least one customer node:

∑

�∈W∩VCO

z� +
∑

(i, j)∈δ−(W )

w
f

i j ≥ 1 W ⊂ V, W ∩ VC �= ∅ (18)

These inequalities make sure that for each customer i ∈ VC there is a directed path
between an open CO � and i in the subgraph induced by w f variables. That way, the
variables w f that are originally intended to model only the arcs of the FN are used to
“push-up” the capacities of fractional edge variables in the DN.

Lemma 1 Constraints (16), (17) and (18) can be separated in polynomial time.

Proof We will explain how to separate (16), the remaining separation algorithms
follow the same idea. Given the values x̃ and w̃g of a fractional LP solution to the
aggregated MIP, we can separate constraints (16) in an auxiliary graph Gg = (Vg, Ag)

that is generated as follows. Artificial root node r is added to V and connected to all
distribution points v ∈ VD, i.e., Vg = {r} ∪ V, Ag = A ∪ (r, k) | k ∈ VD. In the
resulting digraph Gg , for each v ∈ VC, there has to be a flow of value not less than
1 from r to v. We treat the values of w̃

g
i j as the capacity on the arc (i, j) and x̃k

as capacity on the arc (r, k). If the value of the maximum flow is less than one, the
associated minimum cut, projected into the space of x and wg variables, corresponds
to a violated (16) inequality. ��
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(a) (b)

Fig. 2 Lagrangian decomposition into the feeder and distribution part: a distribution network (DN), and b
feeder network (FN)

In the following, let

G := {
(g, G, wg, w) ∈ R|A|+|VD|

+ × {0,1}|A|+|E | |
(g, G, wg, w) satisfies (4)–(6), (11), (16)

}
, and (19)

F := {
( f, H, F, w f, w) ∈ R|A|+|VCO|+|VD|

+ × {0,1}|A|+|E | |
( f,H, F, w f,w) satisfies (7)–(9), (10), (17)

}
. (20)

The following section illustrates how the problem can be decomposed in an intuitive
way, so that the subproblems associated with G and F can be treated separately.

Lagrangian decomposition into feeder and distribution part

Our first Lagrangian decomposition approach decomposes the problem in the most
intuitive way: the design of the FN and the design of the DN. To obtain this decompo-
sition, we have to relax constraints that couple both networks. We proceed as follows:

1. Duplicate yt,v variables: introduce a copy of yt,v variables (denoted by y′
t,v) and

then replace yt,v by y′
t,v in equations (12).

2. Duplicate xv variables: Introduce a copy denoted by x ′
v .

3. Duplicate we variables: Introduce a copy denoted by w′
e.

4. Extend the previous model with the following inequalities, associate dual variables
λ, α and β to them and relax them in a Lagrangian fashion:

∑
t∈T y′

t,v ≥ ∑
t∈T yt,v v ∈ VD . . . (λv)

we = w′
e e ∈ E . . . (αe)

xv = x ′
v v ∈ VD . . . (βv)

The whole problem decomposes into two subproblems that will be referred to as
the Feeder Problem (F) and the Distribution Problem (D). Figure 2 illustrates this
decomposition.
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The Feeder Network Problem

After substituting Fv := ∑
t∈T y′

t,v , for each v ∈ VD, and adding back constraints (3),
the feeder network subproblem is given as:

(F) min
∑

v∈VCO

cvzv −
∑

v∈VD

λv Fv +
∑

a∈A

cf
a fa −

∑

v∈VD

βvx ′
v −

∑

e∈E

αew
′
e

Hv ≤ uvzv v ∈ VCO (21)

Fv ≤
∑

t∈T

Jt,vx ′
v v ∈ VD (22)

∑

v∈VCO

zv ≤ NCO (23)

(z, x ′) ∈ {0, 1}|VCO|+|VD|, ( f, H, F, w f , w′) ∈ F

The Distribution Network Problem

(D) min
∑

v∈VD

(cv+βv)xv +
∑

e∈E

(ce+αe)we +
∑

v∈VD

∑

t∈T

(ct,v+λv)yt,v +
∑

a∈A

cg
aga

Gv ≤ min{uvxv,
∑

t∈T

st yt,v}v ∈ VD (24)

yt,v ≤ Jt,vxv v ∈ VD (25)
∑

v∈VD

xv ≤ ND (26)

(x, y) ∈ {0, 1}|VD| × Z
|T ||VD|
+ , (g, G, wg, w) ∈ G

Observe that both problems, (F) and (D) are NP-hard. However, they are structurally
significantly simpler than the starting problem and, therefore, easier to solve from
the practical perspective. The problems are generalizations of the capacitated network
design problem with single source. We solve these problems using a branch-and-cut
(B&C) approach whose main ingredients are outlined in “Computational results”. One
of the advantages of the B&C approaches is that warm start features (i.e., initializations
of upper bounds and valid inequalities) can be re-used from iteration to iteration (via
solution pools and cut pools, respectively).

When solving this decomposition, we extend the model (F) with the global con-
nectivity cuts (18) that make sure that customers are connected with open COs. These
constraints restrict the set of feasible solution for the (F) model, but they do not cut
off global optimal solution(s). In addition, these constraints strengthen the Lagrangian
bounds obtained by this decomposition. Finally, to make sure that global connectivity
cuts are also associated with edge set-up costs, Lagrangian multipliers are initialized
as αe := −ce, for all e ∈ E . The remaining Lagrangian multipliers are initialized with
zero values. We will refer to this decomposition as the “(F) + (D)” decomposition
approach.
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(a) (b)

Fig. 3 Lagrangian decomposition into a fixed cost, and b variable cost part for the input instance given in
Fig. 1 (but here we assume that all customer demands are equal to 32). Thick dashed lines show the g-flow,
continuous lines show the f -flow. One unit of f -flow is sent along each arc in the FN, and 32 units of flow
are sent along each arc in the DN, except between DP i and customer j , where g-flow is equal to 64

Lagrangian decomposition into fixed-charge and flow-cost part

In this section, we propose an alternative Lagrangian decomposition approach in which
we decompose the problem according to the classification of variables by cost types.
In other words, we decompose the problem into:

1. the Fixed Charge Subproblem, which captures all set-up costs associated with
fixed-charge variables, we, xv and zv , and

2. the Flow Subproblem, which captures all variable (flow) costs associated with
splitter-installation variables yt,v and flow variables fa and ga .

To the constraints that contain variables of both types, we associate dual variables λ,
μ and ν, and relax them in Lagrangian fashion:

yt,v ≤ Jt,vxv t ∈ T, v ∈ VD . . . (λt,v)

Gv ≤ uvxv v ∈ VD . . . (μv)

Hv ≤ uvzv v ∈ VCO . . . (μv)

gi j ≤ uew
g
i j {i, j} ∈ E . . . (ν

g
a )

fi j ≤ uew
f

i j {i, j} ∈ E . . . (ν
f

a )

Figure 3 illustrates this decomposition approach. We obtain two subproblems, that we
will refer to as the Fixed Charge Subproblem (FC) and the Flow Subproblem (FP).

The Fixed Charge Subproblem (FC)

The subproblem that captures the fixed costs of the 2FTTx is given as follows:

(FC) min
∑

v∈VCO

(cv − μvuv)zv +
∑

v∈VD

(cv −
(

∑

t∈T

λt,v Jt,v + μvuv)

)
xv

+
∑

e∈E

cewe −
∑

a∈A

ua

(
ν

f
a w

f
a + ν

g
a w

g
a

) ∑

v∈VD

xv ≤ ND (27)

∑

v∈VCO

zv ≤ NCO (28)
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w
f

i j + w
f
j i ≤ we e = {i, j} ∈ E (29)

w
g
i j + w

g
ji ≤ we e = {i, j} ∈ E (30)

∑

a∈δ−(i)

w
f

a ≤ 1 i ∈ V (31)

∑

a∈δ−(i)

w
g
a ≤ 1 i ∈ V (32)

(x, z, w,w f , wg) ∈ {0, 1}|VD|+|VCO|+|E |+2|A|

The Flow Subproblem (FP)

The other subproblem, that captures the variable costs of the 2FTTx, is:

(FP) min
∑

v∈VD

∑
t∈T

(ct,v + λt,v)yt,v + ∑
v∈VD

μvGv + ∑
V ∈VC O

μv Hv

+ ∑
a∈A

(cf
a + ν

f
a ) fa + ∑

a∈A
(cg

a + ν
g
a )ga

∑

a∈δ−(v)

ga −
∑

a∈δ+(v)

ga =
⎧
⎨

⎩

dv v ∈ VC
−Gv v ∈ VD
0 v ∈ VCO ∪ VO

v ∈ V (33)

∑

a∈δ−(v)

fa −
∑

a∈δ+(v)

fa =
⎧
⎨

⎩

Fv v ∈ VD
−Hv v ∈ VCO
0 v ∈ VC ∪ VO

v ∈ V (34)

Fv =
∑

t∈T

yt,v v ∈ VD (35)

Gv ≤
∑

t∈T

st yt,v v ∈ VD (36)

( f, g, F, G, H, y) ∈
(

R2|A|+2|VD|+|VCO|
+ , Z|T ||VD|

+
)

Observe that (FC) is a trivial subgraph selection problem. Edge selections can simply
be made by the sign of the coefficient. Similarly, we can simply select the nodes with
the largest negative coefficients until reaching the bounds on the total number of DPs
and COs. Obviously, there is not much gain if the problem is decomposed into one
hard and one trivial subproblem. To strengthen the models, we insert the connectivity
constraints (16)–(18) in the original MIP model. After the Lagrangian relaxation, these
end up in the (FC) subproblem. That way, we end up with a non-trivial subproblem
(FC) which makes this decomposition approach useful.

Despite the fact that also in this decomposition both subproblems, (FC) and (FP), are
NP-hard, they are significantly simpler than the original problem. The problem (FP)
is NP-hard since the packing subproblem has to be solved at each of the installed dis-
tribution points. After adding the connectivity constraints, the problem (FC) becomes
NP-hard, since it assembles the structure of the cardinality constrained Steiner arbores-
cence problem with node and arc weights. To solve the subproblem (FC), we develop
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a branch-and-cut algorithm (see “Computational results”) in which solution- and cut-
pools are used as warm start features. The subproblem (FP) is solved as a compact MIP
model by a black-box MIP solver with an additional advantage that solution pools are
used to initialize starting solutions in each Lagrangian iteration. We will refer to this
decomposition as the “(FC) + (FP)” decomposition.

Further valid inequalities

When solving the (FC) subproblem, notice that the only way more than one DP/CO
is opened is if the costs of the DPs/COs become negative due to the setting of the
corresponding dual multipliers. Therefore, the bounds obtained by solving the (FC)
subproblem can further be strengthened by additional inequalities that make sure
that the capacity of open DPs/COs is sufficient to service customer demands. These
inequalities can also reduce the number of iterations of the Lagrangian decomposition.
The following inequalities are used for this purpose:

∑

v∈VD

uvxv ≥ ∑
v∈VC

dv (37)

∑

v∈VCO

{
max
t∈T

st

}
uvzv ≥ ∑

v∈VC
dv (38)

∑

v∈VCO

uvzv +
∑

v∈VD

xv

∑

t∈T

(st − 1)Jt,v ≥ ∑
v∈VC

dv (39)

Constraints (37) make sure that a sufficient number of downstream fibers is provided,
and constraints (38) make sure that a sufficient number of transceivers is installed
at COs, so that customer demands can be satisfied (assuming the highest possible
splitting ratio). Finally, constraints (39) combine the latter two using the fact that each
splitter requires exactly one fiber coming from a CO (and therefore we have st − 1 in
the second summation).

Strengthening by splitter-counting

One could aggregate variables yt,v as follows:

∑

v∈VD P

yt,v = yt t ∈ T

These newly introduced integer variables yt count the number of splitters of type t ∈ T
installed across all DPs. Adding the latter equality into the aggregated MIP brings no
benefits; however, in the context of our second Lagrangian relaxation, it helps in
solving the (FC) subproblem. After associating dual multipliers πt and relaxing these
constraints, the new variables are added to (FC) and an additional term of −∑

t∈T πt yt

is added in the objective function.
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Then, the following inequalities are used to further strengthen the (FC) subproblem:

∑

t∈T

st yt ≥
∑

v∈VC

dv (40)

∑

v∈VCO

uvzv +
∑

t∈T

(st − 1)yt ≥
∑

v∈VC

dv (41)

∑

v∈VD

Jt,vxv ≥ yt ∀t ∈ T (42)

∑

v∈VCO

uvzv ≥
∑

t∈T

yt (43)

Constraint (40) states that at least as many fibers have to leave the distribution points
into the distribution network as are needed to fulfill the total demand.

The first term of (41) is an upper bound on the number of fibers leaving the central
offices. The next term counts precisely how many fibers are added to this number by
splitting at the distribution points. So the left-hand side is an upper bound on total flow
number of the distribution network. The inequality states that this upper bound needs
to exceed the total demand or the solution will not be feasible.

The left-hand side of (42) upper-bounds the total number of splitters of a fixed type
that can be installed in the network. The inequality states that we need to open at least
� yt

Jt,v
� distribution points to install yt splitters of type t without violating the splitter

installation bounds.
Finally, (43) states that enough central offices have to be opened to be able to supply

all installed splitters with fibers from the feeder network.

Lagrangian framework and heuristics

In this section, we first describe the generic Lagrangian decomposition framework that
is applied to both approaches. In this framework, lower bounding and upper bounding
procedures are incorporated. Lower bounding procedures are based on solving lower
bounds of associated MIP models, and upper bounding procedures are heuristics that
we describe below. For each of the proposed decomposition approaches, we develop
appropriate heuristics. They solve each of the subproblems independently, using the
current Lagrangian multipliers in the objective function. Hence, in all the following
heuristics, solving the subproblem always refers to the Lagrangian-modified objective
functions, unless it is stated differently.

Generic Lagrangian framework

Relaxing the constraints linking the feeder and the distribution network part as
described in “Lagrangian decomposition into feeder and distribution part”, we obtain
the Lagrangian function
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L(	) := LF+D(	) = LF(	) + LD(	),

where 	 := (λ, α, β) ∈ R
|VD|
+ × R|E | × R|VD| is the vector of Lagrangian dual

multipliers for the (in)equalities linking the variables y, w, and x to their copies y′, w′,
and x ′, respectively. The two functions LF(	) and LD(	) yield the optimal solution
value of the two integer linear problems (F) (augmented with global connectivity cuts
(18)) and (D), respectively, for the given dual multipliers 	.

Analogously, the decomposition into fixed charge and flow cost-dependent variables
described in “Lagrangian decomposition into fixed-charge and flow-cost part” yields
the Lagrangian function

L(	) := L FC+F P (	) = L FC (	) + L F P (	),

with dual multipliers 	 := (λ, μ, ν, π) ∈ R
|VD||T |+|VD|+|T |+|VC O |+2|E |
+ (assuming we

introduce the extra splitter count variables yt as described in “Further valid inequali-
ties”). Here, LFC(	) represents the optimal solution value of (FC) after adding con-
straints (16)–(18) and (37)–(43), while LFP(	) represents the optimal solution value
of (FP).

It is well known that for each dual vector 	, the value L(	) is a lower bound
for the optimal value of original aggregated model (1)–(15) and, hence, also L∗ :=
max	 L(	) is a valid lower bound. As there are only finitely many (basic) solutions
to the original model and to each of the subproblems (D), (F), (FC), and (FP), the
corresponding dual functions LF, LD, LFC and LFP are piece-wise linear and concave
in 	. Hence, convex function optimization techniques can be applied to find dual
multipliers 	∗ that yield the best possible lower bound L∗.

In our implementation, we employ a bundle method. Bundle methods typically
converge relatively fast requiring only a few evaluations of the dual function(s), which
is very attractive in our application, where each evaluation (in principle) requires
the solution of an integer linear program. Furthermore, they permit the use of an
independent bundle of subgradients for each of the two sub-functions LF and LD or LFC
and LFP involved in the respective Lagrangian function, potentially leading to a further
reduction in (sub-)function evaluations. Finally, general purpose implementation of
these methods is available, such as ConicBundle Helmberg (2012), Helmberg and
Kiwiel (2002), which has already proved its practicability and efficiency in the solution
of large scale problems (see, e.g., Helmberg 2009).

The basic theory of bundle methods is explained in Hiriart-Urruty and Lemaréchal
(1993) and Bonnans et al. (2003), for example. In principle, given a starting point for
the dual multipliers, the bundle method iteratively determines the next candidate as an
optimizer of a quadratic model with the current point as a stability center and (dual)
constraints stemming from a set (bundle) of previous optimal solutions. If the value
of the optimal solution of this quadratic model improves sufficiently over the value
at the stability center, the method performs a descent step and proceeds. Otherwise a
null step not changing the stability center but improving the quadratic model with the
new subgradient is performed.
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For the initial dual multipliers and after each descent step of the bundle algorithm,
we apply one of the heuristics described in the following sections to compute feasible
primal solutions for the overall problem.

To reduce the run time of the two proposed Lagrangian relaxation approaches in
practice, we also decided to avoid the solution of the integer linear programs (F),
(D), (FC), and (FP) via branch-and-bound in the evaluation of the corresponding
(sub-)functions. Instead, we stop after processing the root node of the corresponding
branch-and-bound trees. Conceptually, this also can be regarded as the solution of
an (appropriately defined) linear relaxation of the respective subproblems, namely a
relaxation that includes all those constraints that are implicitly enforced via the simple
preprocessing techniques and cutting planes of the ILP solver at the root node and
that relaxes all other integrality constraints. Unfortunately, however, it was necessary
to disable most of the heuristic preprocessing and cutting plane generation techniques
that are implemented in the ILP solver to avoid inconsistencies in their application and
resulting numerical instabilities in the bundle algorithm. The resulting bounds will,
of course, be weaker than those that can be obtained by optimally solving the integer
programming subproblems. Yet, the bounds are very satisfactory from a practical point
of view.

Lagrangian heuristic for the (F) + (D) decomposition

For the first decomposition approach, we develop a heuristic that we refer to as the
Feeder-Distribution-Feeder Heuristic. Pseudo-code of this heuristic is given in Algo-
rithm 1. The heuristic consists of three stages: in the first stage we solve the feeder
subproblem (F) extended by global connectivity cuts (18). That way, we obtain a pre-
liminary topology of our network that makes sure that all customers are connected to
each other and to at least one open CO. In the second stage, the edges of this network
are used “for free” (cf. Step 1) for solving the distribution subproblem. The last stage
is a transition from the distribution subproblem into the feeder subproblem. Solution
of (D) is denoted by SD . Edges that belong to SD are now taken in the solution of (F).
In addition, open DPs and their demands are uniquely determined by SD and these
parameters (the values for Fv and x ′

v) are transferred as inputs for the feeder subprob-
lem (F). If the last stage returns a feasible solution for (F), after merging it with SD ,
we obtain a feasible 2FTTx solution. The advantage of calling the (F) subproblem at
the beginning is that it gives us a “global view” to the problem, by incorporating the
global connectivity requirements.

Each of the subproblems in this procedure is solved as a branch-and-cut, reusing the
cuts and feasible solutions from the previous iterations. Since these B&C algorithms
are called as heuristic procedures, we do not search for the optimal solution, but we
stop the execution of these frameworks as soon as two feasible solutions are found.

Lagrangian heuristic for the (FC) + (FP) decomposition

Pseudo-code of this heuristic is given in Algorithm 2. This heuristic first solves the
fixed charge subproblem (FC), including all connectivity constraints (16)–(18), and
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Algorithm 1 Feeder-Distribution-Feeder Heuristic.
1: Solve the feeder subproblem (F) (incl. global connectivity cuts (18))
2: if (F) has no incumbent then
3: End heuristic
4: else
5: Let SF be the best solution of (F)
6: end if
7: Initialize distribution subproblem (D) with edge costs set to zero for all e ∈ SF
8: Solve the distribution subproblem (D)
9: if (D) has no incumbent then
10: End heuristic
11: else
12: Let SD := (g̃, G̃, w̃g, w̃, ỹ, x̃) be the best solution of (D)
13: end if
14: Solve the feeder subproblem (F) with edge costs set to ce for all e ∈ E and:
15: w′

e ≥ w̃e , e ∈ E, Fv := ∑
t∈T ỹt,v and x ′

v := x̃v , v ∈ VD.
16: if (F) has no incumbent then
17: End heuristic
18: else
19: Let SF2 be the best solution of (F)
20: end if
21: Return merged solution: SF2 plus SG .

Algorithm 2 FixedCharge-Flow Heuristic.
1: Solve the Fixed-Charge subproblem (FC)
2: if (FC) has no incumbent then
3: End heuristic
4: else
5: Let SFC be the best solution of (FC)
6: end if
7: Let G̃ be a subgraph of G induced by the edges of SFC
8: Solve aggregated MIP on G̃ with we := 1, for all e ∈ SFC.
9: if aggregated MIP has no incumbent then
10: End heuristic
11: else
12: Return the best aggregated MIP solution
13: end if

inequalities (37)–(43). That way, the topology of the network is determined, and it
only remains to make capacity and routing decisions. To do so, we create a subgraph
G̃ of G, induced by the given topology, and resolve the whole aggregated MIP on it.
This aggregated MIP also contains constraints (16)–(18) and (37)–(39), but solving it
is usually much faster than solving the original aggregated MIP, due to the fixing of
variables.

Computational results

Branch-and-cut (B&C) algorithms

Each of the problems, the aggregated MIP with connectivity constraints (16)–(18),
the distribution subproblem (D), the feeder subproblem (F), and the fixed-charge
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subproblem (FC), is solved using branch-and-cut algorithms. In this section, we
explain the main ingredients of these algorithms, which are implemented in C++
using Cplex 12.4 callable library.

Separation of connectivity cuts

Connectivity constraints are separated using maximum flows, as explained in the proof
of Lemma 1. The maximum flow is calculated using the push-relabel procedure (see,
e.g., Cherkassky and Goldberg 1997). To speed-up the separation, we exploit the idea
of backward cuts to detect more diverse cuts, further away from the artificial root node.
The idea, applied to constraints (16), for example, is as follows: First, the arcs of the
original graph are reversed. Then, the maximum flow from a customer towards the
artificial root node is calculated. If violated, the arcs of the associated minimum cut
are reversed and the corresponding connectivity cut is added to the model. We enforce
generation of sparse cuts by adding an ε value to each edge, and use nested cuts to
generate more cuts in less iterations (see, e.g., Ljubić et al. 2006). At each call of the
separation callback, we generate a new random ordering of the customers to avoid
separating cuts corresponding to the same (already satisfied) customers over and over.
The cut separation is not executed for another customer during a run if the number
of already generated cuts exceeds 100. The cut separator is called at the root node
of the branch-and-bound tree and at every further node with quadratic index. The cut
separator is also used to check feasibility of integral solutions in the course of which
lazy constraints are generated.

Cut pools and warm start

Since branch-and-cut algorithms are called in each iteration of the Lagrangian decom-
position approach, our implementation of the (F), (D), and (FC) models uses cut pools
to store previously detected violated cuts and reuse them in each new iteration in a
warm-start fashion. This is possible because from iteration to iteration only the objec-
tive function changes (due to the new dual multipliers), and the polytopes associated
with feasible solutions remain the same. Hence, connectivity cuts (16)–(18) detected
in earlier iterations can be reused without the computational effort of (re-)computing
maximum flows.

Similarly, the best solution among the ones found in previous iterations is set as
the initial feasible solution at the beginning of each branch-and-cut execution, which
substantially reduces the time required to solve the subproblems.

Primal heuristics

Cplex’s default heuristics were turned on, and for the branch-and-cut runs called from
within the Lagrangian heuristics Cplex’s parameters were set to emphasize finding
feasible solutions.

In addition, we enhance the search for upper bounds of the (FC) model by our
own upper bounding procedure. This procedure is a LP-rounding heuristics based on
the following approach: (i) First, a set of terminals is determined, depending on the
fractional values of x and z variables; (ii) Then, a Steiner tree is built to connect those
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terminals; and (iii) finally, the remaining variables are calculated using an auxiliary
MIP in which the Steiner tree edges are fixed to one (we := 1), and the remaining
edges are fixed to zero (we := 0).

To determine the subset of terminals, we apply an LP-rounding technique: Terminals
are customers plus all nodes v ∈ VD ∪ VCO whose corresponding LP values xv and zv

are greater or equal to a given thresholdπ . In the default implementation,π is set to 1/2.
For calculating the Steiner tree on a given set of terminals, we apply the distance

network heuristic (see, e.g., Mehlhorn 1988): First, we build a distance network, which
is a weighted complete graph spanning the terminals. The weights of the edges in the
distance network are the lengths of shortest paths between the corresponding terminals
in the original graph G using the values of the we variables as edge lengths. Then, we
compute a minimum spanning tree (MST) in the distance network and map its edges
back to the paths in the original network. The resulting graph spans all terminals, but
still may contain cycles. To obtain a Steiner tree, we then compute a MST in this graph
and finally prune non-terminal leaves from this tree.

MIP initialization

All valid inequalities mentioned for models (F), (D), (FC), and the aggregated MIP
are added at the very beginning to the MIP, except the connectivity constraints (16)–
(18), which are separated during the execution of the branch-and-cut algorithms. To
strengthen the (initial) linear relaxations and speed-up the cutting plane phase of
the algorithm, we add some further simple but effective inequalities to the initial
formulations.

The models (D) and the aggregated MIP models are additionally initialized with:

∑

(i, j)∈A,i �=k

w
g
i j + x j ≥ w

g
jk, for all ( j, k) ∈ A, j ∈ VD , (44)

∑

(i, j)∈A,i �=k

w
g
i j ≥ w

g
jk, for all ( j, k) ∈ A, j �∈ VD, and (45)

∑

(i, j)∈δ−( j)

w
g
i j ≥ 1, for all j ∈ VC. (46)

The models (F), (FC) and the aggregated MIP models are additionally initialized with:

∑

(i, j)∈A,i �=k

w
f

i j + z j ≥ w
f
jk, for all ( j, k) ∈ A, j ∈ VCO , (47)

∑

(i, j)∈A,i �=k

w
f

i j ≥ w
f
jk, for all ( j, k) ∈ A, j �∈ VCO , (48)

∑

(i, j)∈δ−( j)

w
f

i j ≥ x j , for all j ∈ VD , and (49)

∑

(i, j)∈δ−( j)

w
f

i j ≥ 1, for all j ∈ VC . (50)
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Inequality (44) states that for each distribution point that has a selected outgoing arc
( j, k), there should be an incoming g-arc from a node not k or it should be selected
as a distribution point. Inequality (45) states that each node that is not a distribution
point and has a selected outgoing arc into g also needs to have an incoming arc.
Inequality (46) states that every customer needs to have an incoming arc selected
which is necessary to satisfy his demand.

Inequalities (47)–(49) state similar things as the inequalities before, but enforce
the constraints also on the feeder network. We also enforce that each customer has
an incoming feeder arc via inequality (50), which was not required in the original
model and has no effect on the feasible integer edge vectors w, but strengthens the LP
relaxation after the decomposition.

Implementation details

The branch-and-cut algorithms were implemented in C++ using the Cplex 12.4
callable library. All experiments were performed on AMD Phenom II X6 machines
with 8 GB RAM and 6 CPU cores running at 3.2 GHz. Our cut separators are thread-
safe and we run CPLEX in a multi-threaded way to exploit the parallel computa-
tional power of modern processors. For the separation of constraints (16)–(18), we
use the max-flow implementation by Goldberg (2012). The ConicBundle algorithm
(available at Helmberg 2012) of Helmberg and Kiwiel (2002) is used to solve the
convex optimization problem of finding the optimal Lagrangian dual multipliers. In
both decomposition approaches, we use two independent bundles of subgradients to
describe the dual functions corresponding either to the two problems (F) and (D) in
the (F) + (D)-Decomposition or to the two problems (FC) and (FP) in the (FC) + (FP)-
Decomposition. To keep the number of evaluations of the mixed-integer subproblems
small, we use a large maximum bundle size of 100 for both dual functions in both
decomposition approaches.

Benchmark instances

We consider a set of nine benchmark instances of different sizes originating from the
German research project FTTx-Plan (2013). These instances correspond to typical
regional fiber deployment planning problems—both FTTH and FTTB—in (mostly
urban) regions that can be covered by 1 to 15 central offices. Some of the benchmark
instances correspond to real-world planning problems provided by industry partners.
For the other instances, the underlying networks are generated from publicly available
street network information by considering realistic scenarios of potential customers,
distribution points, and central offices in a region of typical size and creating potential
connections along one or both sides of street segments depending on the street type,
from the customer locations to the closest streets, and appropriate interconnection
points and edges at crossings and joins. Figure 4 shows the networks of instances “a”
and “c” embedded in Google Maps. Costs and capacities are obtained by mapping
the very complex real-world network component costs, parameters, and installation
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Fig. 4 Two input instances: squares, triangles and circles represent potential COs, potential DPs and
customers, respectively. Maps courtesy of Google Maps
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Table 1 Overview of basic instance properties

Inst |V | |E | |VD| |VCO| |VC| ∑
dv ce cDP cCO

a 637 826 97 4 36 488 5,878 4,600 4,18,670

b 1,315 1,434 143 5 88 278 5,341 4,576 5,09,750

c 1,675 1,730 99 5 552 2,290 637 3,433 4,13,156

d 2,271 1,419 494 4 349 717 1,039 1,500 4,18,670

e 6,750 7,352 520 11 571 5,006 672 3,186 3,05,454

f 6,750 7,352 520 11 571 5,006 672 3,186 3,00,000

g 4,110 4,350 224 6 1,072 4,164 635 3,512 4,66,927

h 4,227 4,484 314 5 1,379 5,542 3,483 3,417 4,77,505

i 11,544 12,478 875 15 3,862 14,088 3,326 3,274 5,22,729

costs of a typical GPON system to the simpler cost and capacity model used in our
optimization model.

Table 1 provides the most important parameters of these benchmark instances. The
number of customer locations to be served ranges from 36 in the smallest instance
to 3,862 in the largest one. The average fiber demand per customer location ranges
from 2.0 to 13.5. The total number of edges, which correspond to the trails or street
segments that may be used by the network, ranges from approximately 800 in the
smallest instance to approximately 12,500 in the largest one.

The benchmark instances used in our experiments correspond to so-called greenfield
planning problems, where edges, DPs, and COs (mostly) need to be build from scratch.
Accordingly, the fixed charge costs associated with the installation of an edge, of a
DPs, or of a COs also contain the cost for trenching and installing ducts, cabinets, or
underground closures. Table 1 also shows the average values of these fixed setup costs
in our instances. The fixed setup costs for COs and DPs depend on the device type
(underground closure vs. street cabinet DP, for example) and on its location and vary
only moderately among the different potential CO and DP locations. The fixed setup
cost of the edges, on the other hand, also depends linearly on the length of the edges
and varies a lot within each instance, ranging from 0 for edges connecting co-located
nodes to 45 times the average (instance “d”) or 20 % of the average setup cost a CO
(instances “h”, “i”). In general, the average fixed charge setup cost of an edge is of the
same order as the average setup cost of a DP.

The fiber installation costs depend linearly on the length of the edges in all instances.
In the distribution network, a fiber installation typically uses a larger number of smaller
cables and ducts with a higher fraction of dead (i.e., unused) fibers than this is the
case in the feeder network. To account for this fact, the fiber installation costs in the
distribution network are larger than those in the feeder network in our instances. For
the smaller instances “a”, “b”, and “d”, distribution fibers cost approximately 5.3 times
as much as feeder fibers per kilometer. In the other instances, they cost approximately
1.3 times as much. The fixed charge setup costs of the edges, however, highly dominate
the costs for installing fibers along the edges in our greenfield planning problems. The
fixed setup cost of an edge is approximately 3,000 times the cost of a single feeder
fiber installed on this edge.

123



244 A. Bley et al.

In all instances, we consider the same five splitter types with splitting ratios of 2,
4, 8, 16, and 32, and cost 161, 272, 352, 427, and 890 per device, respectively. Thus,
the cost of a 1:32 splitter ranges between 450 and 4,000 times the average feeder fiber
cost and between 20 and 60 % of the average DP setup cost.

In the solutions found by our algorithms, the total fixed charge setup costs for
the edges, DPs, and COs clearly dominate the total flow-dependent cost for installing
feeder and distribution fibers and splitters. The ratio between fixed charge costs to flow-
dependent costs ranges from approximately 18:1 in instances “e” and “f” to 150:1 in
instance “b”. More details on the considered technical and managerial aspects and the
methodology for the generation of the original benchmark instances can be found in
Martens et al. (2009, 2010), Orlowski et al. (2011).

Computations

Table 2 provides a comparison of the two decomposition approaches against the two
variants of the aggregated model, one that is implemented as a branch-and-cut approach
with cuts (16)–(18) (denoted by “Aggr. MIP + Cuts”) and one that is a compact
aggregated MIP formulation (denoted by “Aggr. MIP”). A time limit of 2 h has been
imposed on all four approaches. However, the Lagrangian decomposition approaches
typically converged much faster. The column “Best UB” shows the objective value
of the best solution found among all four approaches. For the two decomposition
approaches (denoted by “(F) + (D) Decomp.” and “(FC) + (FP) Decomp.”, resp.),
we report the final gap obtained at the end of the last iteration (gap[%]), the gap
of the final lower bound with respect to the global upper bound reported as “Best
UB” (gapUB[%]), the total number of Lagrangian iterations (#It), the total number of
subproblem evaluations within the bundle method (#Evals), and the total running time
[(t (s)]. Asterisk next to the running time denotes that the approach did not converge
within 2 h, and the reported values are obtained in the last iteration within this time
limit. For the two variants of the aggregated model, instead of the number of iterations,
we report the total number of branch-and-bound nodes explored within the given time
limit (#Nodes). For comparison, we also report in the column gapL the relative gap
obtained with the “Aggr. MIP + Cuts”-approach within the time required by “(FC) +
(FP) Decomp.” to terminate and in column tL the time needed by “Aggr. MIP + Cuts”
to reach the same gap as “(FC) + (FP) Decomp.” at termination.

Comparing the results provided in Table 2, we find that none of the two aggregated
MIP approaches completed within 2 h. For instance “h”, the aggregated MIP approach
without cuts even failed exceeding the available memory. Furthermore, we observe
that the aggregated MIP approach without cuts exhibits the worst performance. For
three out of nine instances, no feasible solution is found within 2 h, and for three out of
remaining six, the upper bounds were above 30 %. We find that in these cases, the gaps
are mainly caused by the poor quality of the bounds produced by this approach. For
all instances, the number of explored branch-and-bound nodes is at least a six-figure
number (with the exception of the instance “h” exceeding the memory limit).

The addition of connectivity cuts clearly improves the performance of the aggre-
gated MIP model: The number of explored branch-and-bound nodes reduces by one
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to two orders of magnitude, and both the gaps and the solutions obtained after 2 h are
significantly improved. However, for the large instances “e”, “f”, and “i” with more
than 5,000 edges, no feasible solutions are found using the approach “Aggr. MIP +
Cuts”.

In contrast to the aggregated MIP approaches, both decomposition approaches ter-
minate much earlier with strong lower and upper bounds. The overall gaps remain
below 4 % in all cases. Comparing the running times of the two decomposition
approaches, we observe that (FC) + (FP) performs slightly better. Its average (median)
running time is 2,369.89 (1,779) s, compared to an average (median) running time of
3,380.33 (2,365) s for (F) + (D). The quality of the solutions obtained with the two
approaches is similar.

For the smaller instances, where the “Aggr. MIP + Cuts” approach was able to find
feasible solutions, the final gaps obtained with this approach are slightly smaller than
the ones obtained by the decomposition approaches. In these cases, the aggregated
approach benefits from solving a single “global” model of the problem, which permits
to fully exploit all optimization potentials via branching, while both decomposition
approaches operate on a pairs of two independent submodels that are coupled only
rather loosely via Lagrangian multipliers. However, we emphasize that the main pur-
pose of the proposed Lagrangian decomposition approaches is to compute strong valid
lower and upper bounds for large problem instances. This means that embedding these
decomposition approaches into a (coordinated) branch-and-bound framework would
further improve the obtained bounds and solutions.

To take a closer look at the performance of the proposed approaches, Figs. 5, 6,
and 7 show the progress of the lower and the upper bounds for instances “d”, “e”
and“f”, respectively. We observe that both decomposition approaches already reach
very strong lower and upper bounds within only several minutes. In the remaining
time, there is only a little progress in these values until the ConicBundle method
converges (in which case the Lagrangian multipliers remain unchanged and the algo-
rithm terminates). The two aggregated MIP models, on the other hand, improve the
bounds constantly but very slowly as more branch-and-cut nodes are explored. Also,
we observe that there is a significant improvement in the quality of both lower and
upper bounds when adding connectivity constraints. If “Aggr. MIP + Cuts” happens to
find feasible solutions, it finds them relatively early in the exploration in the branch-
and-bound tree. For the aggregated MIP approach without cuts, on the other hand,
good solutions are found either relatively late in the branch-and-cut process, or are not
found at all.

When analyzing the performance of the (F) + (D) decomposition, we came to
the conclusion that its convergence and the overall performance strongly depend on
the initial values of Lagrangian multipliers. This can be seen from Fig. 8, which
shows the progress of lower and upper bounds for the instance “a” with three different
initializations of Lagrangian multipliers αe: (a) the installation costs of the edges are
fully charged to feeder subproblem (αe = −ce, e ∈ E), (b) the installation costs of the
edges are fully charged to the distribution subproblem (αe = 0, e ∈ E), and (c) half
of the installation cost of the edges is charged to both the feeder and to the distribution
subproblem (αe = −ce/2, e ∈ E). All other Lagrangian multipliers are initialized
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Fig. 5 Progress of lower and
upper bounds for the instance
“d”: two aggregated MIP
approaches (left), and two
decomposition approaches
(right)
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Fig. 6 Progress of lower and upper bounds of four approaches on the instance “e”

Fig. 7 Progress of lower and upper bounds of four approaches on the instance “f”
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Fig. 8 Comparison of subproblem evaluations for different settings of Lagrangian multipliers for the
(F) + (D) decomposition in instance “a”

to zero. The presented results indicate that a “wrong” initialization of the Lagrangian
multipliers can drastically slow down the overall performance.

The success of the (FC) + (FP) decomposition over the (F) + (D) decomposition
can be explained by the global connectivity constraints added to the fixed charge
subproblem. This can be seen from Fig. 9, where we show the progress of lower
and upper bounds of the (FC) + (FP) decomposition with and without adding global
connectivity constraints to the fixed charge subproblem.

The results indicate that the global cuts are not only crucial for obtaining high
quality lower bounds, but also for obtaining feasible solutions. When global cuts are
turned off, no upper bound was found within 800 s, whereas a high quality solution is
obtained in less than 100 s, otherwise. Similar behaviors to the ones reported in Figs. 8
and 9 were also observed for the remaining instances.

Recall at this point that all benchmark instances considered in this study stem from
greenfield planning problems, where the setup costs of the edges include trenching
costs and, thus, constitute the dominant share of the overall network cost. The impact
of the global connectivity constraints may be smaller for instances stemming from
planning problems where (mostly) existing edges can be used without or with only
very small setup costs. Thus, the overall efficiency of the (FC) + (FP) decomposition
approach observed in our experiments for greenfield planning instances may deteri-
orate for instances where the fixed setup cost incurred by trenching, placing closures
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Fig. 9 Comparison of the (FC) + (FP) decomposition with and without global cuts in instance “a”

and cabinets, opening central offices, and performing the setup activities no longer
dominate the flow-dependent hardware costs for fibers and splitters in the networks.

Conclusions

In this paper, we have proposed a new combinatorial optimization problem that models
a more detailed deployment of passive optical networks. To solve the problem, four
mixed-integer-programming approaches were proposed: two of them consider a MIP
model and solve it either as a compact MIP, or by a branch-and-cut algorithm (by adding
additional valid inequalities to model connectivity). The remaining two approaches
are Lagrangian decompositions whose subproblems are still NP-hard to solve, but
can be efficiently tackled by branch-and-cut approaches. Our computational study has
shown that the decomposition approaches outperform the aggregated MIP approaches,
both with respect to the running time, and with respect to the quality of the obtained
lower and upper bounds. On the other hand, design- and implementation-effort for the
proposed Lagrangian decomposition approaches is much higher than for the branch-
and-cut approach. Therefore, we may conclude that for a practitioner, if the running
time is an issue, it pays off to develop a Lagrangian-based approach for solving 2FTTx
instances; otherwise, it may be sufficient to run the (much simpler to implement)
branch-and-cut approach.

Among the two decomposition approaches, a slight preference is given to the one
that decomposes the problem according to its cost structure, into the fixed charge and
variable cost subproblems. The reason for this is the “global view” of this approach,
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which is ensured by global connectivity constraints added into the fixed charge sub-
problem. These constraints “guide” the topology of the network throughout Lagrangian
iterations. Both decomposition approaches are capable of solving realistic instances
(with almost 5,000 nodes and 12,500 edges) with final gaps of only a few percents. The
obtained results indicate that these decomposition approaches could be even further
improved by embedding them into a branch-and-bound framework. Since the problem
is new, researchers working on network design might find it interesting to consider
other aspects of solving the 2-FTTx, like Benders decomposition, column generation,
or to study heuristic approaches or approximation algorithms.
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