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Abstract Vascular calcification, a hallmark of aging, is ac-
celerated in patients with hypertension, diabetes, and chronic
kidney disease. It may be viewed as the result of disturbances
of the complex and subtle balance between inhibitors and
promoters, acting at both the systemic and local levels. Ethnic
differences in certain components of the atherosclerosis pro-
cess were identified previously; however, recent evidence
suggests that atherosclerosis is not a modern disease and
may be viewed as an inherent component of human aging,
unrelated to any specific diet or lifestyle. In this review, we
highlight the mechanisms governing vascular calcification
and its association with aging. By understanding the pathways
involved in these processes, novel drug targets may be pro-
posed in an effort to reduce the effects of vascular calcification
as a risk factor.
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Introduction

Vascular calcification is a hallmark of aging [1, 2] and is
accelerated in patients with hypertension [3], diabetes [4],
and chronic kidney disease (CKD) [5]. Although aging is well
recognized as a potent cardiovascular (CV) risk factor, the
mechanisms underlying the association between aging and
vascular calcification remain unknown. Although ethnic dif-
ferences previously were identified in certain components of
the atherosclerosis process [6], recent evidence suggests that
atherosclerosis is not a disease of the modern era and may be
viewed as an inherent component of human aging not related
to any specific diet or lifestyle [7••].

Although the mechanisms responsible for arterial stiffening
have not been elucidated completely, they are thought primar-
ily to involve structural changes within the media, particularly
fatigue fracturing of elastin and collagen deposition. An addi-
tional mechanism is arterial calcification, which may occur in
the intima, in conjunction with atherosclerotic plaques, or in
the media as arteriosclerosis [8].

Medial arteriosclerosis may be defined as a process char-
acterized by lumen enlargement with wall thickening
(remodeling) and a reduction of elastic properties (stiffening)
at the level of large elastic arteries [9]. Although aging is the
main determinant of arterial stiffening (medial arteriosclero-
sis) [1, 10], this process is not uniform along the arterial tree,
as distal muscular arteries do not present the same age-
dependent stiffening [10]. Development of intimal atheroma-
tous plaques (atherosclerosis) has a different pathophysiologic
evolution. Although the two clinical conditions (medial vs.
intimal disease) certainly may coexist and share some path-
ways, they alsomay be observed separately, both spatially and
temporally [11].

Atherosclerotic calcification is intimally oriented and ec-
centric, initiating at the base of necrotic fibrofatty plaques via
apoptotic vesicles arising from dead and dying vascular
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smooth muscle cells (VSMCs) [12]. Major features of athero-
sclerotic calcification that differ from medial artery calcifica-
tion (MAC) include abundant fibrosis, extensive cellular ne-
crosis, apoptotic body formation, and cholesterol crystal ac-
cumulation [12].

MAC differs greatly from the eccentric, calcified athero-
sclerotic plaque [12] of atherosclerosis. MAC is a feature of
diabetes and CKD [4] and entails matrix vesicle-nucleated
mineralization with apatitic calcium phosphate deposition in
the tunica media in the absence of atheroma and neointima.
The tunica media of large arteries consists of a structured
assembly of VSMCs, elastic lamellae, and collagen fibrils into
functional muscular–elastic sheets. Mechanical properties are
determined by cross-links between the extracellular matrix
components and cell matrix [13–15]. Smooth muscle cells
account for 30% to 50% of the volume and are the least rigid
component in the arterial wall. The elastic lamellae,
representing 25% of the volume, largely determine the elas-
ticity of the arterial wall in the normal physiologic range of
pressures [16]. Collagen fibers, which represent 35% of the
volume, are stiffer than elastin and VSMCs, thus conferring
vascular integrity to tensile strength [17]. Collagen is recruited
mainly at higher pressures, at which the arteries are signifi-
cantly distended [17]. Thus, the elasticity of large arteries
decreases with pressure loading, because the stiffer compo-
nents of the arterial wall are recruited sequentially. This effi-
cient organization is modified during aging, determining the
progressive stiffening of large arteries [1, 2].

Age-associated changes in the arterial properties may con-
tribute to significant increases in vascular disease in older
adults [1]. Mounting evidence suggests that large artery cal-
cification and remodeling contribute directly to arterial stiff-
ening [1]. Although the number of cells decreases over time,
cells are replaced by fibrotic tissue and the residual cells also
become hypertrophic. The decay of the elastic network grad-
ually transfers the wall tension to the collagen fibers, which
normally are recruited as the vessel pressure and diameter
increase [2]. Because the collagen fibers are stiffer than the
elastic network, resistance to additional dilation often is tem-
pered by the dilatation that already has occurred [2]. In addi-
tion, cross-linking by advance glycation end products (AGEs)
and elastocalcinosis further increases vascular stiffness. Cal-
cium deposition also may promote the destruction of elastic
fibers, thereby exacerbating the aging process [2, 18]. Thus, in
arteriosclerosis, large artery calcification and remodeling may
be viewed as two parallel consequences of the degradation of
the elastic network.

Pulse wave velocity (PWV), a noninvasive index of vas-
cular stiffening, increases with age in both men and women.
PWV is determined in part by the intrinsic stress/strain rela-
tionship (stiffness) of the vascular wall and by the mean
arterial pressure. Increased PWV traditionally has been linked
to structural changes in the vascular media, including

increased collagen, reduced elastin content, elastin break-
down, and calcification.

Because age-associated increases in PWV have been dem-
onstrated in healthy subjects with little or no atherosclerosis,
arterial stiffening may occur independently of atherosclerosis
[10, 14, 15]. However, several studies indicate that increased
arterial stiffness also is associated with atherosclerosis, diabe-
tes, and CKD [3–5]. The role of the structural changes within
the matrix and endothelial dysregulation of vascular smooth
muscle tone and other aspects of vascular wall structure/
function overlap and interrelate with one another. Endothelial
dysfunction occurs at an early stage in the pathophysiology of
atherosclerosis, diabetes, and hypertension [19]. Therefore,
changes in mechanical properties of the artery wall influence
the development of atherosclerosis, and the latter, via endo-
thelial dysfunction and other mechanisms, influences arterial
stiffness.

Cellular Aspects at a Glance

Once considered a passive process, vascular calcification has
emerged as an actively regulated form of calcified tissue
metabolism (Fig. 1).

Recent evidence suggests a pathophysiologic link between
vascular (intimal and medial) calcification and bone metabo-
lism because of the presence of bone-related proteins and cells
at the site of calcification [20, 21]. The mechanism of vascular
calcification is complex, but the dedifferentiation or transfor-
mation of VSMCs into an osteoblastic/chondrocytic pheno-
type is thought to be the initiating process.

Most studies describe an age-related decline of VSMCs
[22], which has been attributed to a generalized reduction of
cellular activity that cannot counterbalance the cellular apo-
ptosis of the arterial wall. VSMCs originate from a similar
mesenchymal stem cell as osteoblasts, the latter occurring
with up-regulation of the Runt-related transcription factor 2
(RUNX2), msh homeobox 2 (MSX-2), and SRY (sex-
determining region Y)-box 9 (SOX9) [23]. MSX-2 is required
for membranous bone formation, whereas RUNX2 is neces-
sary for osteoblastic transformation, neovascularization, and
endochondral ossification [24]. SOX9may determine whether
ensuing ossification is endochondral or membranous in type
[25, 26]. The actions of bone morphogenetic proteins (BMPs)
on target cells such as VSMCs are conflicting to some extent,
suggesting the existence of intrinsic autoregulatory and
overlapping mechanisms. In fact, because BMP2 signaling
up-regulates RUNX2 as well as MSX-2 and can drive both
chondrogenic and osteogenic differentiation of pluripotent
mesenchymal progenitors, BMP2-regulated processes are im-
plicated in all histoanatomic variants of vascular calcification.
However, depending on the underlying disease process and
the primary mechanisms driving vascular calcification, the
relative contributions of BMP2–MSX-2/RUNX2 signaling
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Figure 1 Proposed diagram depicting the alterations of large arteries during
aging, leading to their stiffening. The consequences of the increased stiffness on
central hemodynamics also are represented. AGEs advanced glycation end
products; CVCs calcifying vascular cells; DBP diastolic blood pressure; MGP
matrix Gla protein;MSCs mesenchymal stem cells; MSX-2 Msh homeobox 2;

NO nitric oxide; OPG osteoprotegerin; PTH parathyroid hormone; PWV pulse
wave velocity; RANK receptor activator of nuclear factor-κB (NF-κB); RANKL
RANK ligand; ROS reactive oxygen species; RUNX Runt-related transcription
factor; SBP systolic blood pressure; SRY sex-determining regionY-box 9;TRAIL
TNF-related apoptosis-inducing ligand; VSMCs vascular smooth muscle cells.
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likely will differ [27, 28]. The signals that initiate regional
osteogenic and chondrogenic differentiation arise in part from
lipid and glucose metabolism and inflammatory cytokines [29,
30]. In relation to different stimuli, VSMCs transdifferentiate
into noncontractile cells with bone-forming capacity and ac-
quire properties of osteoblasts, that is, the ability to synthesize
alkaline phosphatase (ALP), bone sialoprotein (osteopontin),
osteocalcin, and type I collagen [31, 32].

VSMCs also secrete matrix proteins, and once the matrix
is prepared, these cells mineralize the matrix through the
secretion of matrix vesicles [29] or through apoptosis/
fibrosis [32]. Matrix vesicle formation is a feature of normal
osteogenesis [33]. Matrix vesicles are rich in alkaline phos-
phatase, which catalyzes the breakdown of pyrophosphate,
itself an inhibitor of calcification. Phosphate is actively
transported into the vesicle by a sodium-dependent phos-
phate pump, itself enhanced by increased phosphate con-
centration in the extracellular fluid. Matrix vesicles also
contain calcium-binding proteins; thus, phosphorus and
calcium increase the mineralizing potential of matrix vesi-
cles [34••]. The vesicle membrane later disintegrates, and
calcium phosphate reacts with extracellular matrix constit-
uents, forming mature crystals of hydroxyapatite [35]. The
extrusion of matrix vesicles by VSMCs and related osteo-
genic cells may be stimulated partly when these cells un-
dergo apoptosis [35]. Apoptosis itself may result from a
variety of factors, including the action of tumor necrosis
factor-α (TNF-α), receptor activator of nuclear factor-κB
(NF-κB [RANK]) ligand (RANKL), and TNF-related
apoptosis-inducing ligand (TRAIL). Their actions are
inhibited by the glycoprotein osteoprotegerin (OPG). RANK
is expressed primarily on cells of the macrophage/monocyte
lineage, including preosteoclastic cells, T and B cells, dendrit-
ic cells, and fibroblasts [36]. RANKL is highly expressed in
bone, bone marrow, and lymphoid tissues, stimulating osteo-
clast differentiation and activity and inhibiting osteoclast ap-
optosis [37]. Besides RANK, RANKL also binds to OPG. The
major biologic action of OPG has been its binding to RANKL
and consequent inhibition of RANK stimulation, then its
decreasing of osteoclast differentiation and activity in bone.

Recent studies also defined a role for prelamin A accumu-
lation in the vascular degeneration observed in aged and
atherosclerotic patients within the general population [38,
39]. Increased prelamin A accumulation was observed in
atherosclerotic arteries and medial VSMCs of aged patients
with MAC. In human and animal studies, prelamin A accu-
mulated selectively in the vasculature [40]. Prelamin A has
been shown to modulate DNA damage repair signaling, lead-
ing to premature cell senescence. It also has been shown to
induce gene expression changes that modulate both Wnt and
Notch signaling, as well as extracellular matrix production, to
affect VSMC phenotype. Finally, it has been reported that
prelamin A promotes VSMC calcification and aging by

inducing persistent DNA damage signaling, which acts up-
stream of VSMC osteogenic differentiation and the
senescence-associated secretory phenotype [41•].

Calcification is a balance between promineralizing factors
that stimulate VSMC dedifferentiation and inhibitors of calci-
fication. In both bone and arteries, there are inhibitors of
calcification, including matrix Gla protein (MGP), pyrophos-
phate, and osteopontin, and circulating inhibitors such as
fetuin-A [28]. MGP is present in VSMCs and, like
osteocalcin, belongs to a family of mineral-binding proteins
that contain γ-carboxyglutamic acid, which has a high affinity
for hydroxyapatite. MGP inhibits induction of ALP by BMPs
[42]. MGP-deficient mice demonstrate extensive endochon-
dral bone formation in the arterial wall, as well as generalized
calcification of cartilage. There is mounting evidence of com-
plex coordination of the actions of fetuin-A, MGP, and other
factors in the release of calcium and phosphate accompanying
bone lysis [43]. Osteopontin is a phosphoprotein secreted by
different cell types, including preosteoblasts, osteoblasts, and
osteoclasts; consequently, it is involved in several biologic
functions. Osteopontin is a major constituent of bone matrix
and has been shown to inhibit calcification by adhering to
calcium apatite crystals [44]. Fetuin-A is an acute-phase gly-
coprotein synthesized in the liver [43]. It inhibits the actions of
BMP2 and limits matrix vesicle formation by inhibiting hy-
droxyapatite formation. In addition, fetuin-A reduces apopto-
sis and enhances phagocytosis of matrix vesicles by VSMCs.
Reduced synthesis of fetuin-A is a major determinant of
increased arterial calcification in CKD [43]. Polymorphisms
in the gene encoding fetuin-A are associated with poor CV
outcome; indeed, an inverse correlation has been demonstrat-
ed between circulating levels of fetuin-A and CVand all-cause
mortality in humans [45]. Finally, other factors that might
influence the development of osteogenic cells and vascular
calcification are nitric oxide (NO) and high-density lipopro-
tein (HDL). NO inhibits calcification and osteoblastic trans-
formation of VSMCs in vitro, an effect shown to be mediated
through inhibition of the actions of transforming growth
factor-β (TGF-β) and its downstream effects on the phos-
phorylation of SMAD proteins and of plasminogen activator
inhibitor-1 [46]. The administration of HDL to calcifying
vascular cells (CVCs) in vitro reduces ALP activity (a marker
of osteogenic transformation of CVCs induced by BMPs),
including that stimulated by proinflammatory cytokines inter-
leukin (IL)-1β and IL-6 [47].

Vessel structure also may be regulated by alterations in
matrix cross-linking. Endothelial NO synthase (NOS)-depen-
dent nitric oxide also regulates tissue transglutaminase 2
(TG2) cross-linking activity and location in endothelial cells.
Decreased endothelium-dependent NO synthesis in the aging
vasculature leads to reduced TG2 S -nitrosylation and, thus,
enhanced transamidation activity. This, in turn, results in
increased cross-linking of matrix proteins and, consequently,
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to decreased compliance and increased stiffness of aging
conduit blood vessels [48].

It is known that angiotensin II induces both matrix metallo-
proteinase 2 (MMP2) and calpain-1 expression and activity in
the arterial wall. Overexpression of calpain-1 induces MMP2
transcripts, protein levels, and activity, in part, by increasing the
ratio of membrane type 1 MMPs to tissue inhibitor of MMP2.
These effects of calpain-1 overexpression-induced MMP2 ac-
tivation are linked to increased collagen I and III production and
vascular calcification. Overexpression of calpain-1 also induces
TGF-β1/SMAD signaling, elastin degradation, alkaline phos-
phatase activation, and total calcium content, but reduces the
expression of calcification inhibitors, osteopontin, and
osteonectin, in cultured VSMCs in vitro and in carotid artery
rings ex vivo [49•].

Aging and Structural Changes in the Artery Wall: Collagen
and Elastin Fibers

Collagen isoforms found in the aorta are predominantly types
I and III (about 80%–90%) with some type IV, and their
concentration gradually increases after the age of 50. A hall-
mark of arterial aging is the progressive thinning, splitting,
and fragmentation of elastic lamellae [1, 2]. Elastin is the most
abundant protein of the vascular wall of large arteries and
represents 90% of elastic fiber content, which also is com-
posed of glycoproteins. Elastic fibers consist of soluble
tropoelastin monomers assembled and cross-linked on several
residues. The metabolism of elastin seems age dependent,
being synthesized mainly during early development, with a
subsequent slow turnover. Several elastin cross-links decrease
with age, thus contributing to the reduction in the rubber-like
properties of the polymer. The gradual disruption of the elastic
lamellae is a slow mechanical senescence of the network by
repetitive influences of systolic stretching [1, 2]. Once elastin
is degraded, elastin peptides are susceptible to calcification
and calcium binding; thus, they may serve as initiation sites
for calcification [50]. MMPs may serve to degrade medial
elastin, resulting in the liberation of soluble elastin peptides.
These peptides can bind the elastin–laminin receptor (ELR),
which is present on most cells, to stimulate production of
MMPs and other serine elastases. This represents a positive
feedback mechanism triggering a cycle of MMP-mediated
elastin degradation, inflammatory cell recruitment, and more
MMP secretion. Additionally, soluble elastin peptides may
interact with the ELR to induce osteogenic changes in VSMCs
[50].

AGEs

Increased oxidative stress with aging leads to greater genera-
tion of AGEs. AGEs have been found in arterial and cardiac
tissue as well as atherosclerotic lesions in dialysis patients

[51]. Because only protein catabolism removes AGEs, colla-
gen and elastin are highly susceptible to AGE accumulation
because of their slow turnover. Increased cross-linking confers
a resistance to enzymatic degradation of collagen that pro-
motes its accumulation in the arterial wall [52]. Other relevant
effects of AGEs include binding to their receptor (RAGE) to
promote the release of fibrotic cytokines and inhibition of cell
adhesion that may enhance apoptosis [53]. AGE accumulation
on collagen and elastin and age-related aortic stiffness were
correlated [54]. AGE-modified elastin and calcification have
been found in the aortic media of dialysis patients, and calci-
um binding to elastin plays a key role in the pathogenesis of
medial calcification [54]. In cultured VSMCs, AGEs may
accelerate calcification of microvascular pericytes. AGEs in-
duce the expression of RUNX2 mRNA and ALP activity and
calcification [31]. RAGE is expressed in a variety of cells,
including VSMCs, and these AGE-mediated changes in
VSMCs are partially attenuated by a neutralizing antibody to
RAGE [55]. Moreover, experiments using aminoguanidine
and pyridoxamine, inhibitors of AGE cross-linking formation,
reported prevention of arterial stiffening [56]. Furthermore,
AGE cross-link breakers restored large artery properties in
aging rodents, dogs, nonhuman primates, and humans, pro-
viding a scientific rationale for their development [57].

Genetic Pathways

In complex disorders such as vascular calcification, multiple
contributing genes, as well as environmental exposures, me-
diate outcome [58, 59]. For vascular calcification, mecha-
nisms affecting smooth muscle proliferation, endothelial func-
tion, response to reactive oxygen species, vitamin K metabo-
lism, and osteochondral differentiation, together with a grow-
ing list of physiologic modulator molecules and environmen-
tal factors, likely contribute to both intimal calcification in
atherosclerosis and calcification of the tunica media of the
arteries.

Vascular calcification has a high heritable component [58,
59]. Genome-wide association studies have identified several
loci linked to coronary artery calcification (CAC), and some
of these loci are the same as those for coronary atherosclerosis.
The 9p21 locus, which previously was linked to vascular
disease, also is associated with subclinical coronary athero-
sclerosis and calcification [60]. Recently, a meta-analysis of
CAC and myocardial infarction involving nearly 10,000 sub-
jects from five cohorts identified 48 single-nucleotide poly-
morphisms (SNPs) at 9p21 near the cyclin genes (CDKN2B
and CDKN2A ) significantly linked to CAC [61]. These genes
encode cyclins that may be linked broadly to cellular senes-
cence and inflammation. This meta-analysis also found a
single SNP at 6p24 in the PHACTR1 gene [61], and this same
locus has been linked to myocardial infarction [62].
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Gene identification in rare diseases associated with arterial
calcification, including generalized arterial calcification of in-
fancy, pseudoxanthoma elasticum,calcification of joints and
arteries, and familial idiopathic basal ganglia calcification, has
helped researchers gain insight into the molecular pathophysi-
ology of arterial calcification [63]. Mutations in the underlying
disease genesENPP1 ,ABCC6 ,NT5E , andSLC20A2 , respec-
tively, lead to arterial media calcification [64–67]. The encoded
proteins nucleotide pyrophosphatase/phosphodiesterase-1
(NPP1), adenosine triphosphate (ATP)-binding cassette sub-
family C member 6 (ABCC6), glycosylphosphatidylinositol-
linked plasma membrane CD73 ectoenzyme (CD73), and type
III sodium-dependent phosphate transporter 2 (PiT2), respec-
tively, appear to be responsible for preventing spontaneous
calcification by modulating ATP metabolism, adenosine, and
inorganic phosphate. However, the role of ABCC6 in this
pathway remains to be defined [68]. NPP1 also seems to play
a role in intima calcification and atherosclerotic plaque devel-
opment [69]. Whether the other proteins, including ABCC6,
CD73, and PiT2, also are involved in atherosclerotic plaque
calcification remains to be elucidated.

Another interesting genetic pathway for vascular calcifica-
tion is represented by the klotho gene. This gene, identified as
an “aging suppressor” gene in mice, encodes a single-pass
transmembrane protein expressed predominantly in the distal
tubular epithelial cells of the kidneys, parathyroid glands, and
choroid plexus of the brain [70, 71]. Klotho originally was
identified in a mutant mouse strain that could not express the
gene; these mice developed multiple disorders resembling
human aging and had a shortened life span [72, 73•]. The
aging phenotypes include atherosclerosis and endothelial dys-
function, osteopenia, sarcopenia, skin atrophy, and impaired
cognitive function. In an atherosclerotic mouse model, the
in vivo gene delivery of klotho protects against endothelial
dysfunction. HMG-CoA reductase inhibition enhances klotho
protein expression in the kidneys and inhibits atherosclerosis
in rats with chronic blockade of NOS [74]. Mounting evi-
dence also suggests that klotho deficiency is a marker for
CKD progression and acute kidney injury [75•]. There are
two forms of klotho: a membrane form and a secreted form,
each with distinct functions. Membrane klotho acts as an
obligate coreceptor for fibroblast growth factor 23, a bone-
derived hormone that induces phosphate excretion into the
urine [76]. Secreted klotho is involved in the regulation of NO
production in the endothelium, maintenance of endothelial
integrity and permeability, calcium homeostasis in the kid-
neys, and inhibition of intracellular insulin and insulin-like
growth factor-1 signaling [77]. Recent data show that low
serum klotho levels are associated with poor skeletal muscle
strength and the prevalence of CV disease and all-cause
mortality in community-dwelling adults [78–80]. Low serum
klotho levels also have been reported in patients with meta-
bolic disorders such as obesity and diabetes mellitus [81]. The

expression of local vascular klotho has been observed to
decrease in human arteries in patients with CKD compared
with healthy individuals [82]. An association between klotho
deficiency and vascular calcification also has been reported in
aging mice and in a mouse model of CKD [72, 73•]. Interest-
ingly, recent data show that a decrease in the serum soluble
klotho level is an independent biomarker of arterial stiffness in
patients with CKD [83].

Clinical Implications

Arterial stiffness is emerging as an important risk factor in
hypertension [84]. PWV predicts future changes in systolic
blood pressure (SBP) and future development of hypertension
in healthy individuals [84]. Furthermore, increased arterial
stiffness has been associated with increased morbidity and
both all-cause and CV mortality in hypertensive patients [85,
86]. A recent meta-analysis confirmed that arterial stiffness, as
measured by carotid–femoral PWV, is an independent predic-
tor of adverse CVevents and all-cause mortality: for each 1-m/
s increase in aortic PWV, CVrisk rises bymore than 10% [87].

A large body of evidence supports the concept of increased
arterial stiffness in type 1 diabetes [88, 89]. This is an early
phenomenon that occurs before the onset of clinically overt
micro- or macrovascular disease, and arterial stiffness is en-
hanced further in the presence of microvascular complica-
tions. Similar findings have been reported with regard to pulse
pressure: subjects with type 1 diabetes show an increase in
pulse pressure around the third/fourth decade of life, suggest-
ing accelerated arterial aging, and the age–pulse pressure
relationship is even steeper in the presence of microvascular
complications [88, 90]. Whether increased arterial stiffness is
a cause (because greater arterial stiffness is associated with
higher pressures in small arteries and capillaries) or a conse-
quence (because microvascular damage will increase wave
reflection and thus increase pulse pressure) of microangiopa-
thy—or, alternatively, whether both phenomena are the result
of other damage pathways, such as endothelial dysfunction or
inflammation—remains to be elucidated. Taken together, the-
se data highlight the accelerated arterial aging in type 1
diabetes and may explain, at least in part, the increased CV
risk in these patients. A large body of evidence supports the
concept of increased arterial stiffness in type 2 diabetes [91,
92]. Similar to that observed in type 1 diabetes, this again is an
early phenomenon because much already occurs in the im-
paired glucose metabolism state (i.e., impaired fasting glucose
and/or impaired glucose tolerance). In addition, the presence
of micro- and macrovascular complications in type 2 diabetes
is associated with a further increase in arterial stiffness [93].
Furthermore, as in patients with type 1 diabetes, those with
type 2 diabetes show a rapid age-related increase in arterial
stiffness compared with their nondiabetic counterparts, and
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these increases are amplified further by micro- and
macrovascular complications [94].

Several studies in the general population have shown that
aortic calcification increases overall and CV mortality [95].
London et al. [96] studied the effect of arterial intimal and
medial calcification on mortality in 202 hemodialysis patients.
Compared with patients who had intimal calcification, those
with medial calcification had longer survival; however, pa-
tients with medial calcification showed significantly shorter
survival than patients without calcifications. These findings
suggest that arterial medial calcification is a strong prognostic
marker of all-cause and CVmortality in hemodialysis patients,
independent of classic atherogenic factors, acting mainly
through increased arterial stiffness. In a previous study in
110 hemodialysis patients, the same group of investigators
showed that the presence and extent of vascular calcifications
were strong predictors of CV and all-cause mortality [97].
Vascular calcification is an important determinant of CV
outcomes after kidney transplantation. In a clinical trial with
112 kidney transplant recipients, aortic calcification, diag-
nosed by electron beam CT, was prevalent and found to be a
strong predictor of CVevents [98]. Arterial stiffness has been
independently associated with reduced creatinine clearance in
patients with mild to severe renal insufficiency [5], and it is
independently associated with all-cause mortality and CV
events in CKD [99]. Data show that mild CKD (glomerular
filtration rate [GFR] of 60–89 mL/min per 1.73 m2 body
surface area) is a risk factor for CV disease [100]. Several
studies have demonstrated the existence of a relationship
between the degree of GFR loss and arterial stiffness, even
in individuals with GFR values in the “normal to mildly
impaired renal function” range (GFR ≥60 mL/min per 1.73
m2 body surface area) [101], suggesting a cause–effect rela-
tionship and/or common underlying mechanisms. In hemodi-
alysis patients, aortic stiffness is a powerful independent pre-
dictor of CVand all-cause mortality [102]. Notably, the lack of
an aortic PWV decrease in response to a drug-induced de-
crease in blood pressure was a significant predictor of CV
death in patients with end-stage renal disease [103].

Several lines of evidence suggest that age-associated bone
demineralization and arterial calcification are highly regulated
processes and share common mechanisms and signaling path-
ways [104]. Previous studies measuring bone mineral density
(BMD) with dual-energy x-ray absorptiometry (DEXA) in
postmenopausal women showed an inverse relationship be-
tween PWVand bone demineralization [105, 106]. In a recent
study conducted in community-dwelling men and women with
a wide range of BMDs, we measured BMD with CT, which
unlike DEXA can distinguish between cortical and trabecular
bone.We found that a decrease in cortical cross-sectional area is
associated with an increase in PWV in women but not in men,
suggesting that mediators of this association probably are dif-
ferentially regulated between men and women [107].

The correlation of osteoporosis with calcium deposits sug-
gests a significant role of calciotropic hormones in the patho-
genesis of vascular calcification. Both endothelial cells and
VSMCs have vitamin D receptors. Vitamin D might influence
vascular homeostasis through a direct effect on endothelial
cells and VSMCs, but also from indirect interaction with other
calciotropic hormones and immunomodulation. Activation of
vitamin D nuclear receptor (VDR) induces the change in
expression of almost 200 genes influencing the cell cycle,
reducing proliferation, differentiation, and apoptosis of
VSMCs [108]. VDR activation also modulates cardiac calci-
um flux and thereby induces an accelerated relaxation of
cardiomyocytes, which may improve diastolic function of
the heart. Vitamin D–mediated regulation of cardiac extracel-
lular matrix turnover also may be important in maintaining
CV health [109]. Vitamin D also may protect against athero-
sclerosis, vascular calcification, and endothelial dysfunction
[110]. Studies showed that poor vitamin D status, as well as
vitamin D intoxication, may contribute to vascular calcifica-
tion. Vitamin D levels that are too high or too low intensify the
activity of metalloproteinases, key enzymes for vascular re-
modeling. Excessive vitamin D supplementation may result in
intense calcium deposit accumulation in the tunica intima and
media, elastin degradation, increased arterial stiffness, and left
ventricular hypertrophy [111]. Recent studies reported an
association between vitamin D insufficiency and increased
arterial stiffness [112, 113] and endothelial dysfunction
[114]. Vitamin D may reduce vascular calcification by
inhibiting BMPs, but data on this topic are somewhat contro-
versial [110], and both observational and interventional stud-
ies showed inconsistent results regarding the association of
vitamin D with subclinical atherosclerosis [110]. Several, but
not all, interventional studies showed that vitamin D supple-
mentation improves endothelial function [114]. Further re-
search is needed to identify the mechanisms by which vitamin
D affects arterial stiffness and to explore whether vitamin D
supplementation may prevent CV disease.

Management of Arterial Aging

Treatment of Vascular Calcification

Treatment strategies for vascular calcification represent a daily
challenge for the medical community dealing with CKD pa-
tients. Although current treatment strategies focus on
correcting abnormal calcium, phosphorus, parathyroid hor-
mone, or vitamin D levels in CKD, a better understanding of
the mechanisms of abnormal tissue calcification may lead to
the development of new therapeutic agents that can reduce
vascular calcification and improve the CV outcome of CKD
patients.
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Hyperphosphatemia contributes to secondary hyperpara-
thyroidism, CV mortality, and all-cause mortality. The phos-
phorus binders currently used to manage hyperphosphatemia
include sevelamer, lanthanum, and the calcium-based phos-
phate binders (CBPBs) calcium carbonate and calcium
acetate.

Sevelamer is an aluminum- and calcium-free phosphorus
binder that does not promote hypercalcemia, allows better
serum phosphorus control compared with CBPBs, suppresses
the progression of aortic calcification in hemodialysis patients,
and has a favorable effect on the lipid profile [115]. In 200
hemodialysis patients, sevelamer attenuated the progression
of coronary and aortic calcification better than CBPBs after 1
year of treatment [116]. Another study confirmed these find-
ings, showing that treatment with sevelamer, rather than cal-
cium carbonate, was associatedwith less vascular calcification
within the myocardium, aorta, and kidney [117]. More recent-
ly, a randomized trial conducted in hemodialysis patients (n =
91 treated with sevelamer; n = 92 treated with calcium car-
bonate) showed that sevelamer treatment slowed the increase
in CAC and suppressed AGE accumulation [118]. The possi-
ble mechanism consists of a strong phosphorus-binding ca-
pacity of sevelamer at the intestinal level without excessive
calcium loading. However, the Renagel in NewDialysis study
in patients with baseline CAC scores of 30 or higher showed
no significant difference in the rate of progression of calcifi-
cation at any point up to 18 months of follow-up between a
group of patients treated with sevelamer and a group treated
with CBPBs [119]. Moreover, in a study with more than 1,000
hemodialysis patients followed up to 45 months, the overall
mortality was not reduced significantly by sevelamer com-
pared with CBPBs, except in patients older than 65 years, in
whom sevelamer reduced the risk of death [120]. Finally, a
systematic review of the clinical efficacy and safety of
sevelamer in dialysis patients failed to show any evidence that
sevelamer reduced all-cause mortality, CV mortality, the fre-
quency of symptomatic bone disease, or health-related quality
of life [121].

In vitro studies have shown that acetylated low-density
lipoprotein (LDL) promotes VSMC calcification, whereas
HDL inhibits it [122]. In human studies, sevelamer has been
shown consistently to reduce LDL and often to increase HDL
levels. The improved lipid profile may play a role in the lower
degree of vascular calcification observed after sevelamer ther-
apy. Interestingly, in the CalciumAcetate Renagel Evaluation-
2 study, intensive LDL cholesterol–lowering therapy with
atorvastatin disclosed similar progression of CAC in the group
of hemodialysis patients treated with calcium acetate and
those treated with sevelamer [123].

The calcium-sensing receptor (CaR) is a G-protein–
coupled cell surface receptor that senses extracellular calcium
ions and enables cells to respond to small changes in the
extracellular calcium ion concentration [124]. Data suggest

that a close relationship between CaR and vascular calcifica-
tion may exist locally in the vessel wall. In fact, low levels of
CaR immunoreactivity were found in atherosclerotic, calcified
human arteries compared with noncalcified arteries [125].

Because bisphosphonates have been shown to reduce vas-
cular calcification in experimental models, a future role in the
management of vascular calcification has been evoked. In
hemodialysis patients, etidronate has been found to reduce
and even reverse the progression of CAC in some patients
[126, 127]. In a more recent trial, atorvastatin plus etidronate
combination therapy for 12 months significantly reduced both
thoracic and abdominal aortic plaques, whereas atorvastatin
monotherapy reduced only thoracic aortic plaques and etidro-
nate monotherapy reduced only abdominal aortic plaques
[128]. Although the underlying mechanisms still are uncer-
tain, it may be speculated that bisphosphonates inhibit bone
resorption, with reduced efflux of calcium and phosphate,
limiting their availability for deposition in the vessels, or
may influence the activity of the sodium/phosphate
cotransporter in VSMCs [129].

Treatment of Arterial Stiffness

Mounting evidence suggests that changes in arterial stiffness
might be induced by either nonpharmacologic or pharmaco-
logic interventions. Nonpharmacologic interventions that can
reduce arterial stiffness include exercise training [130, 131],
weight loss and various dietary modifications [132], and con-
tinuous positive airway pressure [133].

Pharmacologic treatments include (1) antihypertensive
treatments such as angiotensin-converting enzyme (ACE)
inhibitors, angiotensin receptor blockers (ARBs), β-
blockers, calcium-channel antagonists, and diuretics; (2)
lipid-lowering agents such as statins; and (3) AGE breakers.

Antihypertensives

Renin–angiotensin–aldosterone system inhibitors, such as the
ACE inhibitors and ARBs, have been widely suggested to
have a blood pressure–independent effect on arterial stiffness
[134]. The mechanism by which antihypertensives improve
arterial stiffness seems to be related to the reduction of the
wave reflection and augmentation index [135], with subse-
quent lowering of SBP and less adverse left ventricle remod-
eling. The effect on central blood pressure reduction mediated
by the ARB olmesartan in combination with either a calcium-
channel blocker or a diuretic was investigated in hypertensive
patients [136]. Interestingly, despite a similar reduction in
brachial SBP observed in the two groups, the decrease in
central SBP in the olmesartan/calcium-channel blocker group
was significantly greater than in the olmesartan/diuretic group.
In addition, PWV was significantly more reduced in the
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olmesartan/calcium-channel blocker group, suggesting that
the regulating capacity of arterial stiffness and wave reflec-
tions might differ among antihypertensive patients. It has been
suggested that β-blockers are inferior to other classes of drugs
in reducing vascular stiffness, because they are less effective
than other antihypertensive drugs in reducing the central pulse
pressure and augmentation index. REASON (Regression of
Arterial Stiffness in a Controlled Double-Blind Study) com-
pared perindopril (2 mg/d) plus indapamide (0.625 mg/d)
versus atenolol (50 mg/d) alone for 12 months in hypertensive
patients. Interestingly, at 1-year follow-up, the brachial and
central SBP reduction achieved with combination therapy
(ACE inhibitor/diuretic) was greater than that with a β-
blocker or an ACE inhibitor alone. This might be ascribed to
the greater structural changes of arterial stiffness that are more
pronounced in central than in peripheral arteries [137].
Nebivolol, a selective β-blocker with NO-mediated
vasodilatory effects, has been shown to decrease the augmen-
tation index slightly compared with atenolol [138]. In the
Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT),
amlodipine proved to be more effective than atenolol for
reducing CV events [139]. The Conduit Artery Functional
Endpoint (CAFE) study showed that the reduction in central
SBP and pulse pressure was greater in the amlodipine than the
atenolol treatment group, despite similar reductions in blood
pressure at the brachial level [140]. This might be explained
predominantly by the β-blockers’ effects on heart rate and
stroke volume. Whether this would result in favorable out-
comes needs further investigation.

Statins

The role of statins in arterial stiffening remains controversial
[141–143]. Some studies reported that statins produced sig-
nificant reductions in PWV levels in different segments of the
arterial tree [144, 145], whereas others showed no change
[146] or even an increase [147] in arterial stiffness. The
inconsistency of findings might be related to methodologic
issues (i.e., small sample sizes and short study duration) as
well as other aspects, such as the statin dosage, the baseline
cholesterol levels, and the methodology used to assess arterial
stiffness (many studies used suboptimal indices of arterial
stiffness or included measurements of PWVonly in peripheral
muscular–type arterial segments).

AGE Breakers

AGEs have been implicated in increased myocardial and
vascular stiffness, and AGE cross-linked breakers have
emerged as a potential therapeutic target [148, 149]. Kass
et al. [57] demonstrated that in elderly patients with arterial
stiffening at baseline, alagebrium, a novel drug showing a
good safety and tolerability profile in phase I and II studies,

significantly improved arterial compliance, carotid–femoral
PWV, and pulse pressure after 8 weeks of treatment. The
potential clinical value of these interventions, however, re-
mains to be established [149].

Conclusions

Extensive calcification of the vascular system is a key char-
acteristic of aging. Although arterial calcification may be
viewed as a uniform response to vascular injury, it is a hetero-
geneous disorder with overlapping and distinct mechanisms
of initiation, progression, and clinical consequences. Through
understanding of the pathways involved in these processes,
novel drug targets may be proposed in an effort to reduce the
effects of vascular calcification as a risk factor.
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