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Abstract
Purpose of Review The number and proportion of individuals aged 60 and over are increasing globally. The increase in the 
elderly population has important social and economic effects. Telomere length is an important marker for healthy aging. 
Here, we review the relevance between telomere length and energy balance by determining the effects of physical activity, 
nutrients, dietary patterns, and foods on healthy aging and telomere length with related studies.
Recent Findings Evidence emphasizes the importance of telomere length and integrity for healthy aging. It also focuses on 
the importance of potential interventions such as physical activity and a healthy diet to improve this process.
Summary We suggest that ensuring energy balance with regular physical activity and healthy diets can contribute to the aging 
process by protecting telomere length. In addition, different methods in studies, short and inconsistent durations, different 
types of exercise, different diet patterns, and non-standard foods have led to conflicting results. More studies are needed to 
elucidate molecular-based mechanisms.
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Introduction

The number and proportion of individuals aged 60 and over 
are increasing globally. It is stated by the World Health 
Organization that the elderly population, which was 1 bil-
lion in 2019, may double in 2050 [1]. This increase will 
accelerate in the coming decades. The increase in the elderly 
population has important social and economic effects. Aging 
brings with it a progressive loss of physiological integrity, 
and this is a risk factor for chronic non-communicable dis-
eases [1]. Maintaining healthy behaviors, especially a bal-
anced diet and regular physical activity throughout life, con-
tributes to reducing the risk of non-communicable diseases, 
improving physical and mental capacity, and healthy aging 

[2]. Today, strategies to prevent age-related adverse events 
are an important public health intervention [3]. Research on 
aging has advanced in the last years, with the discovery that 
the rate of aging is controlled by biochemical processes and 
genetic pathways such as mitochondrial dysfunction, cellular 
senescence, stem cells, and telomere attrition [4]. Recent 
findings have focused on the importance of telomere length 
and maintenance for healthy aging, as well as the importance 
of potential interventions to the stature of this process, such 
as a healthy diet and physical activity [3].

Therefore, the purpose of this review is to survey the 
relevance between telomere length and energy balance by 
determining the effects of physical activity, nutrients, dietary 
patterns, and foods on healthy aging and telomere length 
with related studies.

The study is poised to contribute to the burgeoning litera-
ture by addressing several noteworthy research gaps. Firstly, 
the interaction between various lifestyle elements such as 
physical activity, nutrient intake, dietary patterns, and spe-
cific foods remains an understudied terrain. Our review 
aspires to elucidate the combined effects of these factors, 
offering a holistic perspective on how they collectively influ-
ence telomere length and, consequently, the aging trajectory. 
Secondly, while previous research acknowledges the link 
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between lifestyle factors and telomere length, a compre-
hensive understanding of the intricate cellular mechanisms 
involved in this interaction remains elusive. Our review 
aims to delve deeper into these molecular pathways, shed-
ding light on the biological underpinnings that mediate the 
effects of nutrition and physical activity on telomere main-
tenance. In addition, the study ventures into the realm of 
individual variability, a facet that has garnered less attention 
in the existing literature. By encompassing these research 
gaps, our review article endeavors to contribute to a more 
nuanced comprehension of the interplay between energy 
balance, telomere length, and aging processes. In doing so, 
we aspire to provide valuable insights for both researchers 
and practitioners, offering a foundation upon which further 
studies can build to enhance our understanding of healthy 
aging strategies.

Telomere Length and Aging

Telomeres are structures consisting of hexanucleotide 
sequences (TTA GGG ) at the ends of eukaryotic chromo-
somes, containing distal single-stranded and proximal dou-
ble-stranded regions [5]. TTA GGG  sequences that constitute 
telomeric deoxyribonucleic acid (DNA) form a complex by 
binding with Shelterin. This complex is one of the important 
compositions that protect the chromosome ends by shaping 
the telomere structure [6]. Adult mitotic cells that lack repli-
cation of certain terminal segments, such as the ribonucleic 
acid (RNA) primer, shorten during each cell division [7]. 
When these shortenings in telomeres reach a critical point, 
the cell cycle is disrupted, and genomic instabilities and rep-
licative senescence occur [5].

Telomere length, considered a complex inheritable prop-
erty, is related to aging and age-related diseases. While 
longer telomeres are associated with a healthy diet, ideal 
body weight, avoidance of smoking, and physically active 
life, short telomeres have been associated with metabolic 
factors such as oxidative stress and increased inflammation 
[6, 8–10]. Moreover, telomere shortening has been reported 
to be associated with modifiable lifestyle-related conditions 
such as abdominal fat, high blood sugar levels, and a seden-
tary lifestyle [11]. Studies have claimed that telomere length 
is regarded as a good biomarker of aging, as well as that 
telomere shortening may be a molecular clock that triggers 
aging [12]. Telomere length is supposed to be stable from 
childhood to young adulthood although there are individual 
differences but begins to decline at older ages [13]. In addi-
tion, it was stated that telomere length was positively associ-
ated with the number of healthy life years [14]. While the 
evidence is compelling for links between telomere length 
and certain age-related metabolic processes, the causal 
relationship between age-related telomere shortening and 

aging-related diseases remains unclear. Whether telomere 
shortening is the cause or merely the result of diseases is 
still under investigation [7].

Effects of Physical Activity on Telomere 
Length

It is known that physical activity positively affects both men-
tal and physical health. Studies have reported that physical 
activity prevents aging-related diseases, supports healthy 
aging, and is associated with increased life expectancy [15]. 
However, physical activity of moderate intensity and exer-
cise have been reported to reduce inflammation and oxida-
tive stress [16].

It is known that telomere length decreases with aging 
and age-related diseases accelerate this process. Increas-
ing oxidative stress, inflammation, and a decrase in telom-
erase activity with aging accelerate the shortening process 
of telomeres [9]. Considering the positive effect of physi-
cal activity on healthy aging and that telomere length may 
be a biomarker of healthy aging, physical activity may be 
associated with telomere length. A recent meta-analysis 
that included 30 studies (7418 individuals) has found that 
physically active participants had longer telomeres than sed-
entary participants (SMD = 0.70, 95% CI 0.12–1.28, very 
low certainty) [17••]. Cherkas et al. [18] stated that leu-
kocyte telomere length is 200 nucleotides longer in physi-
cally active individuals than in individuals with low physi-
cal activity (P < 0.001). In the study, it was suggested that 
this relationship was also significant according to age, and 
accordingly, regular physical activity could prevent aging. 
A study induced in elderly women reported that individu-
als with physical activity levels ≥ 17 MET-hours/week had 
longer telomere base pairs than individuals with < 1.25 
MET-hours/week [19]. In addition, it has been reported that 
the duration, intensity, and persistence of physical activity 
are positively related to telomere length [20]. The associa-
tion of differents sports types across different periods of life 
on telomere length individuals over 61 years of age form the 
Berlin study of aging II (BASE-II) was analyzed. According 
to the study, telomere length was positively correlated with 
current physical activity. In addition, practicing sports for 
10 years or more has a positive effect on telomere length; 
the highest significant effect was observed in participants 
who played intense activity sports for at least 42 years [21]. 
Another study found that a 6-month program of physical 
exercise increased the relative telomere length in adults over 
65 years of age [22]. Ludlow et al. [23] showed that the tel-
omere length of elderly participants with an exercise energy 
expenditure of 0–990 kcal/week and > 3540 kcal/week was 
shorter than individuals with an exercise energy expendi-
ture of 991–2340 kcal/week. In a study by National Health 
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and Nutrition Examination Survey (NHANES), intense 
leisure-time physical activity increases by 1 h per week and 
an increase in total moderate physical activity by 1 h per 
week were importantly associated with longer telomeres 
(respectively 0.31%; 0.08%,) [24]. In Fretts et al. [25] study, 
participants with more steps per day had longer telomere 
lengths than participants with fewer steps per day. This may 
show that ambulatory activity positively affects telomere 
length. In an NHANES study, the movement-based activity 
index (MBB) was established. According to the results of 
the study, a dose–response relationship was shown between 
MBB involvement and telomere length. Accordingly, the 
telomere shortening of the elderly, who are more active in 
daily life, may slow down [26].

Although most of the current studies indicated that physi-
cal activity is positively related to telomere length, conflict-
ing results have also been reported. Generally, these incon-
sistencies are attributed to reasons such as gender, type of 
exercise, the intensity of physical activity, and the presence 
of obesity [27•, 28]. Two recent studies reported a favorable 
relationship between physical activity and telomere length in 
Jantunen et al. [29] only in female participants and Stenback 
et al. [30] only in male participants. In an NHANES study 
of obese individuals, all active individuals, except those 
who were obese/overweight for a longer period of time, 
were associated with longer telomeres compared to seden-
tary individuals. Accordingly, it has been suggested that the 
presence of obesity for a long time may adversely affect the 
telomere protective impact of physical activity [31]. Sub-
stantial evidence suggests that physical activity is associated 
with longer telomeres, indicating a potential link to healthy 
aging. However, discrepancies in findings can be attributed 
to factors such as gender, exercise type, intensity, and obe-
sity. Further research is needed to clarify these inconsisten-
cies and to better understand the mechanisms underlying the 
relationship between physical activity and telomere length 
in the context of aging.

The Effect of Different Types of Exercise on Telomere 
Length

The effects of physical activity on telomere length may vary 
depending on the type of exercise [32]. Werner et al. [33] 
have compared the long-term effects of three exercise modes 
(resistance training, endurance training, and interval train-
ing). They suggested that telomerase activity and telomere 
length, which are important for regenerative capacity, cel-
lular aging, and therefore healthy aging, increase with inter-
val training and endurance training, but resistance training 
does not show the same effect. Balan et al. [34] showed that  
endurance training positively affects telomere length through 
TERRA. A similar study was found that long-term endur-
ance exercise promoted the preservation of telomere length 

in older ages [35]. Rosa et al. [36] studied the effects of 
sprinting and endurance training on biomarkers of aging in  
veteran athletes. All participants showed better inflammatory  
status and redox balance compared to control. By exercise 
type, sprint training had a better cytokine profile, redox bal-
ance, and reduced biomarkers of aging, while a better nitrite/
nitrate (NO–) profile was observed for endurance training as 
a marker of endothelial function. Short-term aerobic exercise 
training did not affect telomere length in obese women with 
polycystic ovary symptom [37]. In a study examining the 
effect of 12-week resistance training on telomere length, it 
was noted that although no change was observed in telomere 
length after the intervention, there were improvements in 
molecular parameters related to telomere integrity [38].

These studies suggest that certain exercise modalities 
affect cellular aging regulators differently. However, com-
parative studies are few in the available literature. The  
diverse and intricate nature of the factors influencing the 
relationship between physical activity and telomere length 
underscores the complexity of this association. The dispari-
ties in study populations, exercise types, methodologies, and 
individual responses collectively contribute to the conflicting 
outcomes observed across the literature. It is evident that a 
comprehensive comprehension of this intricate relationship 
necessitates more nuanced and tailored research designs that 
account for these multifactorial influences.

Effects of Energy Balance, Weight Loss, and Caloric 
Restriction on Telomere Length

The relationship between energy metabolism and longev-
ity has been a key topic in aging research for many years 
[39–41]. One of the theories linking energy metabolism and 
longevity is the oxidative stress theory of aging. Accord-
ingly, harmful productions of oxidative metabolism (such 
as oxidative stress and reactive oxygen species) accumulate 
in cells and cause damage [42]. This damage is associated 
with cellular aging. In many studies, it was revealed that 
the level of oxidative damage in macromolecules increases 
with age, and that genetic interventions and dietary restric-
tions reduce oxidative damage while extending lifespan 
[39, 42, 43]. The effects of energy metabolism via telom-
eres on aging and longevity are not found in studies. How-
ever, when the mechanisms of telomere’s impact on aging 
are examined (also explained), there may be a relationship 
between energy metabolism and telomere length. In this 
context, studies that show the relationship between fac-
tors related to energy metabolisms, such as weight loss and 
calorie restriction, with telomere length may support this 
hypothesis. In a study observing the relationship of weight 
loss intervention (6 months) to telomere length, weight loss 
was positively correlated with telomere prolongation. It has 
been shown that telomere length increases as weight loss 
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increases. Also, the highest effect was seen in individuals 
with the shortest telomeres at baseline [44]. In a similar 
study, it was reported that 10% or more weight loss and 
maintenance can provide telomere elongation in individu-
als who are intervened with calorie restriction and exercise 
program for 12 months [9]. In a study conducted on obese 
men, it was found that weight and body fat loss achieved 
with calorie-restricted diets resulted in gains in telomere 
length [45]. There was no change in telomere lengths in 
obese individuals who lost weight with bariatric surgery 
[46]. Similarly, it was observed that 12 months of diet and 
exercise intervention did not change telomere length in post-
menopausal women [47]. In the backdown, studies view-
ing the relationship between energy balance and telomere 
length have generally been conducted on calorie restriction, 
reducing energy intake through weight loss, and increasing 
energy expenditure through physical activity and exercise 
programs. Studies are limited in number and contain con-
flicting results. The intricate relationship between energy 
metabolism and telomere length is influenced by a complex 
interplay of genetic, environmental, and lifestyle factors. The 
inconsistent results observed across studies can be attributed 
to methodological variations, participant heterogeneity, and 
the multifaceted nature of energy metabolism’s influence on 
cellular processes. A more comprehensive approach encom-
passing diverse populations, rigorous methodologies, and a 
broader spectrum of energy metabolism aspects is essen-
tial to elucidate the true nature of this intricate relationship. 
In addition, there was no study examining the relationship 
between the basal metabolic rate or resting metabolic rate 
and telomere length.

Potential Mechanisms in the Effect of Energy 
Balance on Telomere Length

The aging process is considered to be associated with 
decreased telomere length. Generally, the current litera-
ture has focused on energy expenditure through physical 
activity in the energy balance-telomere length relationship 
[16]. There is no study on the relationship between reduc-
ing energy intake and telomere length. Therefore, potential 
mechanisms in the energy balance-telomere length relation-
ship are explained based on the effect of physical activity 
on telomere length. Although current studies do not provide 
sufficient evidence, the baseline mechanisms mentioned are 
telomerase activity, oxidative stress, skeletal muscle satellite 
cell content, and inflammation (Fig. 1) [48–50].

Telomerase Activity

Telomerase enzyme regulates, maintains telomere length, 
and defines cellular replicative capacity. Physical activ-
ity positively affects telomerase subunit TERT, shelterin 

component telomeric repeat-binding factor 2 (TRF2), and 
DNA repair factors KU and p16 proteins (Fig. 1) [51]. Since 
these molecules are considered important factors for telom-
erase activity, an enhancement in telomerase activity after 
exercise may support telomere elongation. In a study com-
paring athletism athletes and sedentary adults, they found 
an upregulation of TRF2 in athletes that plays a role in pre-
venting telomere shortening [52]. A study tested telomer-
ase activity after different durations (30, 60, and 90 min) of 
high-intensity interval cycling exercise in older and younger 
subjects. Accordingly, TERT messenger RNA (mRNA) lev-
els increased in both groups, but the increase was greater in 
the young [53]. Chilton et al. [54] reported that exercise has 
the potential to control the upregulation of TERT mRNA 
and downregulation of TRF2 mRNA, in addition to and 
downstream expression of microRNAs (miRNA) involved 
in telomere homeostasis. These studies confirm that one of 
the mechanisms by which physical activity protects against 
aging may be to increase telomerase activity.

However, studies show that the increase in telomerase 
activity after acute exercise is temporary. In a study, 34 peo-
ple followed an endurance training program (3–5 times/week 
in 40-min periods; aerobic exercise), while the other half 
were sedentary for 24 weeks. As a result of the study, while 
telomere length was increased in the trained individuals, tel-
omere length was lightly shortened in the sedentary group, 
and also no change was observed in telomerase activity in 
either group [55].

With the findings from the studies, the exact kinetics of 
higher telomerase activity due to physical activity still need 
to be determined.

Oxidative Stress

The rate of telomere shortening is not constant from birth 
and probably has been varied from a division cycle to 
another depending on oxidative stress, defense antioxidants, 
and even cell type [56]. Excessive production of reactive 
oxygen species (ROS) can cause oxidative stress in cells, 
tissues, or organs, leading to DNA damage, telomere attri-
tion, and aging [57, 58]. 

It is accepted that moderate and regular physical activity 
can reduce the effect of aging by reducing the level of oxida-
tive stress [49]. Major mechanisms associated with physical 
activity and telomeric shortening include reduction of ROS, 
promotion of the expression response in antioxidant proteins 
and DNA repair enzymes, and REDOX balance (e.g., levels 
of fetuin-A) (Fig. 1) [59, 60]. During exercise, ROS produc-
tion is temporarily increased. This increase is an antioxidant 
response that promotes existing cellular and molecular path-
ways that increase the resistance of cells and organisms to 
subsequent greater stress [3, 61]. In one study, it has been 
reported that exercise ameliorated the age-related decline in 
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mitochondrial oxidative capacity by activating AMP-acti-
vated protein kinase (AMPK) which is the metabolic energy 
deprivation sensor, and the PGC-1 redox signaling pathway 
[62, 63]. Another study found a contrary relevance between 
aerobic capacity and blood oxidative stress biomarkers in 
older Mexican adults [64].

Studies have shown that physical activity can affect tel-
omeres through the regulation of ROS. However, under-
standing the causes and boundaries between the “beneficial 
effects” and “harmful effects” of ROS is one of the most 
complex issues in physical exercise biology [62]. More stud-
ies are needed on exercise-induced ROS signaling and its 
effect on telomeres.

Inflammation

Critically short telomeres trigger aging and eventually cell 
death. One of the factors affecting this shortening rate is 
inflammation. This effect is associated with overexpression 
of circulating inflammatory cytokines such as interleukin-6 
(IL-6) and tumor necrosis factor-α (TNF-α). These cytokines 

can downregulate telomerase, resulting in telomere shorten-
ing. In addition, inflammation increases white blood cell 
(WBC) turnover, increasing the division of hematopoietic 
stem cells and cellular replication, thus bring to telomere 
shortening (Fig. 1) [65, 66]. In a study conducted on Cush-
ing’s syndrome (mean age = 48.6 ± 12.8 years), telomere 
length was inversely related to IL-6 and an inflammation 
marker C-reactive protein (CRP) [67]. A similar study found 
a significant and decreasing linear trend in telomere length 
as men’s CRP levels increased; however, this relationship 
was not observed in women [27•]. In a study conducted on  
postpartum women, a significant inverse correlation has been  
found between telomere length and IL-6 [68]. O’Donovan 
et al. [69] suggest that the inflammatory burden increased by 
the combination of high TNF-α and IL-6 levels is associated 
with ascented rates for short telomere length.

In a recent study, elite athletes who did high-intensity 
endurance sports had longer telomeres and higher levels of 
IL-6, TNF-a, and anti-inflammatory cytokines. According 
to the researchers, this suggests less aging in higher-intensity  
endurance sports associated with heightened immune 

Fig. 1  The potential effects of physical activity and exercise on telomere length. HSC, hematopoietic stem cell; TRF2, telomeric repeat-binding 
factor 2; TNF-α, tumor necrosis factor-α; ROS, reactive oxygen species; IL, interleukin; WBC, white blood cell
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response [70]. This study may show that physical activity 
is protective against the negative effect of inflammation on 
telomere length.

Satellite Cells

Satellite cells are responsible for the growth of muscle fib-
ers and the repair of damaged muscle fibers. These cells are 
activated by stimulants such as increased muscle tension and 
muscle fiber injury. [71]. It has been reported that the num-
ber of satellite cells decreases after the age of 70, and this 
may contribute to the decrease in muscle mass seen in sed-
entary individuals [72]. A study on elderly women reported 
a positive relationship between the count of satellite cells 
and skeletal muscle telomere length [52]. Physical activity 
is a factor stimulating the satellite cell pool that counteracts 
the increasing loss of muscle mass with aging. Even during 
normal daily physical activities, satellite cells are constantly 
being renewed [73]. It has been asserted that the shorten-
ing of satellite cell telomeres leads to decreased replication 
capability in satellite cells [16, 73]. In this context, physical 
activity may serve to protect telomeres and muscles through 
satellite cells [72]. Darr and Schultz [74] have found that 
eccentric exercise increases muscle fiber hypertrophy and 
stimulates satellite cell activation. A study has determined 
that exercise resulted in muscle hypertrophy and improved 
muscle regeneration in mice [75].

Studies indicate that satellite cells are a potential player in 
the relationship between telomere length and physical activ-
ity. However, the mechanism has not been fully elucidated. 
In particular, more studies on humans are needed.

Effects of Nutrition on Telomere Length

The Effect of Dietary Pattern on Telomere Length

The variety and amount of foods consumed affect health 
and aging. One of the theories of aging is the shortening of 
telomere length. When telomeres, which shorten with each 
cell division, fall below a critical limit, cells age, or die. The 
rate of this shortening of telomeres can also affect the rate 
of aging. The shortening of telomere length, which varies 
between individuals, can be affected by genetic factors and 
environmental factors such as stress and lifestyle. Nutrition, 
which is one of the most important determinants of lifestyle, 
can affect the aging mechanisms associated with telomere 
shortening [76]. When the long-term effects of nutrition 
on health are analyzed, dietary patterns are at the forefront 
rather than just a single nutrient in people’s daily diets. Tel-
omere lengths of individuals with different dietary patterns 
change differently over the long term [76, 77].

The positive effects of the Mediterranean diet model and 
the Dietary Approaches to Stop Hypertension (the DASH 
diet) on health have been widely accepted. Both diet mod-
els are rich in antioxidant vitamins, minerals, polyphenols, 
phytochemicals, and dietary fiber [78, 79].

The DASH diet is a recommended diet to prevent prehy-
pertensive patients from developing hypertension [79]. The 
Mediterranean diet, on the other hand, is a natural nutritional 
model with many health benefits. Mediterranean diet typi-
cally includes plenty of vegetables and fruits, whole grain 
products, legumes, nuts, and high amounts of fiber, and 
moderately low-fat dairy products, chicken, fish (2–4 times/
week), and limited amounts of red meat (1–2 times /month). 
Olive oil is the main source of fat for this diet. Red wine may 
be consumed in moderate amounts (1 glass/day for women, 2 
glasses/day for men) [78, 80]. The Mediterranean diet, which 
is accepted as one of the healthiest diet models globally, has 
the efficacy of reducing oxidative stress and inflammation 
markers [81, 82]. Thanks to its rich bioactive compounds, 
this dietary model has beneficial effects on DNA repair and 
telomere length markers and promotes healthy aging [82]. In 
a prospective study conducted by Trichopoulou et al. [83] on 
22,043 adult individuals, a decrease in total mortality is posi-
tively associated with adherence to a Mediterranean diet. One 
of the reasons for these positive effects of the Mediterranean 
diet on telomeres may be the limited red meat in the diet and 
the consumption of other protein sources at the recommended 
frequency. It is noted that ROS formation and oxidative stress 
in mitochondria can be reduced by protein (methionine) 
restriction in a daily diet, and thus maximum life span can 
be affected [84]. The relationship between telomere length 
and diet quality was evaluated in Hispanic subjects using 
5 different evidence-based dietary indices (PDQ-Prime diet 
quality score, FQI-fat quality index, MEDAS-Mediterranean 
diet compliance screening, AHEI 2010-alternative healthy 
eating index, and DASH-Dietary approaches index to stop 
hypertension). It has been shown that the risk of having short 
telomeres is low in individuals with high diet quality indices 
[85•]. The prospective cohort study conducted by Crous-
Bou et al. [86] on 4676 healthy female nurses also supports 
this study. Alternative Mediterranean Diet scores were cal-
culated with the data obtained from the food consumption 
records of the participants. As a result of the analysis, each 
one-point change in Alternative Mediterranean Diet scores 
corresponds to an average of 1.5 years of aging in terms of 
telomere length. As a result, adherence to the Mediterranean 
diet was positively associated with longer telomeres [86]. 
In a cohort study of elderly subjects in Italy, it was reported 
that as adherence to a Mediterranean diet increased, telom-
erase activity improved, and telomere length increased. The 
effect of diet on modulation of inflammation and oxidative 
state stimulates telomerase activity. It is stated that telomer-
ase activity and telomere length are related independently of 
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other variables [87]. Telomeres shorten during cell division 
and the telomerase enzyme is active in this process to pro-
tect telomeres. In a study investigating telomerase activity, it  
was shown that telomerase activity increased by 29.84% as 
a result of a comprehensive 3-month lifestyle intervention (a 
more plant-based diet consisting of low-fat foods and limited 
refined carbohydrates, physical activity, and stress manage-
ment) [88].

In some studies, it was found that the relationship 
between the Mediterranean diet and telomere length differs 
according to ethnicity and gender [89–92]. Gu et al. [91] 
study with 1763 individuals aged 65 years and over with 
different ethnic origins found an association between adher-
ence to the Mediterranean diet and telomere length only in 
White Americans. In the study of Garcia-Calzon et al. [89], a 
positive association between adherence to the Mediterranean 
diet and telomere length was found only in women. Leung 
et al. [92], in their study on 4758 adult individuals, stated 
that the Mediterranean diet was positively associated with 
longer telomeres only in women. In a meta-analysis study 
showing the effect of gender on telomere length, telomere 
length was found to be longer in women than in men [90].

Contrary to all these studies, some studies did not clearly 
find an association between healthy diet models and tel-
omere length [93–95]. In a study of Australian individuals 
aged between 57 and 68 years, it was observed that there 
was no any association between diet quality and telomere 
length [93]. Another study investigated whether there was an 
association between the DASH diet, The Mediterranean diet, 
various traditional dietary patterns, and telomere length in 
Chinese individuals aged 65 years or older. Dietary patterns 
have been shown to have a minimal role on telomere length 
[95]. Similarly, a 10-year follow-up study of elderly Finn-
ish men and women showed that the Baltic Sea Diet score, 
Modified Mediterranean Diet Score, and Dietary Inflamma-
tory Index had little effect on telomere attrition and telomere 
length. One of the reasons why this study differs from other 
studies that found an association between telomere length 
and dietary patterns was explained by the different clinical 
characteristics of the study population. It is also stated that 
not all dietary indices may be appropriate for all populations 
because the content of diet patterns consumed by societies 
may differ [94].

The Effect of Specific Foods on Telomere Length

There are scientific studies in which the dietary components 
in the diet pattern are also associated with telomere length.

Foods that Maintain Telomere Integrity

In a 10-year follow-up study investigating the relationship 
between dietary patterns and telomere length, consumption 

of nuts, legumes, fruit, seaweed, dairy products, and cof-
fee was positively associated with telomere length [77]. In 
another study supporting this study, the consumption of 
legumes, nuts, and fish has been shown to be effective in 
maintaining telomere length [96]. In addition, some of the 
dietary components, fruit, vegetable consumption [97, 98], 
fiber intake [99], and antioxidant nutrients intake [100] are 
associated with longer telomeres. In a study on rats, it was 
stated that the telomere shortening increased with red meat 
consumption in the colon can be reduced by adding resistant 
starch to the diet. The possible mechanism of this situation is 
explained as follows. It is stated that the type of protein with 
increased consumption may cause an increase in the levels of 
potentially genotoxic protein fermentation products (NH4 + , 
phenols, and cresols) in the large intestine.

By fermenting resistant starch in the large intestine, fer-
mentation products, especially short-chain fatty acids, are 
released. The decrease in ambient pH is thought to limit 
the absorption of potentially toxic biogenic agents [101]. In 
a study of 5674 people, dietary fiber intake was positively 
associated with telomere length. It has been reported that 
an increase of 10 g fiber per 1000 kcal creates a biological 
aging difference of 5.4 years [102]. In a study by NHANES, 
it was reported that telomere structure was preserved with 
increased consumption of nuts and seeds. In the regression 
model estimates made in this study, it is stated that individu-
als can experience biological aging in approximately 2 years 
less if they consume 30 g of nuts or seeds per day [103]. In 
addition, nuts and seeds consumption is negatively associ-
ated with inflammatory markers (C-reactive protein, inter-
leukin-6, fibrinogen) [104]. In this context, nuts and seeds 
are included in healthy diet models. The healthy nutrition 
recommendations in the Dietary Guidelines include the con-
sumption of unsalted nuts and seeds in appropriate amounts 
[105, 106].

Coffee is an important source of antioxidants, along 
with polyphenols, caffeine, and other bioactive components 
[107]. Moderate coffee consumption is inversely related to 
inflammatory markers [108]. Coffee consumption and caf-
feine intake levels differ between individuals. In a study  
investigating the effect of this difference, coffee consumption  
was positively associated with telomere length. It has been 
reported that the effect of coffee on telomere length may be 
related to the caffeine and other bioactive components in its 
content [109]. In a study of the NHANES conducted with 
5826 adults, coffee consumption and caffeine intake levels 
were assessed from a 24-h dietary recall. In the statistical 
analysis by controlling for covariates, it was reported that for 
every 100 g of coffee consumed, telomeres are on average 
15.0 base pairs longer (F = 12.6, p = 0.0013). It has been 
suggested that coffee consumption may slow aging through 
its positive association with telomere length. However, in 
the same study, it was reported that caffeine intake was 
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inversely related to telomere length (F = 15.1, p = 0.0005). In 
this study, which evaluates coffee consumption and caffeine 
intake separately, it is shown that other components other 
than caffeine are responsible for the protective effect of cof-
fee on health. In addition, the inverse relationship between 
caffeine and telomere length is also noted to be consistent 
with dose–response [110]. In addition to all these studies, it 
was noted that tea, which is another source of caffeine and 
polyphenols other than coffee, could protect telomeres from 
oxidative damage with its antioxidant properties. In Chinese 
men, tea consumption was found to be positively associated 
with telomere length [111]. As yet, the effect of caffeine on 
the maintenance of DNA integrity has not been clarified. In 
a biological study, it is stated that caffeine prevents oxidative 
DNA breakage, while caffeine may also have a pro-oxidant 
effect [112]. In a study using yeast as a model organism, 
caffeine was found to shorten telomeres [113]. There are 
limited research results examining the effects of coffee and 
caffeine on telomere length, which are not yet clear, and 
cross-sectional designs that make direct causal inferences 
difficult. Considering the dose–response consistency in the 
undesirable effect of caffeine on telomere length, it may be 
useful to keep in mind the recommendations of international 
organizations regarding caffeine consumption. In the report 
published by the European Food Safety Authority (EFSA), it 
has been reported that a single dose of caffeine intake of up 
to 200 mg for adults is safe, and additionally, 400 mg of caf-
feine (about 4 cups of coffee) intake during the day will not 
cause health problems. In the same report, the safe caffeine 
intake dose for pregnant and lactating women is 200 mg 
[114]. In the World Health Organization (WHO) report, it is 
recommended to limit pregnant women who consume more 
than 300 mg of caffeine due to possible health risks [115].

In a study of NHANES conducted on 5834 adults, the 
effects of cow’s milk consumption and milk fat on cellu-
lar aging related to telomere length were examined. When 
adjusting for all the covariates, adults consuming skim or 
1% milk were found to have significantly longer telomeres 
than adults consuming full-fat or 2% milk. Additionally, 
those who consume skim milk have been shown to have 
telomeres approximately 115 base pairs longer than those 
who do not drink cow’s milk [116]. The results of this 
study are in line with the data of the Dietary Guidelines 
for Americans (2015), which recommends low-fat and skim 
milk consumption for adults [105]. Similarly, another widely 
accepted healthy eating model (the healthy plate model) sup-
ports this study with a recommendation for milk consump-
tion [117]. The portion amount recommended for adults in 
Turkey Dietary Guideline is similar to these [106]. Lee et al. 
[77] stated that although dairy products consumption has a 
positive effect on telomere length, saturated fat intake may 
increase with increasing milk consumption, and this may 
negatively affect telomere length. Due to the saturated fat 

and cholesterol content of dairy products, they are recom-
mended to be consumed in recommended amounts and for 
individuals in risk groups, fat-free or low-fat consumption 
is recommended [105].

Foods that Increase Telomere Shortening

Some studies draw attention to dietary components that 
are negatively associated with telomere length and that are 
thought to accelerate aging by affecting the shortening of 
telomeres. The foods and nutritional components positively 
associated with telomere shortening in these studies are 
white bread, sugar-sweetened beverages, processed meat, 
butter, total fat intake, saturated fat intake, and increased 
alcohol consumption.

In the study of Garcia-Calzon et al. [100], it has been 
reported that a daily increase of one serving (60 g) of white 
bread consumption increases the risk of low telomere length 
by 37%. It has been stated that increased consumption of 
white bread, which has a high glycemic load, increases  
oxidative stress and thus accelerates inflammation-induced 
telomere shortening. It is stated that sugar-sweetened bev-
erages which are consumed regularly in the daily diet may 
affect the development of diseases by accelerating cell aging 
[118]. There is another study supporting this by showing that 
sugar-sweetened beverages are a risk factor for shortening 
telomeres (β =  − 0.120, p = 0.004) [96].

An in vitro study investigated the association of pro-
inflammatory conditioning and high glucose intake with tel-
omere shortening. Pro-inflammatory conditioning increased 
telomere shortening. However, higher glucose intake alone 
was not associated with faster telomere shortening [119]. In 
a 10-year follow-up study, which had a higher level of evi-
dence than the in vitro study, the consumption of red meat, 
processed meat, and sugar-sweetened soda was associated 
with shorter telomere length [77].

Tiainen et al. [97] found that men consuming high amounts 
of butter had significantly shorter telomeres than men con-
suming low amounts of butter (p = 0.05). Total fat intake and 
saturated fat intake (respectively p = 0.04 and 0.01) have been 
shown to be inversely related to telomere length.

An inverse relationship between processed meat con-
sumption and telomere length has been shown in a cross-
sectional study of adults of different ethnicities. It has been 
determined that individuals, who consume one serving or 
more of processed meat per week, have a shorter telomere 
length than individuals who do not [120]. One of the previ-
ous studies emphasized that the negative effect of processed 
meats on telomeres can induce inflammatory mediators due 
to their high fat and protein content [121]. In a cross-sec-
tional study of American Indians, the association between 
meat consumption and telomere length differs depending on 
whether the meat was processed. It was found that for each 
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one serving of processed meat consumed daily, telomere 
length was 0.021 units shorter (β ± SE =  − 0.021 ± 0.008, 
p = 0.009), and there was no association between unpro-
cessed meat consumption and telomere length [122].

In addition to these studies showing a negative relation-
ship between processed meat and telomere length, in the 
report published by the World Health Organization, it is rec-
ommended to limit the consumption of processed meat as 
much as possible to prevent diseases such as cancer [123].

Although red wine from fermented beverages has been 
shown to have a positive effect on telomere length in the 
Mediterranean diet, there is also a study showing that long-
term moderate alcohol consumption is associated with lower 
telomere length. In this study, the clear mechanism explain-
ing the relationship between alcohol consumption and tel-
omere shortening could not be revealed by the researchers. 
However, it is stated that this observed negative effect may 
be related to increased oxidative stress, impaired antioxi-
dant function, or disruptions in telomerase activity [124]. 
Another study supporting this study, increased alcohol con-
sumption and intake of short and medium-chain saturated 
fatty acids were negatively associated with telomere length 
in post-menopausal women [125].

The Effect of Dietary Antioxidant Intake on Telomere 
Length and Aging

Considering that oxidative stress and inflammation may 
adversely affect telomere length, increased antioxidant 
intake with nutrition may have a protective effect on tel-
omere length. In this context, when the studies are examined, 
positive effects are seen.

One of the most important health benefits of phenolic 
compounds, which are bioactive plant components found 
in whole grain products, is that they act as antioxidants by 
giving hydrogen atoms to free radicals [126]. In a study 
conducted on a population of middle and elderly women, 
telomere length was positively associated with dietary fiber 
intake, while waist circumference and linoleic acid intake 
were negatively associated with telomere length. In addi-
tion, it was noted in the study that telomere length may be 
affected through anti-inflammatory and antioxidant mecha-
nisms [99]. In a cross-sectional study of Brazilian children 
and adolescents aged 7–17 years, individuals who regularly 
ate fruits and vegetables were found to have longer telom-
eres. It is noted that antioxidants from vegetables and fruits 
are associated with the maintenance of the telomere biology 
of individuals [127].

In a 10-year follow-up study examining the relationship 
between micronutrient intakes and telomeres, folate, vitamin 
C, and potassium intakes were positively associated with tel-
omere length [128]. There are other studies supporting this 
study. Individual nutrient intakes such as folate, vitamins C, 

E, D, and A, and carotenoids, magnesium, and omega-3 fatty 
acids are positively associated with longer telomere length 
[129–131], and shortening of telomeres can be reduced by 
omega-3 uptake [125, 130]. In a study conducted with the 
elderly who are cognitively healthy, the effect of a walnut-
added diet, corresponding to 15% of daily energy, on tel-
omere shortening was investigated. It was reported that wal-
nut, a source of omega-3 added to the normal diet, tended to 
reduce leukocyte telomere attrition compared to the control 
group after 2 years [132]. In a study conducted by Richards 
et al. [133] on women, it was found that higher serum vita-
min D levels were associated with longer telomeres. The 
increase in dietary intake of selenium, which is another pow-
erful antioxidant, has also been shown to have a protective 
effect on telomere length [134].

It is assumed that the oxidative stress load is reduced by 
the consumption of diets or foods rich in antioxidant nutri-
ents. Plant-based diets may delay telomere length shortening, 
given that oxidative stress may cause telomere attrition [135].

The Potential Mechanisms of Healthy and Unhealthy 
Nutrition on Telomere Length

Telomeres in the nucleoprotein structure, which prevent the 
degradation of chromosomes, are located at the ends of the 
chromosomes [136] and gradually shorten with each cell 
division [137]. In addition to existing mechanisms during 
cell division, oxidative stress has been shown to cause DNA 
damage and telomere attrition in a dose-dependent manner 
[56, 138, 139]. Aviv [140] states that telomere shortening 
can be observed in conjunction with the harmful effect of 
hydroxyl radicals, which can cause DNA damage. There are 
also studies showing that reactive oxygen species (ROS) 
induce oxidative modification and damage to telomeres 
[141, 142]. In this context, oxidative stress has a negative 
effect on telomere erosion [141], and consumption of foods 
with high antioxidant content has a positive effect on tel-
omere length [130, 131, 135].

Houben et al. [141] emphasized that different patholog-
ical conditions modulated by oxidative stress and chronic 
inflammation affect the rate of shortening of telomeres 
and thus may affect the human lifespan with aging and 
chronic disease.

Studies focusing on the relationship of telomere length 
with nutrition have examined the effects of dietary patterns, 
some foods, and nutrients. In this context, the effect of nutri-
tion on telomeres can be mentioned in 2 different mecha-
nisms (as A and B pathways) as shown in Fig. 2.

In A pathways, it should be emphasized that individu-
als who eat healthy diets with high antioxidant content [78, 
79, 117] recommended by international organizations can 
protect their DNA integrity. Thus, regardless of chrono-
logical age, a healthy life can be led by contributing to the 
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preservation of telomere integrity with a significant decrease 
in telomere shortening rate (Fig. 2A) [82, 86].

In B pathways, some dietary patterns and foods (Western- 
style diet, refined carbohydrates, processed meat, satu-
rated fat, etc.) are associated with insulin resistance, 
chronic inflammation, and oxidative stress. These effects 
of unhealthy foods are associated with high amounts of 
refined sugar, saturated fat, and low amounts of antioxidant 
vitamins, minerals, and fiber. Unhealthy cooking methods 
applied to foods can also cause the accumulation of pro-
inflammatory and pro-oxidative compounds in foods. Due to 
all these factors, increasing telomere shortening may accel-
erate the aging process and increase age-related chronic dis-
eases (Fig. 2B) [120–122, 132].

Most of the studies investigating the association between 
nutrition and telomeres used FFQ and 24-h dietary recall. 
More clinical and longitudinal studies are needed to obtain 
stronger evidence and establish a causal relationship.

Conclusion, Limitation, and Future Research

We suggest that ensuring energy balance with regular physi-
cal activity and healthy diets can contribute to the aging pro-
cess by protecting telomere length. However, there are some 
limitations to our study. Firstly, different methods in studies, 
short and inconsistent durations, different types of exercise, 
different diet patterns, and non-standard foods have led to 
conflicting results. Secondly, it should be acknowledged that 

the utilization of telomere length as an aging metric might 
encounter limitations due to the heterogeneous cellular ori-
gins of the samples under investigation. While telomere 
length is predominantly assessed in telomeric DNA regions, 
it is important to recognize that certain studies, including 
some cited in the article, have employed diverse cell types 
such as whole blood or saliva cells for this purpose. This 
variance in cellular composition could contribute to the 
observed discrepancies in results across studies. Another 
critical aspect to consider pertains to the methodologies 
employed for the quantification of telomere length. The 
accuracy and precision of the measurement techniques can 
substantially influence the obtained outcomes. It is impera-
tive to acknowledge that studies evaluating telomere length 
have employed a range of methodologies, leading to poten-
tial variations in the precision of the measurements [144, 
145]. This variation in measurement precision could poten-
tially contribute to the incongruent findings observed in the 
literature. In addition, studies on basal metabolic rate and 
resting metabolic rate, important factors of energy balance, 
were not found. These limitations underscore the complexity 
of utilizing telomere length as a consistent measure of aging. 
Acknowledging the diversity in cell types and the intricacies 
of measurement methodologies is pivotal in interpreting and 
reconciling the sometimes contradictory findings within the 
existing body of research.

In future studies, answers can be sought to the questions 
of “Do basal metabolic rate and resting metabolic rate affect 
the aging process through telomere protection? “How does 

Fig. 2  The potential mechanisms of healthy and unhealthy nutrition on telomere length (the Mediterranean diet pyramid in the picture is taken 
from D’Alessandro et al. [143])
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the combination of a healthy diet pattern and long-term exer-
cise affect telomere length?” In addition, more studies are 
needed to elucidate molecular-based mechanisms.
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