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Abstract
Purpose of Review Existing dietary and lifestyle interventions and recommendations, to improve the risk factors of obesity 
and type 2 diabetes with the target to mitigate this double global epidemic, have produced inconsistent results due to inter-
personal variabilities in response to these conventional approaches, and inaccuracies in dietary assessment methods. Preci-
sion nutrition, an emerging strategy, tailors an individual’s key characteristics such as diet, phenotype, genotype, metabolic 
biomarkers, and gut microbiome for personalized dietary recommendations to optimize dietary response and health. Precision 
nutrition is suggested to be an alternative and potentially more effective strategy to improve dietary intake and prevention 
of obesity and chronic diseases. The purpose of this narrative review is to synthesize the current research and examine the 
state of the science regarding the effect of precision nutrition in improving the risk factors of obesity and type 2 diabetes.
Recent Findings The results of the research review indicate to a large extent significant evidence supporting the effective-
ness of precision nutrition in improving the risk factors of obesity and type 2 diabetes. Deeper insights and further rigor-
ous research into the diet-phenotype-genotype and interactions of other components of precision nutrition may enable this 
innovative approach to be adapted in health care and public health to the special needs of individuals.
Summary Precision nutrition provides the strategy to make individualized dietary recommendations by integrating genetic, 
phenotypic, nutritional, lifestyle, medical, social, and other pertinent characteristics about individuals, as a means to address 
the challenges of generalized dietary recommendations. The evidence presented in this review shows that precision nutrition 
markedly improves risk factors of obesity and type 2 diabetes, particularly behavior change.

Keywords Precision nutrition · Personalized nutrition · Nutrigenetics · Metabolomics · Metagenomics · Risk factors · 
Behavior change · Dietary patterns · Obesity · Type 2 diabetes

Introduction

Obesity and diabetes have emerged as enormous public 
health problems not only in the USA but also globally. 
Diabetes is a significant global challenge to the health and 
well-being of individuals and societies [1]. With a continued 
global increase in diabetes, the current prevalence of 537 
million adults living with diabetes is projected to rise to 643 
million by 2030 [1]. In the USA, an estimated 37.3 million 
people have diabetes, of which 90–95% of cases, including 
children, adolescents, and young adults are attributed to type 
2 diabetes [2–4]. Diabetes data and trends for 2019 available 
at the Centers for Disease Control and Prevention indicated 

that diabetes is the sixth leading cause of death, and number 
one cause of kidney failure and lower limb amputation [3, 
4]. Obesity is the strongest risk factor for the development 
of type 2 diabetes [5–7]. Thus, the burden of type 2 diabetes 
is increasing in parallel to increasing cases of obesity [8]. 
Clinical data show that of the people diagnosed with type 2 
diabetes, about 80–90% are highly likely to be diagnosed as 
obese [9–12]. The associated medical expenses of obesity 
and type 2 diabetes are steep. Obesity costs the US health 
care system nearly $173 billion a year [13, 14], while the 
total estimated economic burden of type 2 diabetes was $327 
billion in medical costs and lost productivity [15].

Both obesity and type 2 diabetes have related multifac-
torial etiology, making them highly complex diseases and 
investment in their effective prevention and management has 
become necessary to tackle this global epidemic. While obe-
sity and type 2 diabetes have traditionally been studied to be 
diseases of energy imbalance, other risk factors such as high 
body weight and fat, dyslipidemia, high blood glucose, and 
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insulin resistance are also involved in the etiology [16–18]. 
Unhealthy diet characterized by foods high in fat, sugars, 
and calories, but low in plant-based sources, and lack of 
physical activity are now considered top risk factors for the 
development and progression of obesity and type 2 diabetes 
[19]. Thus, improving dietary intake and physical activity 
is a global priority [20].

Dietary recommendations and public health campaigns 
for tackling risk factors of obesity and type 2 diabetes have 
focused on using population averages, have been based 
on generalized advice, or have been poorly adhered to 
[21–24]. Moreover, there have been great challenges with 
the validity, consistency, and reproducibility of dietary 
assessments [25]. Because obesity and type 2 diabetes 
are heterogeneous diseases from the pathophysiological, 
genetic, and clinical perspectives, and there is dramatic 
inter-individual variability in response to any therapeutic 
diet or physical activity regime, there is a need to shift to or 
complement the population perspective with patient-centric 
interventions [26–28]. These variabilities are attributed to 
differences in genetics, biomarkers of metabolic pathways, 
gut microbiome, environmental, physiological, behavioral, 
social, and economic factors. Given the substantial burden 
of obesity and its related comorbidities, research and prac-
tice efforts should adopt a holistic approach for sustainable 
solutions in preventing and treating the obesity and type 2 
diabetes epidemic [9].

Precision nutrition (or personalized nutrition) has 
emerged as a new area of lifestyle intervention that allows 
dietary recommendations to be tailored at the individual level 
through integration of demographic information, lifestyle- 
based information (e.g., dietary intake, and physical activ-
ity), phenotype-based information (e.g., anthropometrics, 
and standard clinical biomarkers of disease risk), and gene- 
and omics-based information (e.g., genetic testing of single 
nucleotide polymorphisms, and gut microbiome) (Fig. 1) 
[29, 30]. The current use of nutrigenetics, metabolomics, 
and metagenomics in precision nutrition enables the holistic 
interrogation of dietary and lifestyle factors to objectively 
assess risk factors of obesity and type 2 diabetes. The iden-
tification of various genes and polymorphisms has been 
determined as the basis for the interpersonal variability in 
metabolic response to specific diets [31–33]. Metabolomics 
investigates, among other things, the effect of food-derived 
biomarkers metabotypes variation among individuals in 
metabolizing the same diets in health and disease states 
for customized dietary interventions through metabolic pat-
terns [34]. The identification of metabolites of food intake 
to serve as target of nutrition intervention makes metabo-
lomics have potential to improve the accuracy of dietary 
assessment [35]. Metagenomics is vital in precision nutri-
tion because it can be used to comprehensively analyze the 
diet-microbiome interaction to identify various metabotypes 

that characterize metabolic risk and tailor dietary interven-
tion approaches for improved health [36].

It is suggested that precision nutrition interventions 
could result in greater weight loss and blood glucose control 
than non-personalized strategies [37, 38]. In personalizing 
nutritional advice, there is evidence that people are more 
motivated to make appropriate behavioral changes [39, 40]. 
The interest in precision nutrition has not only significantly 
increased in the scientific community [41], but is already 
becoming more accessible to consumers, largely through 
self-administered test-kits coupled with diet plans and sub-
scription programs [41–43]. Thus, precision nutrition has 
been identified as the individualized solution to prevent and 
manage obesity and type 2 diabetes in lieu of the population-
based dietary interventions, whose effectiveness in reduc-
ing the risks of these conditions using the “one-way diet” 
approach for all individuals is questionable [44].

The purpose of this review is to examine the current state 
of the science regarding precision nutrition in improving the 
risk factors of obesity and type 2 diabetes with emphasis on 
studies that included more than one component of precision 
nutrition and not only genetic testing to provide individual-
ized/personalized dietary advice. While progress has been 
made on the quantity of research focused on precision nutri-
tion, reviews discussing particularly behavior change and 
changes in nutrient/diet quality and physical activity as part 
of a comprehensive analysis of the utility of precision nutri-
tion intervention and its outcomes are lacking.

Nutrigenetics

Nutrigenetics is considered the foundation of precision 
nutrition (Table 1) [45, 46]. Genetic variation in the form of 
single nucleotide polymorphisms (SNPs) is considered to 
account for the heterogeneity in individual dietary response 
and risk for obesity and type 2 diabetes [47, 48]. Nutrige-
netic research has investigated the interactions between 
SNPs influencing body composition, insulin signaling, and 
dietary factors in relation to adiposity and glucose homeosta-
sis in obesity and type 2 diabetes. In an observational study, 
a genetic risk score-diet interaction used to provide preci-
sion nutrition based on 16 SNPs related to obesity or lipid 
metabolism demonstrated its value in obesity prediction. 
Specifically, in individuals carrying > 7 risk alleles, there 
was higher body mass index (BMI), body fat mass, waist cir-
cumference, and waist-to-hip ratio more than the individuals 
with ≤ 7 risk alleles [49]. Additionally, there was a signifi-
cant interaction between genetic risk score and the macronu-
trient intake used in personalized intervention. Similarly, a 
systematic review and meta-analyses and two observational 
studies reported genetic interactions with specific macro-
nutrients, that is, carbohydrate [50], fat [51], and protein 
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intakes, respectively [52]. SNPs in the apolipoprotein A1 and 
C3 (APOA1 and APOC3) genes and cluster of differentiation 
36 (CD36) gene led to increased risk of metabolic syndrome 
in subjects with Western dietary pattern and dyslipidemia 
in individuals who consumed high amounts of fat, respec-
tively. Two randomized controlled trials (RCT) showed that 
personalized prescription of energy-restricted diets (low-fat 
and moderately high-protein) based on 95 different genetic 
variants related to energy homeostasis, phenotypic, and 
environmental factors was associated with differential adi-
posity outcomes, with waist circumference and total body 
fat loss particularly among obese subjects who carried the 
Peroxisome Proliferator Activator Receptor Gamma Coac-
tivator 1 (PPARGC1A Gly482Gly) genotype [53••, 54]. In 
an observational prospective cohort design from the RCT, 
Prevención con Dieta Mediterránea (PREDIMED), the 
investigators concluded that genetic predisposition to type 
2 diabetes associated with the Transcription Factor 7-Like 2 

Gene [TCF7L2 gene (rs790314 TT)] homozygosity could be 
counteracted through precision nutrition interventions with 
the Mediterranean diet [55]. While precision nutrition effec-
tively addresses the genetic variability in nutrient metabo-
lism, and other physiological processes among individuals, 
it was found in a parallel-group, pragmatic, RCT that pro-
viding nutrigenetic information and advice for management 
could help reduce body fat percentage up to 6 months, and 
reductions in body fat were similar to the standard weight 
loss intervention after 12 months. The clinical implications 
of this study are that the genetic-based precision nutrition 
approach should be considered for use for clinical cases 
which require short- to long-term body fat loss, particularly 
for individuals needing that to undergo surgery or transplant 
[56]. The Preventing Overweight Using Novel Dietary Strat-
egies (POUNDS LOST) RCT was conducted to determine 
the impact of precision nutrition on fasting glucose, fast-
ing insulin, hemoglobin A1C (HbA1C), insulin resistance, 

Fig. 1  Components of the precision nutrition approach. The individ-
ual characteristics of demographic, phenotype, lifestyle, genetic, and 
omics information are incorporated into the precision nutrition inter-

vention to address the interpersonal variabilities in response to gen-
eral nutrition intervention and recommendations to improve the risk 
factors of obesity and type 2 diabetes
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and β cell function. The precision nutrition diet varied in 
macronutrient composition and was investigated with type 
2 diabetes genetic risk scores on these parameters of glu-
cose metabolism. At 2 years of intervention, low-protein 
diet responses significantly interacted with lower genetic 
risk score and greater decreases in fasting insulin, HbA1C, 
insulin resistance, and a lesser increase in β cell function, 
compared to those with a higher genetic risk score [57]. A 
post hoc analysis of the POUNDS LOST RCT showed that 
in response to high-fat diets, participants with the highest 
genetic risk score showed increased fasting glucose, insu-
lin resistance, and decreased insulin sensitivity at 6-month 
follow-up than those with low-fat diets [58]. The influence 
of genetic factors and nutrient-gene interactions in preci-
sion nutrition applications has been indicated by twin stud-
ies. In the Personalized Responses to Dietary Composition 
Trial (PREDICT) RCT [59••], a large inter-individual vari-
ability in postprandial blood glucose and insulin responses 
was observed following the same meals among 1002 twins 
and unrelated healthy adults in the UK. Genetic variants 
had modest impact on predictions of glucose, triglycerides, 
and C-peptide. These results were independently validated 
among 100 US adults. In addition, a machine learning algo-
rithm predicted these variabilities to precision nutrition. An 
observational retrospective pre/post comparison of digital 
twin-enabled precision nutrition therapy was used to exam-
ine diabetes reversal [60••]. The authors reported diabetes 
reversal (that is, achieving HbA1C < 6.5% at least 3 months 
after stopping antidiabetic medications) during 90 days of 
precision nutrition therapy at varying rates of subgroups of 
obese and non-obese type 2 diabetes patients. Baseline data 
showed that only 9.5% of patients were in reversal stage 4 
or better; however, over the first 90 days, 82.1% achieved 
advanced stages of reversal with improved clinical outcomes 
and fewer pharmacotherapy. Furthermore, a retrospective 
study reported that there was a decrease in HbA1C, body 
weight, fasting blood glucose, and insulin resistance at 
90-day follow-up assessment [61]. In contrast, a prospective 
RCT [62] that randomized overweight or obese individuals 
to receive a nutrigenetic-based precision nutrition diet or 
standard balanced diet reported no difference in weight loss 
between the two groups. However, the results highlight the 
need for larger macronutrient differences between groups 
and adherence to the recommended intervention diet plan. 
Further research should be conducted to provide new data 
and make the use of genetic-based precision nutrition man-
agement in the clinical setting more effective [62]. Stud-
ies on diet-gene interactions among non-Caucasians are 
limited. In a prospective cohort study of Hispanics of Car-
ibbean origin who were genotyped for the Perilipin SNP 
[PLIN 11482G > A (rs894160)] to determine whether dietary 
macronutrients modulated the associations of the SNP with 
obesity (measured as BMI, waist and hip circumference), Ta
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the investigators found that the minor allele was protective 
against obesity for subjects who consumed higher complex 
carbohydrate, whereas among those with lower complex car-
bohydrate intake, the minor allele was linked with increased 
risk of obesity [63].

Metabolomics

Metabolomics, an emerging technology which encompasses 
comprehensive analysis of metabolites, holds promise to 
inform precision nutrition recommendations (Table  1) 
[64]. The various metabolites produced from metabolism 
of dietary factors have been used to characterize metabolic 
phenotypes or biomarkers that can be used for individual 
stratification. This metabolic specificity enables precision 
nutrition to resolve metabolic derangements that underlie 
obesity and type 2 diabetes [34]. Additionally, metabotyping 
which stratifies individuals with metabolic similarity into 
metabotype subgroups using their metabolic and phenotype 
patterns could be used for population stratification to cus-
tomize dietary interventions [65]. Earlier studies that paved 
the way for the use of metabolomics in precision nutrition 
showed that dietary intake patterns were revealed in metabo-
lomic profiles [66], and were associated with biomarkers 
such as high levels of lipid metabolites, amino acids, and 
ferritin that mediated red meat consumption and risk of type 
2 diabetes [67]. Recently, a study analyzed blood metabolites 
using metabolomics among normoglycemic healthy adults to 
predict the risk of developing type 2 diabetes. A web-based 
platform interventional study was used to deliver precision 
nutrition intervention based on the blood metabolites health 
risk score to lower the blood metabolites to normal levels 
for 40 participants. A follow-up assessment of the blood 
metabolites showed significant reductions in the health risks 
associated with the development of type 2 diabetes, insulin 
resistance, and related comorbidities [68•]. A replication of 
the study through observational longitudinal analysis in a 
larger cohort of 1000 US adults demonstrated similar posi-
tive results with the precision nutrition intervention given 
based on biomarkers measured through metabolomics [69]. 
Bouwman et al. [70] in a double-blind placebo-controlled 
cross-over design used a health space model to visualize 
the effect of personalized nutrition intervention on meta-
bolic stress profile including inflammatory and oxidative 
processes associated with obesity and type 2 diabetes. After 
following the recommendations for 5 weeks, the 145 metab-
olites and 79 proteins measured prior and before treatment 
were able to distinguish modulation of metabolic stress and 
specific oxidative and inflammatory response to treatment. 
Fiamoncini et al. [71] in an experimental design identified 
2 metabotype clusters and tested their responses to a per-
sonalized nutrition intervention over a 12-week weight loss 

program. The researchers reported that only the study partic-
ipants with higher disease-linked metabotype demonstrated 
improvements in glucose and insulin levels when fed a low 
caloric diet. They concluded that through the application of 
metabolomics in precision nutrition advice, a responsive and 
non-responsive metabotype was revealed. In the DIRECT 
(Dietary Intervention Randomized Controlled Trial) trial, 
personalized weight-loss diets decreased circulating amino 
acid metabolites that were associated with risk of type 2 
diabetes, and improved insulin resistance. In addition, the 
reduction in the level of circulating amino acid metabolites 
which is indicative of an increase in insulin sensitivity was 
independent of weight loss [72]. Walford and colleagues 
performed plasma metabolite profiling to elucidate new 
pathways of type 2 diabetes incidence and the role of per-
sonalized nutrition interventions in a nested case–control 
design [73]. Dietary and lifestyle modifications based on 
the metabolites effectively raised betaine concentration from 
baseline to 2-year follow-up, which predicted lower risk of 
type 2 diabetes. Interestingly, a 10-week RCT that allocated 
100 overweight and obese adults to a personalized diet and 
control diet based on their metabolomic and genetic informa-
tion did not show significant difference between groups in 
fat mass; however, the individual diets produced significant 
improvements in insulin resistance and lipid profile, which 
was not significantly different between groups. The sound-
ness of various precision nutrition approaches is required to 
translate such findings into clinical relevance [74•].

Metagenomics

Metagenomics is the comprehensive study of host microbial 
and their genetic material (Table 1) [75]. The role of the gut 
microbiota in obesity and type 2 diabetes has been under-
scored, and this has been an area of immense research [76]. 
It is believed that the metabolism of dietary compounds into 
other metabolites by the gut microbiota, which is associated 
with disease risk, mediates the impact of the gut microbiota 
on human health [77–79]. For example, the metabolism of 
dietary fibers and resistant starches into bacterial metab-
olites of short-chain fatty acids such as acetate, propion-
ate, and butyrate presents a mechanism that modulates the 
pathways involved in obesity, insulin resistance, and type 
2 diabetes [80]. Studies show that the diet-gut microbiota 
interactions vary in composition and functionality among 
individuals [81], and this appears to be a determinant to inte-
grate metagenomics into precision nutrition [36]. Pioneer-
ing work by Zeevi et al. [82] in an observational study and 
blinded randomized controlled dietary intervention showed 
that postprandial glucose responses have high interpersonal 
variability even when individuals consumed identical stand-
ardized diets. The authors further used a machine learning 
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algorithm that integrated dietary habits, blood parameters, 
anthropometrics, physical activity, and gut microbiota fea-
tures for precision nutrition recommendations in the 800 
person cohort. The precision nutrition recommendations 
accurately predicted personalized postprandial glucose 
response to the recommendations and resulted in signifi-
cantly lower glucose levels and consistent alterations in gut 
microbiome. In modifying and extending the model created 
by Zeevi and colleagues, two cohort studies that evaluated 
the utility of such precision nutrition approaches to predict 
postprandial glucose responses found that across the cohort 
of non-diabetic adults that were examined, a personalized 
model was more predictive than current models of carbo-
hydrate content [83, 84]. Similarly, Kovatcheva-Datchary 
et al. [85] in a cross-over study demonstrated that among 
39 healthy Swedes, improved postprandial glucose metabo-
lism was in those with statistically significant higher ratio 
of Prevotella/Bacteroides spp., following an intervention 
of 3-day consumption of barley kernel bread diet. Another 
RCT demonstrated through metagenomic analysis and a die-
tary weight loss intervention that compared to individuals 
with a low bacterial ratio, subjects with a high Prevotella/
Bacteroides genera ratio lost more weight and body fat in 
response to high-fiber diets [86]. In a sub-study of a larger 
RCT, researchers examined whether the baseline compo-
sition and diversity of gut microbiota was associated with 
weight loss in a sample of 49 participants. Findings from the 
study showed that baseline gut microbiota composition was 
not associated with weight loss; however, there were sub-
stantial changes in gut microbiota in response to each diet, 
3 months after initiating the intervention. The changes were 
attributed specifically to the healthy low-carbohydrate diet 
used in the intervention, although the changes were attenu-
ated after 12 months [87]. Another important step in the 
use of metagenomics in precision nutrition was the work 
conducted by Vangay et al. [88] in an observational study 
that provided valuable insight into differences in population 
groups that requires racial considerations and sociocultural 
influences when employing precision nutrition approaches. 
In this study, Karen and Hmong natives residing in Thailand 
and the USA as well as European Americans born in the 
USA were assessed for the impact of migration to the USA 
on the gut microbiota in development of metabolic diseases 
such as obesity. After metagenomic DNA sequencing, the 
investigators found that US immigration rapidly depleted 
gut microbiota diversity and function and was replaced by 
US-associated strains and functions, and was exacerbated 
by obesity. These results were confirmed in a prospective 
cohort study that used similar metagenomic approaches of 
16S and deep shotgun DNA sequencing among 144 Chinese 
individuals in Shanghai. A long-term healthy diet interven-
tion was associated with greater diversity of Tenericutes, 
Firmicutes, and Actinobacteria, with or without adjustment 

for BMI [89]. Data from an RCT of an integrative model 
using gut microbiota and genetic information to personalize 
weight loss prescription among 190 Spanish overweight and 
obese participants suggested that the mixed models’ micro-
biota scores facilitated the selection of the optimal diet in 
84% of men and 72% of women for weight loss [90••].

Behavioral (Dietary Patterns, and Physical 
Activity) Aspects of Precision Nutrition

Healthy behaviors (e.g., consuming a healthy diet and 
engaging in regular physical activity) are associated with 
the incidence of morbidity and mortality of chronic diseases 
including obesity and type 2 diabetes [91]. Behavior change 
components that may be beneficial to improve adoption of 
healthier options are goal setting, social interactions, and 
customized messages [92, 93]. Diet and physical activity 
behaviors are the strongest risk factors for obesity and type 
2 diabetes prevention and outcomes [94]. Given this crucial 
role of behavior in preventing and treating chronic diseases, 
it is important to assess behavior change in dietary patterns 
and physical activity for improvement. The 2019 global 
burden of disease study reported that among the 3 largest 
increases in risk exposure for disability-adjusted life years 
(DALYs) lost across the world, 2 were high BMI and high 
fasting plasma glucose, and 6 of the top 10 causes of DALYs 
are due to poor health behaviors, including unhealthy dietary 
patterns and low physical activity levels [95]. Diet quality 
which represents the nutritional adequacy of a diet with var-
ied nutrient composition, measured by how closely dietary 
patterns are within core nutrient-dense food groups, is a 
higher priority than the quantity of dietary intake [96–99]. 
In a systematic review of prospective cohort studies, a strong 
association was found between poor diet quality and greater 
weight gain, irrespective of gender [100]. In addition, higher 
diet quality is demonstrated in several studies to be asso-
ciated with chronic disease risk, cause-specific mortality, 
and all-cause mortality [101–103]. Diet quality in the USA 
remains far from optimal and for all Americans, the average 
diet quality measured by the Healthy Eating Index (HEI) 
score is 58, which is far from the maximum of 100 points 
[104]. The top dietary risk factors in the USA are diets low 
in fruits, vegetables, whole grains, nuts, and legumes, and 
high in refined grains, red or processed meats, sodium, sat-
urated and trans fats, and sugar-sweetened beverages [21, 
105–107]. The transition from heavy labor to sedentary live-
lihoods, increased screen time, decrease in school physical 
education, and improved transportation has been implicated 
in the decline in physical activity levels [18, 107]. Studies 
show that moderate to vigorous-intensity physical activity 
such as walking or running is necessary for optimal health. 
A systematic review and meta-analysis of prospective cohort 
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studies [108] reported that individuals who engaged in the 
minimum recommended amount of physical activity had 
potentially significant benefits to reduce the risk for type 2 
diabetes by 26%, compared with inactive individuals. Thus, 
improvement in diet and physical activity signifies a huge 
potential for obesity and type 2 diabetes reduction either 
directly or indirectly through improvements in weight gain 
and blood glucose levels. It has been suggested that conven-
tional dietary advice does not have as big of an impact on 
improving dietary health as expected [109, 110].

Precision nutrition interventions have demonstrated 
encouraging changes in dietary behaviors (Table 1). Pre-
cision nutrition studies that reported on behavior changes 
observed as healthy dietary patterns found that optimiz-
ing dietary patterns through individualized care improves 
management of obesity and type 2 diabetes [111–113]. For 
example, a randomized controlled trial that provided per-
sonalized nutrition advice using individualized information 
on diet and lifestyle, phenotype and/or genotype, produced 
larger, more appropriate, and sustained changes in dietary 
behavior to healthier diet as food groups compared to a con-
ventional approach. Study participants in the precision nutri-
tion group consumed less red meat, salt, and saturated fat, 
increased folate intake, and had higher HEI scores [114]. 
In line with these results, another RCT [115] that consid-
ered application of a dietary pattern technique instead of 
individual food items in isolation has reported that the use 
of precision nutrition enhanced dietary behavior changes 
associated with higher Mediterranean-style diet scores. The 
Mediterranean diet, characterized by high intakes of fruit 
and vegetables and low intakes of sugar-sweetened bever-
ages and snacks, has been consistently linked with a ben-
eficial effect on health, including obesity and type 2 diabe-
tes [116–118]. Thus, it is strongly suggested that changing 
dietary intakes so as to align more appropriately with the 
Mediterranean diet would yield extensive public health ben-
efit [119]. Through post hoc analyses, findings of the study 
further supported the importance of personalized nutri-
tional advice which, when done with increased frequency, 
promoted sustained changes in dietary behavior and larger 
improvements in overall diet quality [120]. The changes in 
behavior of dietary patterns through the implementation of 
precision nutrition recommendations have also been associ-
ated with reduced intake of calories, carbohydrates, sugar, 
total fat, and saturated fat which correlated with significant 
weight loss, reduced waist circumference, and increased 
high density lipoprotein (HDL), decreased total cholesterol 
and low density lipoprotein (LDL) with improved glucose 
levels through observational studies, single-arm, multi-
phase, open-label exploratory trial, and retrospective analy-
sis of an RCT [121, 122••, 123, 124]. A pretest–posttest 
pilot study that organized a personalized dietary advice in a 
real-life setting found that dietary quality measured by the 

Dutch Healthy Diet Index was significantly improved com-
pared with baseline. In addition, this research revealed that 
personalized dietary advice resulted in positive effects in 
self-perceived health in motivated pre-metabolic syndrome 
adults. Because the study was performed in the real-life set-
ting (do-it-yourself), it highlighted the potential of at-home 
health behavior improvement through dietary changes [125]. 
The EatWellUK is another RCT that attests to the advance-
ment of precision nutrition research beyond the USA. The 
authors of this research reported that an automated precision 
nutrition advice via a mobile web app was effective to elicit 
beneficial dietary change, improve diet quality, and increase 
engagement in healthy dietary behaviors in UK adults, rela-
tive to general population-based dietary guidelines [126••]. 
Similarly, other precision nutrition interventions found 
behavior change in dietary intake which favored healthier 
choices and increase in diet quality irrespective of the setting 
and/or platform used for delivery of the intervention, as well 
as measure used to assess diet quality score [127, 128••]. 
Short-term dietary behavior changes are usually very short 
lived, thus long-term compliance to dietary behavior change 
should not be compromised because it is crucial in maintain-
ing body weight and blood glucose levels [129]. Generally, 
long-term dietary changes are difficult when it comes to 
consistency; however with the application of precision nutri-
tion, there is a potential to optimize dietary behavior change 
by motivating greater adherence and change in dietary intake 
for the long-term for improved weight and glucose manage-
ment [130–132]. The nutrigenomics overweight/obesity and 
weight management (NOW) trial was an RCT that shed more 
light on long-term dietary behavior change and adherence. 
More specifically, the investigators described that the use of 
precision nutrition increased motivation to long-term reduc-
tion in total fat intake, and long-term adherence to total fat 
and saturated fat advice [133].

Evidence shows that fixed step goals that are not per-
sonalized can discourage individuals, leading to unchanged 
behavior or even reduced physical activity levels [134–136]. 
There are findings, however, that show that the effect of pre-
cision nutrition to promote behavior change in physical inac-
tivity and improve physical activity levels is not as consistent 
as observed for behavior changes in dietary patterns and diet 
quality. The findings of an RCT that included 1279 partici-
pants in 7 European countries to determine the effects of per-
sonalized advice on physical activity showed that while self-
report-based physical activity levels increased to a greater 
extent with more personalized nutrition advice, there was 
no difference between the effect of personalized advice to 
promote changes in physical activity levels and conventional 
guidelines when physical activity was objectively measured. 
The authors concluded that it is vital to measure physical 
activity objectively in any physical activity intervention 
study [137]. Studies that analyzed objective measurement 
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of physical activity levels in personalized advice support this 
theory as they found association between personalized and 
adaptive goal-setting intervention and steady daily steps, but 
not with constant steps in the control group, thus promot-
ing behavior change in physical activity [138]. These data 
are in contrast with the results of an RCT that reported no 
changes in physical activity behavior after a precision nutri-
tion intervention using objectively measured physical activ-
ity [139]. Nevertheless, an observational study found that 
precision nutrition significantly increased strength exercise 
frequency which was attributed to direct motivation of their 
personal genetic testing results to make behavior changes 
[140]. However, genetic results were not consistently associ-
ated with physical activity changes. Together these studies 
provide important insights into the precision nutrition effects 
on physical activity behavior changes, which highlights the 
need for further research.

Conclusion

The current review provides evidence that although the 
application of precision nutrition is emerging, it is to a large 
extent associated with obesity and type 2 diabetes and may 
be effective approach in improving the risks factors includ-
ing dietary patterns, physical activity, body weight and fat, 
blood lipids, blood glucose, and insulin resistance. This 
advancement has been enabled through the use of cutting-
edge omics technologies which provide genetic, biomark-
ers, and microbiome insights into variabilities in individual 
metabolic pathways in response to dietary intakes that may 
impact health. It is worth noting as presented in this review 
that the evidence for precision nutrition is stronger for 
behavior change than for actual hard endpoints but main-
taining the behavior changes in the long term is important 
for the hard endpoints to change, and this is challenging. The 
choosing of genetic and phenotypic parameters as a rational 
basis for individual-level, precision nutrition advice is a key 
factor that motivates people to make appropriate behavioral 
changes. However, individual health aspirations, food pref-
erences, and barriers/facilitators to behavior change need to 
be considered and integrated more using a biopsychosocial 
model in developing precision nutrition approaches to main-
tain long-term behavior change and promote sustainability 
for better health outcomes [141]. In addition, there are still 
methodological challenges in the design and application of 
precision nutrition in clinical settings and scale up to the 
population level in addressing obesity and type 2 diabetes. 
While sensitivity and specificity issues of the omics technol-
ogies exist, some studies do not incorporate all the sources 
of individual variability in their assessment, and others do 
not have relevant behavior change techniques, are of short 

duration in their intervention, low diet quality, and of small 
sample sizes to observe an effect. More rigorous and well-
executed RCTs are required to reinforce the evidence base 
for precision nutrition to be widely and effectively used in 
clinical setting and the public health domain. Moreover, 
increasing the reliability and reducing the cost of cutting-
edge omics technologies and new frontiers in machine learn-
ing will undoubtedly pave the way for comprehensive and 
integrated framework of big data to combine multi-omics 
approaches with lifestyle and behavioral, phenotype, socio-
cultural, and demographic factors. This will help apprise the 
optimal design of precision nutrition interventions in clinical 
settings, and improve population diets at scale in improv-
ing the risk factors of obesity and type 2 diabetes. The vast 
majority of present knowledge and research on precision 
nutrition has been derived from developed countries [142]. 
It is crucial to conduct original research in other popula-
tions with different dietary habits, disease susceptibility, 
genetic makeup, socioeconomic characteristics, and health-
related lifestyles. Extending precision nutrition research and 
application by examining and understanding a wider array 
of multi-race population health, technological and digital 
landscape, and political will are needed to ensure that there 
is equity prior to implementation of such approaches.
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