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Abstract
Purpose of Review The aim of this review is to provide an overview of the menopause-related changes in microbiota and 
their role in the pathogenesis of menopause-related diseases. In addition, evidence on probiotic supplementation as a thera-
peutic strategy is discussed.
Recent Findings The human microbiota is a complex community that lives in a mutualism relationship with the host. 
Menopause is associated with dysbiosis, and these changes in the composition of microbiota in different sites (gut, vaginal, 
and oral microbiota) might play a role in the pathogenesis of menopause-related diseases (i.e., osteoporosis, breast cancer, 
endometrial hyperplasia, periodontitis, and cardiometabolic diseases).
Summary The present review highlights the pivotal role of microbiota in postmenopausal women health, in particular it 
(a) may increase intestinal calcium absorption thus preventing osteoporosis, (b) is associated with reduced risk of breast 
cancer and type 1 endometrial hyperplasia, (c) reduces gingival inflammation and menopausal periodontitis, and (d) ben-
eficially affects multiple cardiometabolic risk factors (i.e., obesity, inflammation, and blood glucose and lipid metabolism). 
However, whether oral probiotic supplementation might be used for the treatment of menopause-related dysbiosis requires 
further clarification.
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Introduction

Microbiota consists of a community of microbes (bacteria, 
fungi, and viruses) that live inside and outside of the human 
body [1]. In the gut, microbial species live in a harmonic 

symbiosis with the host, contributing to [2] (1) increase 
the metabolic ability to ferment indigestible carbohydrates; 
(2) produce vitamins, i.e., B2, B12, K, and folic acid; (3) 
protect against the colonization of pathogenic bacteria; and 
(4) promote the maturation of immune cells and the normal 
development of their functions, as well as the inhibition 
of toxins and carcinogens [3]. According to microbial tax-
onomy at the phylum level, the following gut bacteria have 

Luigi Barrea, Ludovica Verde, and Renata Simona Auriemma 
equally contributed to this paper.

 * Ludovica Verde 
 lud.verde@studenti.unina.it

1 Dipartimento di Scienze Umanistiche, Centro Direzionale, 
Università Telematica Pegaso, Via Porzio, isola F2, 
80143 Naples, Italy

2 Centro Italiano per la cura e il Benessere del Paziente 
con Obesità (C.I.B.O), Department of Clinical Medicine 
and Surgery, Endocrinology Unit, University Medical School 
of Naples, Via Sergio Pansini 5, 80131 Naples, Italy

3 Dipartimento di Medicina Clinica e Chirurgia, Unità di 
Endocrinologia, Diabetologia e Andrologia, Università 
degli Studi di Napoli Federico II, Via Sergio Pansini 5, 
Naples 80131, Italy

4 Section of Pharmacology, Department of Neuroscience, 
School of Medicine, University of Naples Federico II, 
Naples, Italy

5 Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos 
Julio Arosemena Tola, Guayaquil 090615, Ecuador

6 Department of Human Sciences and Promotion 
of the Quality of Life, San Raffaele Roma Open University, 
00166 Rome, Italy

7 Cattedra Unesco “Educazione alla salute e allo sviluppo 
sostenibile”, University Federico II, Naples, Italy

8 Department of Public Health, University of Naples Federico 
II, Naples, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s13668-023-00462-3&domain=pdf
http://orcid.org/0000-0002-4583-8283


84 Current Nutrition Reports (2023) 12:83–97

1 3

been identified: Firmicutes (60–80%, i.e., Ruminococcus, 
Clostridium, Lactobacillus, Enterococcus), Bacteroidetes 
(20–30%, i.e., Bacteroides, Prevotella, Xylanibacter), Act-
inobacteria (less than 10%, i.e., Bifidobacterium), and 
Proteobacteria (less than 1%, i.e., Escherichia, Entero-
bacteriaceae) [3, 4]. Nevertheless, the composition of gut 
microbiota may change according to host-related factors 
(age, gender, latitude, ethnicity, diseases) [5], lifestyle 
(physical exercise, habitual diet, use of prebiotics and/
or probiotics), and antibiotic therapy [4, 6, 7]. Dramatic 
changes of the composition of gut microbiota—known as 
dysbiosis—have been appointed as major contributors to 
several diseases such as asthma [8], eczema [8], obesity 
[9], type 2 diabetes [10], non-alcoholic fatty liver disease 
[11], colon cancer [12], heart disease [13], and neurological 
or neuropsychiatric diseases [14]. Among factors that can 
affect the composition of gut microbiota, the role of gender 
and sex hormones has not yet been sufficiently investigated.

Mounting evidence has shown that gender and sex hor-
mones can play a pivotal role in modulating human response 
to external factors, likely through a different effect on micro-
biota. For example, in the study by Org et al. [15], male 
and female mice exhibited a significant difference in the 
abundance of several microbial species. Interestingly, this 
sex-related microbiota composition explained the variabil-
ity of metabolic response when mice underwent an 8-week 
high-fat high-sucrose diet. In addition, to determine whether 
these findings were mediated by sex hormones, gonadecto-
mized and hormone-treated mice underwent the same diet. 
The results showed that the hormonal status affected the 
composition of microbiota more on the chow diet in males, 
whereas in females this effect was more evident after the 
high-fat diet. Therefore, these experiments highlighted the 
role of gender on targeting gut microbiota composition and 
the response to dietary interventions.

In other studies [16, 17], estrogens have been shown to 
affect gut microbiota which can, in turn, significantly influ-
ence estrogen levels. Indeed, some microbial species (also 
known as estrabolome) can regulate circulating estrogens 
through the secretion of beta-glucuronidase, a bacterial 
enzyme that deconjugates estrogens and phytoestrogens in 
their active forms which can be reabsorbed in the intestine 
and enter the bloodstream [18].

Dysbiosis can reduce estrabolome, and consequently, the 
deconjugation of estrogen and phytoestrogen into their circu-
lating active forms with the impairment of estrogen-receptor 
activation [19]. This condition can induce a wide range of  
diseases, such as polycystic ovary syndrome (PCOS) [20], 
obesity and obesity-associated metabolic diseases [7, 21],  
cardiovascular disease (CVD) [22], cognitive decline [23], type 
1 endometrial hyperplasia, and endometrial and breast can-
cer (BC) [24]. Moreover, estrogens regulate the microbiological 
environment of the female reproductive tract by maintaining  

epithelial thickness, glycogen levels, mucus secretion, and 
decreasing vaginal pH through the promotion of Lactobacilli 
colonization and lactic acid production [25]. Consequently, 
during menopause, the abundance of vaginal Lactobacilli 
decreases along with hormonal and epithelial changes [26]. 
Finally, during the normal women life cycle, menopause is 
characterized by a dramatic reduction in estrogens and other 
female sex hormones [27, 28]. Overall, this evidence suggests 
that the composition of the microbiota could play a pivotal 
role in the onset or progression of some menopause-related  
clinical conditions [29].

Therefore, the aim of this review was to give an over-
view of the relationship between microbial dysbiosis and the 
most common menopause-related diseases (postmenopausal 
osteoporosis, BC, endometrial hyperplasia, periodontitis, 
obesity, and CVD). In addition, evidence on the effects of 
probiotic supplementation in postmenopausal women was 
discussed to evaluate whether it might be used as a therapeu-
tic strategy for the prevention/management of menopause-
related diseases.

Rationale for the Use of Probiotics 
in the Treatment of the Comorbidities 
Associated with Menopause

The evidence that changes in the composition of the gut 
microbiota might have a role in the pathogenesis of a heter-
ogenous group of human diseases suggests that these con-
ditions could be either prevented or ameliorated by thera-
peutic interventions aiming to correct gut dysbiosis [30]. 
The standard tool to achieve this goal is the administration 
of probiotics. According to the World Health Organization, 
probiotics are live microorganisms that when administered 
in adequate amounts will confer a health benefit on the host 
and this definition has been retained with only minimal 
grammatical changes in the consensus statement issued by 
the International Scientific Association for Probiotics and 
Prebiotics in 2016 [31]. Commercial probiotic products con-
tain various combinations of bacteria and yeasts belonging 
to the following genuses: Lactobacillus, Bifidobacterium, 
Saccharomyces, Streptococcus, Enterococcus, Escherichia, 
and Bacillus. In many cases, these preparations also include 
vitamins, amino acids, or essential minerals and are mar-
keted as dietary supplements. The basic idea behind the use 
of probiotics in clinics is that, upon oral administration, they 
could populate the gut replacing dysbiotic microorganisms 
and restoring the normal functional activities of gut micro-
biota. While this could seem an obvious consequence of pro-
biotic therapy, the evidence that it really happens is not solid 
[32]. What has been observed is that, in general, the micro-
organisms contained in probiotics only transiently colonize 
the gut in a manner that is highly individually variable [33]. 
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Long-term persistence and, even more importantly, stable 
changes in the resident intestinal microflora seem, instead, 
to occur only rarely [32]. The practical consequence of these 
data is that continued, long-term administration is probably 
required to maintain the benefits of probiotic treatment.

Different mechanisms concur to determine the benefi-
cial effects of probiotics in different human diseases also 
including the comorbidities of menopause, as we will 
discuss in detail in the following sections. In particular, 
these microorganisms (1) improve gut barrier function, (2) 
modulate immune responses, (3) release biologically active 
extracellular mediators, and (4) generate biologically active 
substances by metabolizing either endogenous molecules 
or molecules taken with food (see Suez et al. [32] for a 
comprehensive review).

In the normal healthy gut, the intestinal epithelial cells 
are covered by a thin layer of mucus that they synthesize 
and release to form a physical and functional barrier isolat-
ing the intestinal mucosa and, more in general, the systemic 
circulation from the content of the gut lumen. The disruption 
of this barrier is an important causative factor of intestinal 
diseases such as inflammatory bowel disease and may grant 
the diffusion to distant sites of antigenic or toxic substances 
responsible for the genesis of non-intestinal diseases such as 
hepatic steatosis or parodontitis.

Probiotics may improve the intestinal barrier through 
different mechanisms. First, they promote the secretion and 
release of mucus and enhance the formation of tight junctions 
[34, 35]. These effects are at least partially dependent on 
the release of soluble mediators such as indoles, which bind 
to pregnane X receptors, and hydroxycis-12-octadecenoic 
acid, which binds to GPR40 and activates the MAPK cascade 
[36]. In addition, probiotics reduce dysbiotic microorganism 
binding to intestinal epithelial cells both by competing with 
them for mucosal binding sites and by reducing their num-
ber through their killing via the release of antibacterial sub-
stances such as organic acids, like acetic acid and lactic acid, 
and bacteriocins [37, 38]. Microbial-associated molecular 
patterns of probiotic microorganisms, such as flagellin, pilin 
surface layer protein, capsule polysaccharide, lipopolysaccha-
ride, or lipoteichoic acid, bind to specific pattern recognition 
receptors, including Toll-like receptors-2, 4, and 5, not only 
on dendritic cells but also on epithelial intestinal cells and 
on M-cells, a specialized cell type involved in the transcy-
tosis of antigens to the cells of the gut-associated lymphoid 
tissue [39, 40]. The binding to epithelial cells promotes the 
synthesis and release of defensins, and several cytokines, 
including interleukin (IL)-6, IL-8, IL-10, tumor necrosis 
factor (TNF)-α, IL-1β, and interferon (IFN)-γ, increase the 
formation of tight junctions and exert antiapoptotic and anti-
inflammatory effects. The interaction with dendritic cell 
receptors regulates the differentiation of naive T cells and, 
ultimately, the relative balance between TH1, TH2, TH17, 

and Treg lymphocytes [41]. Probiotics may also regulate 
immune responses through the release of small soluble medi-
ators, which are generated through the metabolism of dietary 
fibers. This is the case of small chain fatty acids (SCFA) [42]  
such as butyrate and propionate which are generated in the 
gut and may diffuse with general circulation to exert their 
immunoregulatory and anti-inflammatory effects at distant 
sites in particular controlling Treg expansion [43–46]. Impor-
tantly, the immunomodulating effects of probiotics are not 
limited to the intestinal mucosa but impact immune responses 
systemically as it has been demonstrated in allergic disor-
ders [47–49]. The immunomodulating and anti-inflammatory 
effects of probiotics and their ability to normalize gut mucosa 
permeability may partly explain their beneficial effects in 
some of the comorbidities of menopause such as osteoporosis 
and parodontitis. In fact, the increase in permeability which 
occurs in the intestinal dysbiosis of menopause prompts the 
activation of Th17 lymphocytes and the release of TNF-α and 
RANKL, ultimately leading to enhanced osteoclastogenesis 
and bone resorption [50]. Similar mechanisms are effec-
tive at the level of alveolar bone where they are responsi-
ble for bone resorption and the progression of the disease 
[51]. By reducing the plasma levels of cytokines, probiot-
ics may also positively impact on cardiovascular risk which 
is increased by systemic microinflammation [52–54]. An 
additional important mechanism that could be responsible 
for the beneficial effects of probiotics on cardiovascular risk 
also in menopause is related to their ability to deconjugate 
bile salts such as lithocholic in a reaction catalyzed by the 
enzyme bile salt hydrolase [55]. The resulting deconjugated 
bile salts cannot be recycled back to the liver as efficiently as 
their conjugated counterparts and this leads to higher hepatic 
consumption of cholesterol by liver cells to synthesize new 
bile salts and, ultimately, to a decrease in plasma cholesterol 
levels [56]. Importantly, probiotics may also improve insulin 
resistance via SCFA and this further contributes to reducing 
cardiovascular risk [57].

The decrease in cytokine release and systemic inflamma-
tion induced by probiotics by the mechanisms described above 
might be relevant also in explaining their beneficial effect on 
BC whose development and progression are promoted by the 
inflammatory microenvironment caused by dysbiosis [58]. 
Another important mechanism that could have a role in deter-
mining the proposed protective role of normal microbiota 
and, possibly, of probiotics on breast cancer is related to the 
ability of these microorganisms to produce substances with 
anticancer activity [59]. Normal gut microbiota synthetizes 
small molecules with anticancer activity such as indole deriva-
tives, indole propionic acid, and indoxyl sulfate [60, 61]. In 
addition, cadaverine and the bile salt metabolite lithocholic 
acid may also decrease cancer cell proliferation by interacting 
respectively with trace amino acid receptors and TGR5/FXR 
[62–65]. To what extent the intake of probiotics could increase 
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the production of these compounds with anticancer properties 
is still uncertain. As mentioned before, probiotics express bile 
salt hydrolase and increase bile salt metabolism in the gut; 
an increase in indole-3-propionic acid was observed in rats 
treated with probiotics [66] but not in children affected with 
type I diabetes [67]. Increased levels of polyamines have been 
demonstrated in the elderly after treatment with bifidobacteria-
containing synbiotics [68].

As mentioned above “Reciprocal interactions between 
estrogens and microbiota: implications in menopause” the 
estrabolome controls circulating levels of estrogens by metabo-
lizing in the gut endogenous and exogenous molecules with 
estrogenic activity. In particular, besides deconjugating endog-
enous estrogens, gut microbiota also metabolizes plant lignans, 
the major source of phytoestrogen in Western populations, to 
generate enterolignans, enterolactone, and enterodiol [69]. 
These metabolites have a higher bioavailability than parental 
compounds and are responsible for most of the systemic effect 
of lignans; acting as modulators of estrogen receptors, these 
compounds exert agonist effects in certain tissues such as the 
bone and antagonist effects in others such as the breast. Dys-
biosis may reduce enterolignan generation, cause the loss of 
their agonist/antagonist effect on estrogen-dependent tissues, 
and consequently increase the risk of osteoporosis and BC [59, 
70]. A similar bioactivating role of gut microbiota has been 
described also for other phytoestrogens such as ellagitannins 
and isoflavones, which are converted respectively into urolith-
ins and equol; these metabolites also have potent anticancer 
activity independent from their effects on estrogen receptors 
[71–73]. It has been suggested that probiotics could restore 
the impaired phytoestrogen bioactivation in the dysbiotic gut 
and such a mechanism could partly account for their beneficial 
effects in menopausal comorbidities such as osteoporosis and 
BC and give a rationale basis for the combined treatment of 
these conditions with probiotics plus phytoestrogens [74]. Evi-
dence has been reported that several probiotic microorganisms 
including lactobacilli and bifidobacterial may perform in vitro 
some of the enzymatic reactions involved in lignan and isofla-
vone bioactivation [75–78]. Nonetheless, the clinical studies 
performed so far showed inconsistent results and, therefore, the 
relevance of this mechanism in probiotic therapeutic effects 
remains uncertain [79–82].

In the next sections, we will analytically review the avail-
able evidence on the role of dysbiosis and the benefits of 
probiotics in the main comorbidities of menopause.

Menopausal Dysbiosis and Osteoporosis

Osteoporosis is a clinical condition with a great impact 
on women's health [83]. Indeed, according to the Study of 
Women’s Health Across the Nation (SWAN) carried out in 
postmenopausal women (approximately 6 years after the last 

menstrual period), one in six women had one or more frac-
tures, with a rate of 11 first fractures/1000 person/years [84].

Recent studies have found a strict relationship between 
menopause, microbiota, and bone health suggesting novel 
implications for the prevention and/or therapeutic strategies 
for osteoporosis [85, 86••] (Fig. 1).

In a double-blind, randomized, crossover acute trial 
carried out in 20 postmenopausal women, the addition of 
Lactobacillus helveticus to fermented milk was showed to 
rapidly increase serum calcium while decreasing parathor-
mone concentrations, as compared to conventional milk 
[87]. These findings suggest that probiotics may promote 
intestinal calcium absorption. In a 12 month-double-blind, 
placebo-controlled study, 90 elderly women (75–80 years) 
with osteopenia (defined as a t-score between − 1 and − 2.5) 
were randomized to daily oral supplementation with Lac-
tobacillus reuteri (LR 6475) or placebo. At the end of the 
study, LR 6475 reduced the loss of total volumetric body 
mass density (BMD) compared to placebo, thus representing 
a useful supplementation in elderly women with osteopenia 
[88]. Furthermore, in a medium-term (6 months) double-
blind, randomized, clinical trial, 78 postmenopausal women 
at risk of osteoporosis or with untreated osteopenia were 
assigned to daily consumption of yoghurt enriched with bio-
active compounds (calcium, vitamin D, vitamin K, vitamin 
C, zinc, magnesium, L-leucine) and probiotics (Lactobacil-
lus plantarum 3547) or control yoghurt [89]. After 6 months, 
women consuming enriched yogurt showed a significantly 
increased BMD compared to controls. Moreover, increased 
N-terminal propeptide of type I collagen while decreased 
C-telopeptide of type I collagen concentrations—a bone for-
mation and a bone resorption marker, respectively—were 
observed in the women consuming enriched yoghurt as com-
pared to control [89].

All these studies support the feasibility and usefulness of 
probiotic supplementation—over the standard therapy with 
calcium and vitamin D—to improve bone health in meno-
pausal women at risk of osteoporosis.

Menopausal Dysbiosis and Breast Cancer

Scientific evidence on the association between dysbiosis and 
the pathogenesis of BC has been poorly investigated [90, 
91•] (Fig. 1).

In a metagenomic study [92], 18 women with premeno-
pausal BC showed no significant taxonomic differences 
when compared to 25 premenopausal healthy controls. 
However, in the same study when 44 patients with postmen-
opausal BC were compared to 46 healthy postmenopausal 
controls, 45 species differed significantly between the two 
groups. More in details, patients with postmenopausal BC 
exhibited a higher abundance of Escherichia coli, Klebsiella 
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sp_1_1_55, Enterococcus gallinarum, Actinomyces sp 
HPA0247, Shewanella putrefaciens, and Erwinia amylo-
vora, whereas there was less abundance of Eubacterium 
eligens and Lactoisacus. These results are in line with pre-
vious studies suggesting that the intestinal metagenomes in 
patients with postmenopausal BC are rich in genes that code 
for the biosynthesis of lipopolysaccharide that is a power-
ful trigger of systemic inflammation that could play a role 
in promoting neoplastic transformation [93]. In addition, it 
has been hypothesized that the microbial estrogen metabo-
lism could play a role in the association between dysbiosis 
and BC. Indeed, one study demonstrated that microbiota 
diversity—the opposite of dysbiosis—is associated with the 
production of hydroxylated metabolites of estrogens in 60 
postmenopausal women. In particular, compounds hydroxy-
lated in positions 2 and 4 have been associated with a lower 
risk of BC [94].

As for human intervention studies, no specific studies in 
postmenopausal women or with probiotic supplementation 
on BC are available so far.

In a case–control study, 306 patients with BC and 662 
healthy controls filled in a self-administered questionnaire 
to evaluate the consumption of beverages containing Lac-
tobacillus casei shirota and of soy isoflavone-containing 
products (i.e., miso-soup and tofu) [95]. The survey showed 
that habitual consumption of Lactobacillus casei shirota 
and soy isoflavones was inversely associated with early BC 

incidence. Similarly, in a case–control study, 1010 patients 
with BC and 1950 controls were interviewed about the con-
sumption of dairy products. The results showed that the 
risk of BC decreased significantly with a higher intake of 
yogurt, likely for the presence of probiotics [96]. Finally, a 
case–control study that also included a subgroup of post-
menopausal women (55–64 years) reported that the con-
sumption of fermented milk products was higher in the 
control group (n = 289) than in patients with BC (n = 133), 
suggesting a protective role in both pre- and postmenopau-
sal women [97].

As for the potential mechanisms underlying the asso-
ciation between microbiota and BC, animal models dem-
onstrated that probiotics could inhibit tumor growth and 
reduce tumor size, probably due to immunomodulatory, 
anti-angiogenesis, and anti-metastatic properties [98, 
99]. Indeed, the oral administration of milk fermented by 
Lactobacillus casei CRL 431 to tumor-harboring BALB/c 
mice produced lower rates of tumor growth, angiogen-
esis, and metastasis and higher survival rates among the 
treatment group. In addition, the cytokine profile showed 
decreased IL-6 and increased monocyte chemoattractant 
protein-1 levels, a chemotactic cytokine [43]. In a similar 
study, reduced concentrations of IL-10, IL-6, and mam-
mary glands TNF-α with clinical improvements (i.e., 
reduced tumor growth and angiogenesis) were detected 
after probiotic supplementation [99].

MENOPAUSAL DYSBIOSISOSTEOPOROSIS
BREAST
CANCER

ENDOMETRIAL
HYPERPLASIAPERIODONTITIS

OBESITY AND 
CARDIOMETABOLIC
RISK FACTORS

Calcium absorp�on

Decrease in BMD

Incidence of BC

Genitourinary symptoms

BC growth 
in animal models

Organic acids

Pathogenic bacteria

pH

Visceral obesity
Arterial Hypertension
Endotelial damage
Dyslipidemia
Hiperinsulinemia

There is s�ll no
evidence on the 
effect of probio�cs
on periodon��s in 
menopause

Fig. 1  Mechanism explaining the association between dysbiosis and menopause-related diseases
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Of note, probiotic supplementation was effective also 
on the improvement of genitourinary symptoms in women 
treated for BC as consequences of chemotherapy and estro-
gen deprivation [100].

A 2-week supplementation with four Lactobacillus spe-
cies (2 capsules/day) positively influenced the colonization 
of vaginal microbiota (evaluated by Nugent score) in 22 post-
menopausal patients with BC receiving chemotherapy [101].

Therefore, probiotic supplementation seems to have 
a potential role both in the prevention of BC and in the 
management of chemotherapy-induced side effects in BC. 
However, more clinical studies are needed to elucidate their 
efficacy and safety.

Menopausal Dysbiosis and Type 1 
Endometrial Hyperplasia

Type 1 endometrial hyperplasia is a precancerous condi-
tion characterized by a non-physiological and non-invasive 
endometrial growth, sustained by an increased estrogen/
progesterone ratio [102]. During the fertile age, the risk 
of endometrial hyperplasia is associated with intermittent 
or absent ovulation, as PCOS. After menopause, endome-
trial hyperplasia is more common in women with estrogen-
increasing conditions, such as obesity or hormone replace-
ment therapy (HRT).

Endometrial hyperplasia could be also influenced by 
vaginal microbiota [103] (Fig. 1). Menopause is known to 
increase vaginal pH—due to the lack of estrogen, thus tar-
geting microbial colonization. Interestingly, in endometrial 
carcinoma induced by type 1 endometrial hyperplasia, the 
uterine microbiota is characterized by the presence of Atopo-
bium vaginae and Porphyromonas sp. with a pH > 4.5 [104]. 
These findings raise the possibility of (1) further investi-
gating the microbiome role in the etiology or progression 
of endometrial cancer and (2) targeting specific bacterial 
strains that could favor lowering vaginal pH to reduce poten-
tially pathogenic bacteria in the urogenital tract.

Some in vitro studies have shown that Lactobacillus 
rhamnosus BPL005 reduces pH levels by producing lactic 
acid and other organic acids, thus preventing endometrial 
infections by inhibiting some microbial species (i.e., Atopo-
bium vaginae, Gardnerella vaginalis, Propionibacterium 
acnes, and Streptococcus agalactiae) [105].

However, meager evidence is available from human studies.
In a recent study, 130 healthy postmenopausal women 

suffering from menopausal symptoms were randomized to 
receive (a) 60 mg of soy isoflavones and 1 billion spores of 
Lactobacillus sporogenes or (b) calcium and vitamin D3 
for 1 year. At the end of the study, menopausal symptoms 
significantly improved in the group consuming soy isofla-
vones plus Lactobacillus sporogenes versus the other group 

(calcium plus vitamin D3). No differences in endometrial 
thickness between groups were observed [106]. This study 
suggested that lactic bacteria might improve the absorption 
of soy isoflavones through the hydrolyzation of genistin 
and daidzin into the active aglycons by glycosidases, thus 
increasing the bioavailability of soy isoflavones.

Menopausal Dysbiosis and Periodontitis

Postmenopausal women have shown an increased risk of 
xerostomia (dry mouth), tooth mobility, and periodontitis 
(infection of the gums), likely related to reduced estrogen 
levels [29]. Indeed, oral mucosa and salivary glands pre-
sent estrogen receptors and hypoestrogenemia has shown 
to activate polymorphonucleated and lymphocytes, increase 
cytokine levels, and modify the oral microbiota with an 
increase in gram-negative bacteria. In particular, some bac-
terial species such as Porphyromonas gingivalis and Tan-
nerella forsythensis have been specifically associated with 
periodontitis in postmenopausal women [107]. Moreover, a 
2-year open follow-up study in 400 postmenopausal women 
aged 50–58 years investigated the association between HRT 
and the composition of oral microbiota. After 2 years, in 
postmenopausal women on HRT (n = 200), there was a sig-
nificant reduction in the abundance of Porphyromonas gin-
givalis and Tannerella forsythensis compared to the baseline. 
Conversely, in contrast, no changes in the oral microbiota 
were observed in the control group (n = 200) not treated 
with HRT [108]. Although some bacterial species have been 
specifically associated with periodontitis in postmenopausal 
women, to date, there is no evidence on the effect of probiot-
ics in the prevention and treatment of periodontitis in this 
target group (Fig. 1). Therefore, further studies are required 
to evaluate whether probiotic supplementation could rep-
resent a useful strategy to modulate the oral microbiota in 
postmenopausal women.

Menopausal Dysbiosis and Obesity

Menopause is highly associated with obesity, and increased 
adiposity is the main risk factor for increased cardiometa-
bolic alterations in postmenopausal women [109, 110]. 
Indeed, a 4-year observational study investigated changes 
in body weight and body fat during the menopausal tran-
sition in 156 healthy perimenopausal women. The results 
showed that subcutaneous abdominal fat increased in all par-
ticipants; however, only women who enter menopause had 
a significant increase in visceral abdominal fat suggesting a 
redistribution of body fat mostly as central adiposity [111].

A recent meta-analysis of 11 longitudinal studies 
(n = 2.472 women) where participants were premenopausal 
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at baseline and postmenopausal at follow-up highlighted sig-
nificant differences in body weight and body fat distribution 
between premenopausal and postmenopausal periods. More 
in detail, as compared to baseline (premenopausal period), 
body mass index (BMI), percentage of body fat, waist 
and hip circumference, and visceral and trunk fat signifi-
cantly increase in postmenopausal women [112]. In a more 
recent prospective cohort study with a 15-year follow-up, 
menopause and aging were independently correlated with 
increased BMI in 929 women who entered menopause dur-
ing follow-up [113].

Body fat accumulation during menopause seems to be 
related to several mechanisms, including hormonal imbal-
ance, reduction of energy expenditure, sedentary life, and 
increase in food intake [28].

Animal experiments demonstrated that the murine model 
of menopause (ovariectomized rats) had increased body 
weight and visceral fat [114], potentially due to increased 
food intake [115], decreased lipolysis [116], and reduced 
energy expenditure [117]. In particular, the expression of 
uncoupling proteins (UCPs) in brown and white adipose tis-
sue could play a role in estrogen-mediated changes in body 
weight and energy expenditure. As a matter of fact, ovariec-
tomized rats have a decreased UCP1 and UCP2 expression 
in brown and white adipose tissue, respectively, which trans-
lates into reduced energy expenditure [117]. Interestingly, 
when ovariectomized Sprague–Dawley rats were treated 
with estrogen, they exhibited a reduced weight gain and 
intra-abdominal fat accumulation. Nevertheless, estrogen 
therapy has been shown to induce uterine hypertrophy in 
the mouse model that makes it unsuitable for the prevention 
of weight gain in postmenopausal women [118].

As for the relationship between obesity and micro-
biota composition, the Firmicutes/Bacteroidetes ratio 
was directly associated with BMI in both animal models 
and studies in humans [119, 120]. In particular, women 
with obesity had a higher Firmicutes/Bacteroidetes ratio 
than men and increased plasma concentration of bacterial 
lipopolysaccharide—a well-known mediator of systemic 
inflammation [121]. Furthermore, it has been shown that 
obesity might affect the metabolic activity of some micro-
bial species, including the hydrolyzation of isoflavones, 
that exhibit estrogen-like properties. As an example, a 
cross-sectional study of 355 women with overweight and 
obesity (n = 137 peri- and n = 218 postmenopausal women) 
who consumed at least 3 servings/week of soy (a source 
of isoflavones) demonstrated that women with higher BMI 
exhibited lower urinary concentrations of daidzein and its 
metabolites (equol and O-desmethylangolensin). This find-
ing suggests an association between obesity and the altera-
tion of microbiota composition and activity [122].

Overall, evidence available so far on the link between 
menopause, obesity, and microbiota composition is rather 

scarce. However, it rises some intriguing insights on novel 
strategies for body weight control tailoring microbial species 
that can metabolize estrogens and compound with estrogen-
like properties.

Menopausal Dysbiosis and Cardiometabolic 
Risk

As mentioned in the previous section, menopause-related 
central obesity is a risk factor for cardiometabolic diseases 
[28, 123]. Indeed, menopause and early hormonal depriva-
tion have been independently associated with a higher risk of 
metabolic syndrome, CVDs, stroke, heart failure, and total 
and heart disease mortality [123].

Over obesity, postmenopausal women exhibit a microbiota-
dependent production of metabolites that may increase their 
cardiometabolic risk. More in detail, a metagenomic study 
in postmenopausal women demonstrated a strict association 
between several gut microbial species (i.e., Clostridium bolt-
eae, Eubacterium ramulus, Ruminococcus torques, Cateni-
bacterium mitsuokai, Holdemanella biformis) and markers 
of insulin resistance, dyslipidemia, and inflammation, inde-
pendently from body weight [124].

Human intervention studies with probiotic supplementa-
tion in postmenopausal women have already shown a favora-
ble effect on some cardiovascular risk factors. In a 12-week 
randomized placebo-controlled trial, 81 Caucasian women 
with obesity were assigned to a low dose or a high dose of 
a probiotic containing Bifidobacterium and Lactobacillus. 
At the end of the study, high dose significantly improved 
endothelial dysfunction, systolic blood pressure, and mark-
ers of inflammation (IL-6, TNF-α) and angiogenesis (vas-
cular endothelial growth factor and thrombomodulin) [125]. 
In a similar study, high dose significantly improved body 
fat (waist circumference, fat mass, subcutaneous fat) and 
metabolic markers (uric acid, total cholesterol, triglycerides, 
low-density lipoprotein cholesterol, glucose, insulin, and 
homeostatic model assessment for insulin resistance) [126].

Several mechanisms could explain the pleiotropic effects 
of probiotic supplementation on multiple cardiometabolic 
risk factors [127, 128] (Fig. 1). Indeed, it is known that 
microbiota has a pivotal role in maintaining the integrity 
of the intestinal barrier, thus reducing bacteria transloca-
tion and, consequently, systemic inflammation. On the other 
hand, from the fermentation of polysaccharides and undi-
gested proteins, some microbial species can produce SCFA 
(namely acetate, propionate, and butyrate), which can influ-
ence several metabolic pathways. Briefly, SCFA act as a 
mediator of transcriptional regulations and post-translational 
modifications, by the inhibition of lysine and histone dea-
cetylase, thus influencing important transcription factors (in 
particular, peroxisome proliferator-activated receptor γ and 
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aryl hydrocarbon receptor). SCFA can also activate signal-
ing transduction pathways, thus activating multiple free fatty 
acid receptors.

Although further studies are needed, supplementation with 
probiotics could represent a useful and safe tool to control sev-
eral cardiometabolic risk factors in postmenopausal women.

Probiotic and Prebiotic Safety and Study 
Limitations

Human supplementation with probiotics and prebiotics 
is usually considered to be safe [129]. However, although 
probiotics and prebiotics are generally considered safe in 
healthy adults, their use has been linked to a higher risk of 
infection and/or morbidity in critically ill adults in intensive 
care units, and postoperative, hospitalized, or immunocom-
promised patients [129]. So far, few cases of bacteremia, 
sepsis, and endocarditis caused by L. rhamnosus GG or L. 
casei lactobacilli have been reported [130]. Infections with 
Bifidobacteria are considered rare. However, bacteraemias, 
sepsis, and cholangitis induced by Bacillus subtilis [131] 
and fungal sepsis caused by Saccharomyces boulardii [132] 
have been reported. Of note, the association between pro-
biotic and prebiotic use and increased risk of infection in 
immunocompromised patients needs to be further evaluated 
[133]. Overall, probiotic and prebiotic supplementation is 
considered safe in general when administered to immuno-
competent individuals.

Certainly, the currently available studies on probiotics 
and prebiotics have a number of limitations that cannot be 
underestimated when drawing conclusions on their use. For 
instance, many studies have evaluated populations that are 
too small or have considered durations of use that are too 
short. Another limitation is the lack of microbial analyses 
of feces, which could demonstrate the influence of probiotic 
bacteria on the composition of the gut microbiota. It would 
also be interesting to perform mechanistic studies (similar 
to animal models) to explain the favorable effects of the 
metabolic activity of probiotics and prebiotics.

Conclusions

Table 1 summarizes the randomized studies reported on the use 
of probiotics in postmenopausal women. Although evidence 
from human intervention studies is limited so far, probiotic 
supplementation in postmenopausal women could represent 
a feasible and safe strategy to manage the menopause-related 
disease. In particular, oral probiotic formulations—especially 
those including Lactobacillus ssp. casei, helveticus, rhamno-
sus, and reuteri—might have pleiotropic beneficial effects on 
health by:

• Promoting intestinal calcium absorption and reducing a 
further decrease in BMD in women at risk of osteoporosis 
or with osteopenia, thus potentially delaying bone damage

• Reducing the incidence of BC and by improving the geni-
tourinary symptoms associated with BC therapy

• Promoting the reduction of vaginal pH, through the pro-
duction of organic acids and the reduction of pathogenic 
bacteria which are risk factors for type 1 endometrial 
hyperplasia in in vitro models

• Improving insulin resistance, dyslipidemia and inflam-
mation, thus reducing the cardiometabolic risk of the 
postmenopausal woman

Abbreviations PCOS: Polycystic ovary syndrome; CVD: Cardiovascu-
lar disease; BC: Breast cancer; IL: Interleukin; TNF: Tumor necrosis 
factor; IFN: Interferon; SCFA: Short-chain fatty acids; BMD: Body 
mass density; HRT: Hormone replacement therapy; BMI: Body mass 
index; UCP: Uncoupling protein
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