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Abstract
Purpose of Review Cancers are a leading cause of death in humans and for many other species. Diet has often been associated 
with cancers, and the microbiome is an essential mediator between diet and cancers. Here, we review the work on cancer 
and the microbiome across species to search for broad patterns of susceptibility associated with different microbial species.
Recent Findings Some microbes, such as Helicobacter bacteria, papillomaviruses, and the carnivore-associated Fusobacteria, 
consistently induce tumorigenesis in humans and other species. Other microbes, such as the milk-associated Lactobacillus, 
consistently inhibit tumorigenesis in humans and other species.
Summary We systematically reviewed over a thousand published articles and identified links between diet, microbes, and 
cancers in several species of mammals, birds, and flies. Future work should examine a larger variety of host species to dis-
cover new model organisms for human preclinical trials, to better understand the observed variance in cancer prevalence 
across species, and to discover which microbes and diets are associated with cancers across species. Ultimately, this could 
help identify microbial and dietary interventions to diagnose, prevent, and treat cancers in humans as well as other animals.
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Introduction

Cancer is one of the world’s leading causes of death (https:// 
ourwo rldin data. org/ cancer) [1–3]. Although it is known that 
microbes and diet affect cancer incidence, there has been 

no systematic review of the work across different host spe-
cies to identify microbes and dietary factors that consistently 
contribute to cancer. Here, we fill that gap by reviewing the 
effect of diet and microbes on different species of mammals, 
birds, and flies. We begin with a brief overview of what is 
known about the human microbiome, diet, and cancer. Then, 
we discuss this information in the broader context of cancers 
across vertebrates.

Healthy Microbiome vs. Oncobiome

The gut microbiome is the entire population of microbes 
inhabiting the gut [4, 5]. Out of the ~ 100 trillion bacteria, 
viruses, archaea, fungi, and protozoa in our body, one hun-
dred billion to one trillion of these microbes per litre are 
present in the colon [6–11]. In healthy individuals, approxi-
mately 90% of our gut microbes belong to the phyla Bac-
teroidetes and Firmicutes [8, 12–14]. The remaining 10% 
are Actinobacteria, Fusobacteria, Proteobacteria, and Ver-
rucomicrobia [12, 15, 16].

The oncobiome [17], a collection of carcinogenic 
microbes, is estimated to cause cancer in 2.2 million peo-
ple every year (over 10% of the world’s cancer cases) [18]. 
An underrepresentation of species within the Escherichia, 
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Citrobacter, Shigella, Flavobacterium, Acinetobacter, and 
Chryseobacterium genera has been noted in tumour tis-
sues of patients with colorectal cancer [19]. A low relative 
abundance of Lachnospiraceae species, Bifidobacterium 
animalis, and Streptococcus thermophilus [20, 21] and a 
relatively high abundance of Bacteroides clarus, Roseburia 
intestinalis, Clostridium hathewayi [22], Fusobacterium 
nucleatum [23–25], Parvimonas micra, and Solobacterium 
moorei serve as biomarkers of colorectal cancer [26]. Infec-
tion with Helicobacter pylori bacteria positive for the CagA 
protein is associated with an increased risk of developing 
colorectal adenocarcinoma [27]. Bacteremia from Clostrid-
ium septicum increases the risk of developing colorectal can-
cer [28]. Firmicutes and Lactococcus are more abundant in 
the gut microbiota of colorectal cancerous tissues versus 
neighbouring colorectal noncancerous tissues [29]. Helico-
bacter hepaticus promotes the development of toxin- and 
virus-induced hepatocellular carcinoma [30]. Clostridium 
difficile [31, 32], Enterococcus faecalis, Bacteroides fragilis, 
Escherichia coli, Streptococcus bovis/gallolyticus [33, 34], 
Porphyromonas, Peptostreptococcus, Gemella, Mogibacte-
rium, Klebsiella [35], and Prevotella [36] are relatively more 
abundant in patients with colorectal cancer than healthy 
individuals.

The fact that some microbes within the Bacteroides 
[22, 33, 34, 37] and Bifidobacterium taxa [20, 21] can both 
protect from and increase the risk of colorectal cancer in 
humans highlights the complexity, dynamics, intraindivid-
ual, and interindividual variation of the oncobiome.

Gut microbes are also associated with other types of 
cancer, such as hepatocellular carcinoma, prostate cancer, 
breast cancer, gastric adenocarcinoma, lymphoma, and cer-
vical cancers. The intestinal bacteria Helicobacter hepaticus 
drive hepatocellular carcinoma, prostate cancer, and breast 
tumours [30]. Helicobacter pylori, hepatitis B virus, and 
human papillomaviruses drive gastric, hepatic, and cervi-
cal cancers [38]. Helicobacter pylori is also associated with 
lymphoma, prostate cancer, sarcoma, and pancreatic cancer, 
via several mechanisms including the regulation of inflam-
matory and endocrine pathways [39].

Diet‑Associated Microbes and Their Effects 
on Cancer

The interaction of gut microbes with their hosts depends on 
many aspects of the external and internal environment. Die-
tary intake [40–43], drug exposures [43–46], host genetics 
[47–50], age [51], sex [52], lifestyle [53, 54], group living 
arrangements [55–57], and contact with soil [58–60] influ-
ence the gut microbiome. Diet is a key modulator of the gut 
microbiome and host tissue [41, 43, 54, 60–63], affecting the 
development of diseases such as cancer [64–66].

Specific diets have been linked with cancer in humans 
[64–67]. The consumption of diets rich in fibre, fruits, 
yoghurts, whole grains, extra virgin olive oil, vegetables, and 
low in animal products has been associated with lower rates 
of cancer [68–73]. On the other hand, highly processed food 
[74, 75], animal fats, red meat, and low intakes of dietary 
fibre are associated with higher cancer risk [76, 77]. West-
ern diet-related microbial dysbiosis [78] also is associated 
with colorectal cancer. Diet affects a multitude of microbes 
responsible for physiological homeostasis, signalling of the 
immune system, and digesting complex polysaccharides 
[79–81]. Thus, examining the links between diet, microbi-
ome, and cancer is important for understanding cancer and 
reducing its burden on individuals and society.

Examining cell growth in response to dietary inputs 
is challenging because of the difficulty of growing gut 
microbes in a laboratory setting. There are thousands of spe-
cies of gut microbes, but only a few have been cultured in 
the lab [8, 82, 83, 84••]. From those that have been grown in 
the lab, we know the following. Plant-based diets encourage 
a relatively high abundance of Bacteroidetes-related taxo-
nomic groups [85], Lactobacillus [85], Bacillus polyfermen-
ticus [86], and Bifidobacterium [85] in vivo. Bacteroides 
spp. and Bacillus polyfermenticus inhibit the proliferation 
of human colon cancer cells [37, 86, 87], while Lactobacil-
lus and Bifidobacterium inhibit the development of colorec-
tal cancer by inhibiting gut inflammation and angiogenesis 
[84••].

The plant-digesting Propionibacterium spp. induces 
apoptosis in colorectal cancer cells [88]; Faecalibacterium 
prausnitzii protects from colon tumour development through 
their anti-inflammatory effects and production of the anti-
carcinogenic metabolite butyrate [89–92]; and Eggerthella, 
Alistipes, and Phascolarctobacterium [93] have opposing 
effects on cancer. Although Alistipes and Phascolarctobac-
terium are relatively enriched in healthy volunteers, Egg-
erthella is relatively enriched in patients with colorectal 
cancer [33]. The mucin-digesting Akkermansia muciniphila, 
Enterococcus hirae, and Bacteroides spp. inhibit tumour 
development by activating immune T-cells [94–97]. Dairy 
products also encourage the growth of Lactobacillus spe-
cies [84••, 98–100] and Bifidobacterium spp. [84••]. These 
microbes as well as Eubacterium species, Peptostreptococ-
cus strain DZ2, and Fusobacterium strain AB are associated 
with a lower risk of developing colorectal cancer [101].

Microbes inhabit the guts of all multicellular organisms 
and have coevolved with their hosts for millions of years [79, 
102–104]. Recent work has identified the gut microbiota of 
over 270 vertebrate species [40, 105••, 106–119]. Similar 
diets and/or ancestry appear to be associated with similar gut 
microbiota in mammals [120–124]. Herbivores and carni-
vores have distinct gut microbiota [125]. Firstly, herbivores 
have more diverse microbial populations than carnivores 
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[126]. In herbivores, the predominant microbial families 
are Atopobiaceae, Barnesiellaceae, Defluvitaleaceae, Fibro-
bacteraceae, Lachnospiraceae, Methanocorpusculaceae, 
Oscillospiraceae, Rikenellaceae, Spirochaetaceae, and 
Synergistaceae [127••, 128••]. In carnivores, Actinobac-
teria, Bacteroidaceae, Clostridiaceae, Enterobacteriaceae, 
Firmicutes, Fusobacteriaceae, Peptostreptococcaceae, and 
Proteobacteria are predominant [127••, 129]. The group 
of microbes associated with carnivores is more similar to a 
healthy human gut microbiome than the group of microbes 
associated with herbivores, since a healthy human gut micro-
biome consists of about 90% Bacteroidetes and Firmicutes 
[8, 12–14] and 10% Actinobacteria, Fusobacteria, Proteo-
bacteria, and Verrucomicrobia [12, 15, 16]. This is some-
what counter-intuitive because diets high in meat products 
are associated with higher cancer risk and other health prob-
lems in humans [77, 130].

Primarily herbivorous mammalian orders, such as 
Rodentia, Primates, Artiodactyla, and Marsupialia, have 
lower malignant or benign tumour prevalence than Car-
nivora [3, 131]. Also, in a pilot study across nonhuman 
vertebrates, diet was the only life history variable which 
explained some of the variance in cancer prevalence. Spe-
cifically, higher trophic levels, like apex predators, had 
higher cancer prevalence than lower trophic levels, like 
herbivores. Therefore, there is a need to understand the pos-
sible role of diet-associated microbes on cancer prevalence 
across nonhuman vertebrates.

We Systematically Review the Effects of Diet 
and Microbiome on Cancer Across Nonhuman 
Species

In this paper, we systematically review existing work on the 
relationship between diet, the microbiome, and cancer across 
nonhuman animals. Given what is known about the relation-
ship between dietary substrates, the microbiome, and cancer 
incidence in humans, we expect to find lower cancer rates 
in species with herbivorous-related microbes and higher 
cancer rates in species with carnivorous-related microbes. 
Revealing the diet-related oncobiome across the tree of life 
can help us identify model organisms possibly useful for 
human preclinical trials and explain the variance in cancer 
prevalence across species.

Methods

Review Included Keywords Relating to Diet, 
Microbes, and Cancer

We conducted a systematic review to identify all reported 
cases of the interaction between diet, microbiota, and cancer 

in species beyond humans. We used the Arizona State Uni-
versity library search engine (including, e.g. GoogleScholar, 
Mendeley, and JSTOR) to find articles with the following 
keywords: (diet* OR food* OR “trophic level*” OR her-
bivor* OR insectivor* OR carnivor* OR omnivore* OR 
eat*) AND (*gut* OR *intestin* OR digestive OR stomach 
OR colo*) AND (cancer* OR malignan* ΟR benign OR 
neoplas* OR tumo?r* OR metasta* OR dysplas*) AND 
(microb* OR bacteria OR fung* OR microorganism* OR 
infect* OR fecal) AND (species OR zoo* OR wild* OR 
host* OR animal*).

We also used the following terms in the ‘NOT’ argument 
in order to exclude irrelevant articles that appeared when 
using only the list of terms in the ‘AND’ arguments above: 
NOT (“clinical trial* in humans” OR “human clinical trial*” 
OR “mathematical model*” OR “human bod*” OR “human 
tissue*” OR “human cancer*” OR “human gut” OR “com-
puter simulation*” OR “computational model*” OR radia-
tion OR “electr* field*” OR “magnetic field*” OR “renew-
able energy” OR “physics of cancer*” OR “in vitro” OR “in 
silico” OR “light to cure cancer*” OR tribe* OR nationalit* 
OR tobacco OR smoking OR “alcohol intake” OR “develop* 
world” OR “develop* countr*” OR laser OR “societ* and 
culture*” OR workplace OR cook* OR “human lymph” 
OR “human prostate” OR “human immun*” OR “human 
breast” OR “human skin” OR “human colo*” OR “human 
trial*” OR “human myocardial” OR “human monoclonal” 
OR “human sarcoma” OR “phase 1 trial” OR “phase 2 trial” 
OR “phase 3 trial*” OR “*pregnant wom?n” OR “human 
leukemia*” OR “human melanoma*” OR “energy minimi-
zation” OR “information coding” OR “Markov model” OR 
“free energy landscape” OR superconduct* OR astrobiol-
ogy OR atavis* OR anaphylax* OR heart OR cardiovascular 
OR respiratory OR syndrome* OR mental* OR “blood dis-
ease*” OR diabet* OR Alzheimer* OR polio* OR measles 
OR “Bubonic Plague” OR stroke OR “multiple sclerosis” 
OR “Infectious mononucleosis” OR AIDS OR HIV OR 
“bronchus cancer” OR “lung cancer*” OR “breast cancer*” 
OR bronchitis OR emphysema OR asthma OR dementia OR 
ethnicity OR suicide OR biophysics OR “bone homeostasis” 
OR “common cold” OR diphtheria OR paralysis OR corona-
virus OR chickenpox OR “Huntington's disease” OR rabies 
OR dengue OR leprosy OR osteoporosis OR gonorrhoea OR 
syphilis OR “heavy metal*” OR “air pollut*” OR “genetic 
disease*” OR “world health organi?ation” OR airborne OR 
tuberculosis OR eczema OR acne OR COVID OR hemo-
philia OR thrombos?s).

Excluded Papers from Irrelevant Disciplines

We excluded papers from the disciplines of “arts & 
humanities”, “Business & Economics”, “Engineering”, 
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“Law”, “Library & Information Science”, “Physics”, “Psy-
chology”, “Social Sciences”, and “Statistics”, as well as 
reference entries, reviews, web sources, book chapters, 
books, conference proceedings, newspaper articles, gov-
ernment documents, maps, patents, audio, and videos. We 
only included articles written in English. This led to a total 
of 1,167 articles.

Included Additional Articles Through Tracing 
Citations and Performing Additional Searches

We also searched for additional articles by tracing cita-
tions backwards and forwards for key articles using stand-
ard methodology for doing so in systematic reviews [132]. 
We completed this query on the 14th of June 2021.

We then performed a separate literature search for sev-
eral key publications in the fields of comparative oncology, 
nutritional ecology, and microbiology that mention links 
between diet, microbes, and cancer in nonhumans as well 
as humans, given that comparative oncology articles with 
the word “humans” may have been excluded in our above 
keyword search.

Excluded Papers that Were Not Relevant 
to Microbes, Diet, and Cancer Across Species

We screened all the studies that resulted from these 
searches. One co-author (S.E.K.) screened 50% of the arti-
cles starting from the oldest to the newest, and another 
co-author (G.M.A.) screened the remaining 50% of articles 
starting from the newest to the oldest, using a shared docu-
ment to identify articles that had been already screened 
by the other person. If there was uncertainty about inclu-
sion of certain articles, both co-authors read those articles 
and agreed on inclusion or exclusion. Both S.E.K. and 
G.M.A. reviewed (duplicate reviewed) at least 47 articles. 
We excluded 1,532 publications with irrelevant titles or 
abstracts, those mostly focused on humans, and/or papers 
with no descriptions of direct links between diet, microbes, 
and cancer (Supplementary Table; Supplementary Figure). 
We provide the final list of 31 included articles in Table 1. 
From these articles, we extracted information about the 
standard diet of hosts in the experiments, the route of 
microbial administration to the host, the microbial species, 
whether the microbiome was experimentally added (i.e. by 
the researchers) or naturally present in the host (e.g. natu-
ral gut flora), the host species, and the resulting effects on 
cancer incidence or progression by searching for standard 
dietary information of the host organism(s) in the methods 

sections and searching for keywords, such as cancer, malig-
nan, benign, neoplas, tumo, metasta, and dysplas.

Results

We found that the majority of articles (27 out of 31 studies; 
Table 1) reporting direct associations between microbes and 
cancer were conducted in murine model organisms (e.g. 
mice). The remaining four studies were in dogs, cats, flies, 
and chickens. The types of tumours studied in these organ-
isms were mostly associated with gastrointestinal tissues 
(colon, colorectal, midgut, rectum, antrum, liver, gastric, 
intestine) (~ 61%, i.e. 19 out of 31 studies). Fewer stud-
ies examined the effect of microbes on tumourigenesis in 
breast tissue (~ 19%, i.e. 6 out of 31 studies), the lung (1 
out of 31 studies), bladder (1 out of 31 studies), multiple 
sites (1 out of 31 studies), brain (1 out of 31 studies), and 
skin or mucosa (2 out of 31 studies). Although we did 
not set out to focus our review on experimentally induced 
microbiomes, 83.8% of the studies (26 out of 31 studies) 
that ended up being included used experimentally induced 
microbiomes. The majority of microbes in Table 1 were 
administered orally to the hosts (20 out of 31 studies). In 
a few studies, hosts received microbes via subcutaneous 
injection [133] or aerosolisation [134]; in two studies, the 
microbes being studied were naturally present in the hosts 
[135, 136] (Table 1).

Cancer‑Associated Microbes Are Found Across 
Several Nonhuman Species

We discovered a wide range of microbes that were consist-
ently associated with inhibition and/or induction of cancer 
across nonhuman species. We identified several patterns 
in the way microbes affect cancer in seven different host 
species (Table 1), including fruit flies, chickens, mice, rats, 
gerbils, cats, and dogs. In all studies in Table 1 that admin-
istered Lactobacilli species alone, the researchers observed 
an inhibition of cancer, inhibition of tumour growth, or a 
reduction in tumour size in breast, lung, colon, and bladder 
tissues of mice and rats. On the other hand, in all studies 
in Table 1 where Helicobacter was present, they consist-
ently saw induction of carcinogenesis in mice [137], tumour 
growth in gerbils [138], and overall dysplasia in cats [139]. 
Some microbes, such as Lactobacilli and Clostridiales, are 
associated with inhibition of cancer when they are adminis-
tered as individual species, but when they are administered 
as part of a community of various microbial species, the 
overall effects on cancer are sometimes positive and other 
times negative (Table 1).
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Lactobacilli Bacteria Are Protective Against Cancer 
in Many Species

Lactobacillus is a microbe that is beneficial to many host 
species, as it protects from colorectal cancer in humans 
[84••, 98–100], as well as breast, lung, colon, and bladder 
cancer in mice and rats (Table 1). Lactobacilli provide can-
cer protection by inhibiting cell proliferation, inflammation 
and angiogenesis, inactivating carcinogenic compounds, and 
inducing apoptosis [84••, 99, 100].

Some Microbes Have Cancer‑Promoting Effects 
Across Species

Papillomaviruses have cancer-inducing effects in both 
humans [38] and dogs (Table  1). They induce skin or 
mucosal malignancies by integrating their genome into the 
host cells [140], and then, their proteins dysregulate path-
ways of host cell division and DNA damage/stress response 
[141].

Bacteroides fragilis and Fusobacterium nucleatum are 
associated with cancer in both humans [23–25, 33, 34] 
and mice (Table 1). B. fragilis induces malignancies by 
producing reactive oxygen species and toxins that damage 
the host DNA and degrade the cell-to-cell adhesion protein 
E-cadherin, respectively [142–144]. F. nucleatum induces 
tumourigenesis by entering host cells and promoting their 
own and the host cells’ proliferation, as well as producing 
toxins that alter the adhesion and epigenetics of host cells 
[64, 133, 144–146].

Some Microbial Species Have Context‑Dependent 
Effects on Cancer

Through our systematic review, we discovered that some 
microbes have cancer protective effects in some contexts and 
cancer-promoting effects in others. This makes it difficult 
to draw broad conclusions about the nature of the oncobi-
ome, just as it is difficult to make broad claims about the gut 
microbiome across species more generally [120, 124, 127••, 
147•]. For example, B. fragilis can have harmful effects 
[142, 148] or beneficial effects (reducing colitis and having 
an indirect effect of reducing cancer) [149] depending on 
the diet of the host. When B. fragilis has cancer-protective 
effects, this may be due the result of anti-inflammatory prop-
erties of soluble fibres in the host’s diet [150].

In other experiments, Clostridium species have paradoxi-
cal effects on cancer: promoting gastrointestinal neoplasia in 
INS-GAS mice on a FVB/N background [151], but inhibit-
ing proliferation of colorectal cancer cells in C57BL/6 mice 
[152] and inhibiting melanoma in germ-free C57BL/6 mice Ta
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[153]. Bacteroides species also have context-dependent 
effects: promoting gastrointestinal neoplasia in INS-GAS 
mice on a FVB/N background [151], but inhibiting mel-
anoma in germ-free C57BL/6 mice [153] (Table 1). The 
different effects of Clostridium and Bacteroides species on 
cancer could be a result of the experiments using different 
strains of mice with different starting microbiomes or a num-
ber of other factors including the hosts’ diet in the experi-
ments (e.g. autoclaved chow diet [153]; diets not reported in 
the studies [151, 152]), sex, and age.

Many Studies Did Not Report the Diets of Animal 
Subjects

Unfortunately, only 15 of 31 studies in Table 1 report the 
standard diet that hosts were exposed to. Out of these cases, 
a standard/balanced rodent or cat diet was most often used, 
but 13 cases do not mention the company from which this 
food was purchased or the exact ingredients and/or nutri-
ents of this food (Table 1). Even when studies report that 
food was supplied by a specific company, such as Harlan 
[154], we do not know whether the food supplied by these 
companies was specifically designed or custom-made for the 
study [154]. We only know the ingredients of the animals’ 
diets in two studies. The irradiated Picolab 20 5053 rodent 
diet [155] mainly consists of at least 20% crude protein and 
4.5% crude fat, and not more than 6% of crude fibre and 7% 
ash (Picolab). The LabDiet 5K67 rodent diet [153] mainly 
consists of at least 18% crude protein and 6% crude fat, and 
not more than 5% crude fibre and 8% ash (LabDiet JL). In 
some cases, the diet was autoclaved [153] and mixed with 
antioxidant oils [154], or antibiotics were given to the host 
prior to infection [153, 156], in order to estimate the direct 
effect of the newly administered microbes on cancer in the 
host.

Discussion

The idea that food affects health is an ancient idea. This 
was stated by Hipocrates in ancient Greece as “Let food be 
thy medicine and medicine be thy food” and is also clear in 
the “homology of medicine and food” in Chinese medicine 
[157]. Although this idea is ancient, it has important impli-
cations for modern medicine, which often neglects the criti-
cal role of diet in shaping the overall health and well-being 
[158–160]. Dietary interventions [161, 162] are a promising 
tool to prevent cancers across species given that they are 
safe, easily modifiable, readily accessible, and economical 
[163, 164].

In this review, we have identified microbial species that 
have a cancer-promoting and/or cancer-inhibiting effect 
across several hosts (Table 1). Lactobacilli are consistently 

associated with cancer inhibition (when studies did not 
include other microbes), and Helicobacter bacteria are con-
sistently associated with cancer, across host species. How-
ever, in the presence of other microbes, Lactobacilli and 
Clostridiales were sometimes associated with cancer and 
other times associated with inhibition of cancer (Table 1). 
Some experiments provide dietary information, but others do 
not, thus highlighting the need for further systematic studies 
on the direct links between diet, microbes, and cancer across 
species that take into account the many factors that can influ-
ence the microbiome.

Carnivorous Diets May Be Associated 
with Cancer‑Inducing Microbes

Comparative oncology studies show that within mammals, 
the order Carnivora has higher benign or malignant tumour 
prevalence than other primarily herbivorous mammalian 
orders [3, 131]. Also, our group has been investigating 
the cancer prevalence of species at different trophic levels, 
including carnivores, herbivores, insectivores, and others. 
Our preliminary results across vertebrate species show that 
lower trophic levels (such as herbivores) have lower cancer 
prevalence than higher trophic levels (such as secondary car-
nivores) (Kapsetaki et al. in prep). A possible explanation 
for this higher cancer prevalence in higher trophic levels (i.e. 
carnivores) may be their diet-associated oncobiome, includ-
ing their lower microbial diversity than herbivores [126]. 
There are other distinct features of carnivore microbes that 
might predispose them to cancer. For example, Fusobacte-
ria and Peptostreptococcus bacteria have tumour-inducing 
properties in both humans [35] and mice (Table 1) and are 
most abundant in carnivorous species [127••, 129]. Simi-
larly, humans and macaques fed a cancer-associated Western 
diet had lower microbial diversity compared with humans 
who were fed fermented foods or macaques who were fed 
Mediterranean diet [72, 165–167].

Litter Size Might Affect Cancer Susceptibility 
via the Microbiome

The association of individual Lactobacilli species with can-
cer inhibition (Table 1) could be one of the reasons behind 
the observation of higher cancer prevalence in mammals of 
larger litter size [168••]. It is reasonable to speculate that 
mammals with larger litter size likely have lower parental 
investment in general because they are characterised by a 
faster life history strategy [169]. Mammalian species with 
larger litter size often have shorter gestation length [170], 
an indicator of parental investment. Although we were not 
able to find reports of shorter lactation length or less milk 
being transferred to each offspring, it is possible that species 
with larger litter sizes are transferring less milk and therefore 
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cultivate fewer Lactobacillus bacteria in their offspring. This 
is one hypothesis that could be tested for why higher cancer 
prevalence has been observed in species of larger litter size 
[168••]. Future work should test whether there is an associa-
tion between litter size and Lactobacillus prevalence.

Helicobacter Bacteria Have Cancer‑Promoting 
Effects and Could Be a Transmissible Carcinogen

Helicobacter bacteria are often linked with the development 
of cancers in humans [27, 30, 171], as well as carcinogenesis 
in mice [137], tumour growth in gerbils [138], and over-
all dysplasia in cats [139] (Table 1). Helicobacter bacteria 
secrete VacA toxins which create pores in host cells and 
a cascade of intracellular events leading to host cell apop-
tosis [172]. Helicobacter bacteria also attach to and align 
their growth with host cells; this allows Helicobacter to pass 
CagA toxins inside the host cells [64, 173, 174]. CagA tox-
ins rewire the host cells’ gene expression, induce inflamma-
tion and oxidative stress, and alter host cell polarity, which 
are associated with a high risk of developing gastric and 
colorectal cancers [27, 173, 174].

The fact that Helicobacter bacteria induce cancers in 
mice, gerbils, cats (Table 1), and humans [30, 171] raises 
the possibility that Helicobacter could be a transmissible 
agent that increases the risk of cancer across species from 
one trophic level to the next when one species (e.g. a cat) 
consumes another (e.g. a mouse). However, further research 
is necessary to test this hypothesis.

Limitations and Future Directions

The microbiome is a complex network and there are still 
many unknowns. The composition of the gut microbiome 
can vary interindividually [175], with age [51], by sex [52, 
176], and even between animals sampled from the wild 
or in captivity [177–180]. It will be important to control 
for species age and sex when drawing links between diet, 
microbes, and cancer across species. In addition, there are 
many microbes with contradictory effects on cancer in dif-
ferent studies [142, 148, 149, 151–153]. Identifying the 
mechanistic links between these microbes and the hosts’ 
respective diets will be an important next step.

Studying Underlying Mechanisms Is Key to Establishing 
Causal Relationships Among Diet, Microbes, and Cancer

A causal link between microbes and tumour proliferation 
has been identified in several microbes such as F. nucleatum, 
enterotoxic Bacteroides fragilis, E. faecalis, Peptostrepto-
coccus anaerobius, Helicobacter pylori, and human papillo-
maviruses [38, 163, 181]. However, whether the correlation, 

for example, between Proteobacteria, Desulfovibrio, Erysip-
elotrichacea, and Fusobacterium abundance and colorectal 
cancer in rats is causal is not entirely clear [136]. Proteo-
bacteria interact with intestinal cells via type III bacterial 
secretion systems [182]. Desulfovibrio produces hydrogen 
sulphide which can lead to DNA damage [183, 184]. Fuso-
bacterium nucleatum promotes the expression of mucin and 
the proinflammatory cytokine tumour necrosis factor alpha 
[185] tumourigenesis by entering host cells, altering their 
proliferation and attachment to neighbouring cells [64, 133, 
144–146]. However, in the majority of microbial-cancer 
associations (e.g. Table 1), it is unknown whether the rela-
tionship is causal, one-/bi-directional, or mere correlation 
[38, 162, 186].

Studying the mechanisms that underlie the relationships 
among diet, microbes, and cancer is necessary to better 
understand the causal relationships among these variables. 
For example, mechanisms like resource availability/limi-
tation in the gut, inflammation, the production of growth 
factors, and even cell signalling between microbes and can-
cerous/precancerous cells [187–189] are all potential mecha-
nisms that might underlie these links.

Most Microbial Species in the Gut Microbiome Are Still 
Unknown

Another limitation that must be acknowledged is that the 
vast majority of species in the microbiome are still unknown. 
Even though advances in metagenomics have enabled the 
sequencing of 806 microbial genomes across 124 humans 
[15], and 5,000 microbial genomes across approximately 
180 wild and captive species [126], there is still insufficient 
genome coverage for many microbial genomes that are 
underrepresented in the gut microbiome. Further, it is dif-
ficult to reconstruct repetitive and low complexity genomic 
regions with short-read based methodological approaches 
[126, 190], and 99% of species in the gut microbiome still 
cannot be cultured [84••]. Researchers estimate that there 
are trillions of microbial species that are yet to be observed 
[10].

Host Ecology and Physiology Influences the Composition 
of the Microbiome

The ecology and physiology of the hosts [191–194] may 
also influence the taxonomic abundance and diversity of 
their microbiome [56, 195–200]. Environments with scarce 
amounts of plants and high abundance of prey animals 
favour the evolution of carnivory over herbivory [201]. 
Therefore, the distinct microbiome of a habitat may affect 
an animals’ microbiome. Also, there may be unique micro-
bial niches in carnivores versus herbivores as a result of 
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phenotypic differences in how these animals eat and digest 
food. Researchers have suggested that canine teeth, large 
mouth openings, short digestive tracts, lower pH in the 
stomach, sharp claws, and nocturnal living [202–205] may 
create favourable niches for pathogenic microbes, whereas 
wide flat teeth, small mouth openings, larger and longer 
digestive tracts, higher pH in the stomach, flattened nails 
or blunt hooves, and diurnal living [202, 205–212] might 
create favourable niches for microbes that have more posi-
tive effects on health. Future work can and should explore 
whether these phenotypes influence the viability of cancer-
promoting and cancer-inhibiting microbes.

Microbiome and Diet Interventions Could Reduce 
the Burden of Cancer Across Species

By utilising what we know about the role of the microbiome, 
diet, and cancer, it should be possible to better diagnose, pre-
vent, and treat cancers across species. Plant-based and dairy 
diets are associated with a decreased cancer risk [213]. Both 
of these diets encourage the growth of Lactobacillus spe-
cies [84••, 85, 98–100]. Therefore, the association of Lac-
tobacilli with cancer inhibition across several host species 
may be tightly linked with and able to be manipulated by 
diet. Interventions such as dietary therapies, dietary-induced 
microbial therapies, probiotics and prebiotics, microbial 
biomarkers, and personalised medicine, have proven to be 
effective for decades [157, 214–216]. Future studies should 
test diet- and microbial-based therapies across species to 
help reduce the burden of cancer in nonhuman animals and 
can also help discover new treatments that could be used in 
humans.

Zoos Provide an Opportunity for Future Research

Most of the studies summarised in Table 1 use mice and 
rats. Although mice and rats are widely understood and 
well-studied in the lab, there are limitations to studies using 
them exclusively. Differences in cancer phenotype, tumour 
origins, and tumour karyotypes between humans and mice 
highlight some of the many phylogenetic complexities of 
trying to understand global patterns of comparative oncol-
ogy and their links with diet and microbes [217]. Broaden-
ing this range of hosts to many other species is a key step 
towards untangling the complex phylogenetic relationships 
between diet, microbes, and cancer across species.

Most studies in Table 1 are experimental, meaning the 
microbes were experimentally administered to the host 
rather than naturally observed in the microbiome. This 
introduces potential bias because current knowledge may not 
correlate with naturally occurring microbiomes. Although 
these studies are good for observing correlations between 

certain microbes and cancer, they do not look for correla-
tions between common diets and cancer progression. In 
order to overcome the limitations of experimental mouse 
models, the next step would involve quantifying the effect of 
diet and microbes on cancer across species in captive envi-
ronments such as zoos. Since zoos regularly track the diet of 
their animals, it would be simpler to test for links between 
specific diets and microbes via metagenomic analyses of fae-
cal microbiomes. These data could then be compared with 
cancer data from already existing cancer records in the zoos 
[168••, 218] to identify how diet changes the microbiome 
and reduces cancer incidence, particularly in species prone 
to cancer.

Conclusions

We discovered several broad patterns in this review of diet, 
microbiome, and cancer. Some microbes, such as Helicobac-
ter bacteria, papillomaviruses, and the carnivore-associated 
Fusobacteria, consistently induce tumourigenesis in humans 
and other species, and some microbes, such as the milk-
associated Lactobacillus, consistently inhibit tumourigenesis 
in humans and other species (Table 1).

Identifying the diet-related oncobiome across the tree of 
life may enable us to use new model organisms for preclinical 
trials, better understand cancer across species, and develop 
universal diagnostic, prevention, and treatment regimes to 
fight cancer and improve animal welfare. The advent of high-
throughput sequencing and multi-institutional collaborations 
between evolutionary biologists, veterinary nutritionists, and 
pathologists makes these goals entirely possible.
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