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Abstract Systems epidemiology applied to the field of nutri-
tion has potential to provide new insight into underlying mech-
anisms and ways to study the health effects of specific foods
more comprehensively. Human intervention and population-
based studies have identified i) common genetic factors asso-
ciated with several nutrition-related traits and ii) dietary factors
altering the expression of genes and levels of proteins and
metabolites related to inflammation, lipid metabolism, and/or
gut microbial metabolism, results of high relevance to meta-
bolic disease. System-level tools applied type 2 diabetes and
related conditions have revealed new pathways that are poten-
tially modified by diet and thus offer additional opportunities
for nutritional investigations. Moving forward, harnessing the
resources of existing large, prospective studies within which
biological samples have been archived and diet and lifestyle
have been measured repeatedly within individuals will enable
systems-level data to be integrated, the outcome of which will
be improved personalized optimal nutrition for prevention and
treatment of disease.
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Introduction

Traditional epidemiology has made important contributions to
the identification of many key lifestyle and environmental risk
factors for chronic disease. Technical advances that now allow

high-throughput measurements of genomic, transcriptomic, pro-
teomic, and metabolomic traits in combination with more so-
phisticated bioinformatics and statistical methods provide epi-
demiologists an unprecedented opportunity to unlock the full
potential of their research approach. “Systems Epidemiology”
couples traditional epidemiologic methods with modern high-
throughput technologies to enhance biological understanding of
metabolic pathways in humans [1–4]. Nutrition research is a
potentially ideal field for the application of systems approaches
[5]. The dietary record and food frequency questionnaire have
been instrumental to developing knowledge of the role diet plays
in population health. However, these tools along with other
aspects of epidemiological methods have well-known limita-
tions that impede further advancements in the human nutrition
field. Foods are mixtures of known and unknown constituents,
and separating as well as characterizing the effects each in the
context of individual intrinsic variances is an ongoing challenge
in classical nutritional epidemiology.

The purpose of this review is to provide an overview of
systems epidemiologywith application to nutrition.We discuss
progress in applying system-level tools to the study of both
type 2 diabetes (T2D) and nutrition. Results of each highlight
important connections between them and underscore the great
potential for systems epidemiology in advancing nutrition
research for disease prevention.

System Level I: Human Genome

Enthusiasm for systems epidemiology is fueled, in part, by the
marked recent successes in human genomics: the study of an
individual’s entire gene set, including gene-gene and gene-
environment interactions. Genome-wide association studies
(GWAS) of T2D have contributed to the identification of
approximately 65 susceptibility loci [6••], which is an astound-
ing improvement upon the small handful of loci described pre-
GWAS [7]. Genome-wide analytical approaches also have
proven successful for a number of important nutrition-related
traits (Table 1). For example, single nucleotide polymorphisms
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Table 1 Genome-wide significant loci associated with nutrition-related traits1

Trait Locus2 Genes in region Ref

Plasma amino acids

Alanine, isoleucine 2p24 GCKR, SNX17, PMG1, NRBP,FNDC4 [135]
Glutamine 10q24 HOGA1, MORN4

12q13 TIMELESS, MIP, SPRYD4, GLS2, BAZ2A

Histidine 4q35 CYP4V2, KLKB1, F11
Phenylalanine 5q33-q35 F12, GRK6

Tyrosine 16q22 CHST4, TAT, PHLPPL, MARVELD3, AP1G,
SNORD71, ZNF821, PKD1L3

Valine 2p15-p13 SLC1A4

4q22 PPM1K, HERC6, ABCG2

Betaine 12p13.33 SLC6A12, SLC6A13 [136]
5q14.1 BHMT, BHMT2, DMGDH

Glycine 2q34 CPS1
Serine 1p12 PHGDH

Plasma fatty acids

Linoleic acid, omega-3 FA 11q12-q13 MYRF, FEN1, FADS(1–3), DAGLA, BEST, FTH1 [135]
Linoleic acid omega-6 & omega-7 FA 11q23 BUD13, ZNF259, APOA5, APOA4

1p31.3 DOCK7, ANGPTL3

Linoleic acid, omega-6 & omega-7 FA,
omega-9 & saturated FA, other PUFA than linoleic

15q21-q23 LIPC, ADAM10

Omega-9 & saturated FA 2p24 GCKR, SNX17, PMG1, NRBP1, FNDC4,

Other PUFA than linoleic 11q12 CD6, CD5, VPS37C, PGA3

Plasma vitamins & minerals

Beta-carotene 16q23.2 PKD1L2, BCMO1 [137]

Calcium 3q21.1 CASR,CSTA,WDR5B,KPNA1,CCDC58 [138, 139]

Carbohydrate-deficient transferrin (and %), transferrin,
total iron binding capacity

3q22.1 TF, SRPRB [140–143]

Carbohydrate-deficient transferrin (%) 1p31 PGM1,RPL19P3 [140]

Erythrocyte mean cell volume, iron-soluble transferrin
receptor

22q12.3 TMPRSS6 [143–146]

Erythrocyte mean cell volume, ferritin, iron, soluble
transferrin receptor, transferrin, transferrin saturation,
unsaturated iron binding capacity, total iron
binding capacity

6p21.3 HFE [140–144, 146]

Ferritin 6p22.2 SLC17A1 [143]

Soluble transferrin receptor 11q23 BUD13, ZNF259, APOA5, APOA4 [146]
11q23.3 PCSK7

Transferrin saturation 6p22.1 HIST1H2BJ, VN1R13P, VN1R11P [142]

Magnesium 11p14.1 DCDC5, MPPED2 [147]
12q21.33 ATP2B1, MRPL2P1

1q22 MUC1

3q26.2 MDS1, MECOM

4q21.1 SHROOM3

9q21.13 TRPM6

Retinol 10q23.33 RBP4, FFAR4 [148]
18q12.1 TTR,B4GALT6

Vitamin B12 11q12.1 MS4A3 [149–151]
13q32.3 CLYBL

19p13.3 FUT6

19q13.33 FUT2

5q32 ASS1P10, PRELID2
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(SNPs) have been associated with variation in plasma levels of
iron and omega-3 fatty acids and consumption of dietary pro-
tein, alcohol, and coffee, all of which are dietary factors impli-
cated in T2D [8–13]. Knowledge of the genetic determinants of
diet response or behavior may provide insight into underlying
mechanisms and ways to study the potential health effects of
diet more comprehensively by using genetic determinants as
instrumental variables or by taking into consideration gene-diet
interactions. Other products of the GWAS era, besides the
newly identified variants, such as consortium and innovative
statistical design, have greatly advanced the way such investi-
gations are currently being conducted. Recent work aiming to
confirm or refute causal effects and/or gene-environment inter-
actions has involved cohort collections that are far larger than
those utilized in the pre-GWAS era; this work has been facil-
itated by advanced meta-analysis techniques to combine data,
and/or the availability of extensive replication materials [14,
15•, 16, 17]. The majority of published GWAS have reported
on disease-associated loci, but more recently GWAS has been
extended to examine variation in nutrient-response or behavior.
Adverse effects of several established T2D-associated loci may
be attenuated by adopting healthy lifestyle behaviors, such as
high physical activity, whereas low physical activity and a
Western dietary pattern have been found to augment genetic
risk [15•]. In a recent study among three independent cohorts of
adults predisposed to obesity by virtue of a high genetic score
of established obesity risk loci, the genetic effects were signif-
icantly more pronounced in those who consumed high

quantities of sugar-sweetened beverages compared with those
who did not [18••].

The currently known susceptibility loci for T2D explain only
5-10 % of the previously estimated heritability of the disease
[6••] and add only modestly to traditional disease risk factors in
prediction models [19•]. Likewise, SNPs associated with die-
tary behaviors explain very little of the trait variance and/or
heritability [20]. This partly reflects the complexity of behaviors
and metabolic disease, which is further compounded by mea-
surement error ascribed to their assessment within- and between
populations [21]. Knowledge gleaned by other system-level
data may greatly facilitate continued progress in these areas of
human genomics.

System Level II: Human Transcriptome

The transcriptome is the complete set of messenger RNA
molecules in a cell or a tissue at a given time. Unlike the
genome, which changes very little during a person’s lifetime,
the transcriptome (as well as the proteome and metabolome)
can vary by developmental stage and environment [22].
Because transcript quantification requires sufficient volumes
of high-quality homogenous cellular material, human studies
often are restricted to biopsies from accessible tissues, such as
subcutaneous adipose tissue, skeletal muscle, and peripheral
blood mononuclear cells [23]. Blood is the most feasibly col-
lected in a population setting, but its use in gene expression

Table 1 (continued)

Trait Locus2 Genes in region Ref

Vitamin B6 1p36.12 ALPL, NBPF3 [150]

Vitamin D (and insufficiency) 11p15.2 CYP2R1 [152–154]
11q13.4 NADSYN1,DHCR7

4q13.3 GC

Alpha-tocopherol, vitamin E response to vitamin E
supplementation

11q23 BUD13, ZNF259, APOA5, APOA4 [137, 155, 156]

Vitamin E 12q24.31 SCARB1 [156]
19p13.12 CYP4F2

Dietary behaviors

Habitual alcohol consumption 12q24.11-13 CCDC63, MYL2, ALDH2, BRAP, CUX2, [157–160]
7q11.22 AUTS2

Habitual caffeine consumption, habitual coffee
consumption

7p21 AHR [20, 161, 162]
15q24.1 LMAN1L, EDC3, CYP1A2, CYP1A1, CSK

Habitual protein consumption 19q13.33 FGF21, FUT1, FUT2, IZUMO1, RASIP1 [163]

1 Data were obtained by queries of the NHGRI catalogue of GWAS [164] (www.genome.gov/gwastudies, accessed June 2013) with additional data
reported in supplementary material published by Kettunen et al. [135]. For the latter, we restricted tabulations to SNP-metabolite associations although
several SNP-metabolite ratios also were identified
2 For most traits multiple significant SNPs have been identified at each locus. Interested readers should review the study reference provided for a list of
SNPs and study-level details
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assumes that it provides general information on transcription in
different cells and tissues, including those more relevant for the
phenotype or disease of interest. GWexpression studies of T2D
have been predominately small, cross-sectional by design, and
without replication [24]. Only recently has the approach been
applied to incident T2D: a GW screen of miRNAs in the
Bruneck cohort revealed a plasma miRNA signature for inci-
dent T2D that includes loss of endothelial miR-126 [25]. The
latter plays a pivotal role in maintaining endothelial homeosta-
sis and vascular integrity [26].

Numerous human intervention studies have used tran-
scriptomics to characterize molecular response to dietary factors
such as dietary fatty acids [27–31], carbohydrates [32], probiotics
[33], folic acid [34], olive oil [27, 35], creatinemonohydrate [36],
vitamin E and selenium [37], CoQ10 [38], soy isoflavones [39],
and different diets [40–44]. Most reveal significant yet subtle
changes in transcript levels. Convincing human evidence sug-
gests that many of the biological effects of unsaturated fatty
acids are mediated through modulation of gene transcription by
regulating the activity of transcription factors, such as peroxi-
some proliferator-activated receptors, retinoid X receptor, liver
X receptor, and sterol regulatory binding proteins [23]. In
light of emerging data showing gut flora compositions (or
“microbiota”) differ between healthy individuals and diabetics
or obese [45–47], results from gene expression measures of
duodenal mucosa following supplementation of Lactobacillus
GG are encouraging. Lactobacillus GG, also found in yogurt
and other fermented foods, altered the expression of genes
involved in immune response and inflammation, apoptosis, cell
growth and cell differentiation, cell–cell signaling, cell adhe-
sion, and signal transcription, and transduction [33].

Altered transcript levels in response to diet can inform
mechanisms of action but whether such changes observed in
nutritional intervention studies have relevance to a population
setting and/or are large enough to have any impact on disease
development is an open question. Little is known about whether
or how specific dietary factors induce changes in gene expres-
sion of disease target tissue. To acquire such knowledge our
only feasible option might be to complement human data with
that obtained from experimental models. Genome-wide expres-
sion profiles collected from mouse liver and adipose tissue are
notably enriched for altered transcripts of immunity-related
genes when their high fat diets are supplemented with coffee
[48]. Coffee suppressed expression of liver cytokine interleukin
(IL)-1β and MCP-1 gene expression in white adipose tissue
[48]. Given the role inflammation may have in development of
T2D [49], these observations suggest a relevant mechanism by
which coffee might reduces risk of the disease in humans.
Nearly all GW scale studies concerning diet-induced changes
in gene expression of pancreatic β-cells, a key target tissue for
T2D, originate from rodent animal models or cultured cell lines
[50•]. While offering insight to tissue-specific gene-expression
not easily obtained from humans, experimental studies are not

without limitations and will warrant caution when translating to
humans.

System Level III: Human Proteome

Transcript levels do not always correspond to protein levels,
stressing the need to study proteins directly. The proteome may
contain over a million structurally different proteins performing
distinct functions in an individual and the goal of proteomics is
to simultaneously quantify these proteins in biological samples
[51, 52]. Currently, no single analytical platform is able to
capture the full spectrum of proteins; those present at low
concentrations and abundance are especially difficult to detect
and characterize [53]. Metabolic diseases, such as diabetes,
involve various affected tissue and because all are in contact
with blood, tissue-specific proteins with diagnostic potential
might be recovered in the circulation [52]. Blood is therefore an
attractive biospecimen for protein profiling in population set-
tings but also is the most complex to study [52]. Many indi-
vidual serum proteins, such as interleukin-6, resistan, leptin,
and adiponectin, have been shown to vary between healthy and
insulin-resistant (IR) or diabetic individuals [54–57], lending
some support to the potential for global protein profiling.
Indeed, the few small-scale studies that have applied proteo-
mics have revealed potentially novel biomarkers of IR or T2D
[58]. These include blood circulating flotillin-1, arginase,
syntaxin 1C, haptoglobin, and complement C3 [59, 60]; mito-
chondrial, cytoskeletal, proteasome, and chaperone proteins in
skeletal muscle [61]; and structural and stress/unfolded protein
response proteins in subcutaneous adipose tissue [62].
Proteomics applied to human nutritional intervention studies
have ranged from 1 to 12 weeks in duration and have, for
example, tested soy isoflavones [63], flaxseed [64], fish oil
[65], folic acid [66], and anti-inflammatory mixtures [67].
Serum levels of inflammatory and lipid proteins, such as
APOA1, zinc-a-2-glycoprotein, haptoglobin precursor, amy-
loid P component, and hemopexin, are down-regulated by
6 weeks of fish oil compared with sunflower oil supplementa-
tion [65]. Following 8 weeks of 25 mg of isoflavone supple-
mentation, blood cell levels of proteins promoting fibrinolysis
(i.e., alpha-enolase) were higher, whereas those mediating ad-
hesion, migration, and proliferation of vascular smooth muscle
cells (i.e., galectin-1) were lower [63].

Thus far, proteomics has had limited application to popula-
tion studies of human metabolic disease or nutrition. To our
knowledge, no prospective proteomic studies of T2D have
been conducted, and the few population-based studies of nu-
tritional factors have been small and have all targeted <60
proteins [68–71], most of which are from the inflammatory
and/or oxidative stress classes of proteins. However, with
continued advancements in the field, such as high-throughput
tools for the fractionation of biological samples and growing
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databases housing tissue-specific protein reference maps, this
pattern promises to change in the near future.

Systems Level IV: Human Metabolome

Metabolomics involves the comprehensive analysis of all
measurable metabolite concentrations under a given set of
conditions [72, 73]. These metabolites are the final products
of preceding “omic” processes and their interaction with intrin-
sic and extrinsic factors [72, 73]. Thus far, more than 37,000
unique metabolites have been identified in human specimens
[74, 75] (http://www.hmdb.ca, accessed June 2013). Similar to
the proteome, no single analytical platform captures the full
spectrum of metabolites. Analyses can be conducted in an
untargeted manner, typically optimized for broad coverage of
the metabolome to enhance opportunities of discovering
discriminatory features of a disease/trait, or in a targeted man-
ner, profiling only a defined set of known metabolites to enable
improved sensitivity and efficiency [76]. Metabolomics is in-
creasingly applied in the clinical and population setting.
Detailed technological and conceptual challenges as well as
progress in the broader field have been discussed elsewhere
[77•].

Recent metabolomic studies of T2D have considerably
improved upon the earlier cross-sectional reports [78, 79].
Among adult population-based studies involving up to 800
incident cases, targeted metabolite profiling has identified an
array of novel metabolite classes linked to T2D onset, such as
short- and medium-chain acylcarnitines, the specific lipid
classes of sphingomyelins (SMs), lysophosphatidylcholines,
phosphatidylcholines (PCs), and lysophosphatidylethanola-
mines, and branched-chain amino acids (BCAAs) [80, 81,
82••, 83, 84]. Some of these classes also have been linked to
obesity and other T2D-related traits [85–90]. Patterns linked
with T2D among adults have not always been replicated in
younger populations [91, 92], supporting the need for longi-
tudinal monitoring to enable trajectory analysis of metabolic
responses. Further work is needed to determine whether these
metabolites are elevated because of an individual’s genetic or
diet characteristics, and/or the actions of gut microbes [93].
Interestingly, high dietary protein intake is associated with
T2D and higher plasma levels of BCAAs [8, 94]. PCs occur
in animal and plant tissues and are therefore present in the diet
(e.g., eggs and soy beans). Recent work suggests these phos-
pholipids are further metabolized by intestinal microbiota,
producing the proatherosclerotic metabolite trimethylamine-
N-oxide [95, 96••, 97, 98].

Metabolomics has been used to characterize the complex
human metabolic effects of specific foods, nutrients, and dietary
patterns in both the clinical and population setting [99, 100,
101•, 102–107]. Intervention studies of coffee [108–111], tea
[112, 113], cocoa [114, 115], nuts [116], dietary fiber [117],

vitamins and selected nutraceuticals [67, 118], for example, have
incorporated either targeted or untargeted metabolite profiling.
Earlier reports have favored the presentation of exogenously
derived metabolites. Confirmed metabolite markers of coffee
exposure, for example, include mainly methylxanthines and
reduced, sulfated, and methylated forms of hydroxycinnamates
[108–111], which are coffee-derived metabolites. There is, how-
ever, an increasing interest in the impact foods have on the
endogenous metabolome (known as the “host response”)
[115]. Potential markers of nut intake include conjugated fatty
acids, serotonin metabolites, and microbial-derived phenolic
metabolites [116].Metabolites linkedwith carnitinemetabolism,
sulfation of tyrosine, and gut microbial metabolism are among
the set of metabolites linked to cocoa intake [115]. Evidence for
diet-induced altered intestinal microbiota metabolism is partic-
ularly relevant in light of results from metabolomic studies of
T2D and other system-level results discussed above.

Population-based studies designed to identify metabolite
signatures of self-reported dietary intake have targeted a sim-
ilar set of metabolites to that of recent metabolomic studies
of T2D (i.e., lipids, amino acids and their derivatives). In a
population sample of men, coffee intake was positively asso-
ciated with specific classes of SMs and negatively associated
with long- and medium-chain acylcarnitines in plasma [119],
classes previously linked to reduced and increased risk of T2D,
respectively [80, 81, 120–122]. The negative association be-
tween coffee and medium-chain acylcarnitines was later con-
firmed in an independent study of women from the TwinsUK
cohort [123], which additionally identified metabolites associ-
ated with garlic, fruit, and vegetable intake and hypocaloric
dieting [123]. Of relevance to the utility and interpretation of
metabolomic approaches applied to populations is recent work
by Heinzmann et al. [124•] andKrug et al. [101•], showing that
interindividual metabolic differences influence proportionally
more of the spectrum of metabolites than dietary modulation,
although certain individuals display a greater stability of met-
abolic phenotypes than others [101•, 124•]. Some of this
stability is likely heritable; in the TwinsUK study mentioned
above, two thirds of the metabolites associated with nutritional
patterns had a significant genetic contribution, and the
remaining thirdwere solely environmentally determined [123].

Metabolomics has already provided new insight to chronic
disease development and response to diet. Its application in
a population setting might further enable epidemiologists
to separate metabolites resulting from inherited patterns of
metabolism from those that are entirely due to environment
[123]. This particular task will greatly benefit from findings of
other system-level analysis, the most apparent being geno-
mics. Indeed, several GW-confirmed loci are associated with
variation in plasma levels of metabolites implicated in T2D
and additionally influenced by diet (Table 1) [125]. Recent
metabolomic successes have been based on only a fraction
or two of the full spectrum of metabolites. Ongoing efforts to
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characterize the existing “unknowns” will soon enable more
exhaustive investigations.

Future Directions: Human Systems Integration

As outlined above, each system level has potential to reveal
insight to disease development and response to diet. Besides
single SNP-, transcript-, protein-, and metabolite-trait testing,
network analysis (knowledge-driven) or computational
modeling of all system-level data-points (data-driven) also
may be performed. Integrating system-level data from external
resources is another feasible and highly efficient approach epi-
demiologists are taking to maximize “omic” data [126–128].
However, extrapolating results from an integrative analysis of
potentially diverse datasets does not provide a complete under-
standing of the human system and its responses to diet as a
whole. Intermediate molecular quantitative trait locus (iQTLs)
analysis has been one advancement towards integrating large-
scale omic data [22, 129]. In iQTL mapping, transcripts, pro-
teins, metabolites, or other heritable physiological factors serve
as traits for genetic association analysis, the rationale being that
these intermediates (or endophenotypes) more closely underlie
genetic risk than heterogeneous behavioral or disease pheno-
types [129, 130].

The ideal system-wide study would have multi-omic data
for an individual collected at multiple time points along with
exposure details and longitudinal follow-up. Chen et al.
[131••] recently explored this concept of an “integrative per-
sonal omics profile” (iPOP) by combining several omic-
profiles from a single individual during a 14-month period.
iPOP revealed various health risks, including T2D and uncov-
ered extensive, dynamic changes in diverse molecular com-
ponents, and biological pathways across healthy and diseased
conditions. This iPOP framework might easily be upscaled to
a nutritional intervention study. The most ambitious systems
epidemiology approach would apply this iPOP framework to
a population-setting. Harnessing the resources of existing
large prospective studies of lifestyle and chronic diseases,
which have archived biological samples and repeated mea-
sures of diet and lifestyle, would be the most efficient ap-
proach to reaching this goal [1]. This strategy was recently
applied to a subset of individuals participating in the Finnish
population-based Dietary, Lifestyle, and Genetic determinants
of Obesity and Metabolic syndrome (DILGOM) study [132]
and preliminary cross-sectional analysis are promising.
Network analysis of transcriptomic and metabolomic data
available from 518 individuals identified genes from the lip-
id–leukocyte (LL) module as having a key role in more than
80 metabolites, including lipoprotein subclasses, lipids, and
amino acids. Genomic variation was used to infer this mod-
ule’s reactivity to fatty acids and high/low/intermediate-den-
sity lipoprotein fractions. Parallel associations with plasma IL-

1 receptor antagonist, C-reactive protein, and adiponectin
suggested the LL module as a possible link between inflam-
mation, metabolism, and adiposity [132].

Although beyond the scope of the current paper, there are
several important issues that still need to be resolved before
considering system tools in the broader field of systems epide-
miology. For example, a common goal in epidemiology is to
relate a "usual" level of an exposure with the risk of disease
[133] and an outstanding concern pertains to the fact that tran-
script, protein, and metabolite levels vary with time and recent
environmental factors. Quantifying and identifying the source of
this variation and the extent to which this variation impacts
power for detecting associations warrants further study [134•].
How repeated measures may remedy this concern also is an
open question. Another issue is that themultiple-testing problem
is likely to be magnified in multi-omic studies, which will have
significant impact on the power and data interpretation.
Epidemiologists will need to be mindful of these and other
limitations when designing and interpreting system-wide
studies.

Conclusions

Nutritional systems epidemiology has potential to provide new
insight into underlying mechanisms and ways to study the
health effects of specific foods more comprehensively.
Coincident with advancing nutrition research, it has incredible
potential to finally realize the concept of personalized nutrition.
Continued technological advances in sensitive high-throughput
methods, enhanced bioinformatics and analytical tools, and
reduced costs will enable more widespread use of these tech-
niques in nutrition and epidemiological research. However,
critical to the success of this approach is well-designed pro-
spective cohort studies with very large size, long-term follow-
up, high rates of follow-up, availability of archived biological
samples, and detailed measures of diet and lifestyle. Our brief
summary of selected studies across systems already yield im-
pressive results and when merged with equivalent applications
to T2D provide compelling evidence that the goal of personal-
ized optimal nutrition for prevention and treatment of disease
will become increasingly attainable by systems epidemiological
approaches.
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