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Abstract Mucus clearance is the first defense of a normal
airway against airborne pathogens and pollutants. However,
mucus hypersecretion—an important feature of chronic ob-
structive pulmonary disease (COPD), especially the chronic
bronchitis phenotype—contributes to disease pathology and
mortality. Prescriptions of some mucoactive medications, e.g.
N-acetylcysteine and carbocysteine, have proved beneficial
for COPD management. Mucins are large-molecular-weight
glycoproteins which constitute the major solid components of
mucus, giving mucus its viscous and elastic properties and
enabling its defensive function. Most-expressed in the airway
are three membrane-tethered mucins (MUC1, MUC4, and
MUC16) and three gel-forming secreted mucins (MUC2,
MUC5AC, and MUC5B). Although over-expression of all
these mucins has been observed or postulated in COPD lungs,
none has been specifically evaluated as affecting COPD.
Evidence regarding immunosuppressive, bacterial-adhesive,
anti-inflammatory, and tumorigenic effects of MUC1 in other
disease conditions suggests MUC1 may contribute to immune
suppression, airway remodeling, mucus obstruction, bacterial
colonization, and disruption of epithelium integrity in COPD.
Regulation of mucin synthesis and secretion is increasingly
well understood. Mucin over-expression in COPD is probably
caused by a combination of microbial products, airborne
pollutants, and mediators of inflammation. Further studies
are needed to determine the individual function and regulatory
signaling of each mucin in COPD airways, with the objectives
of better understanding the disease mechanism and of devel-
oping novel therapeutics for COPD treatment.
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Introduction

The global initiative for chronic obstructive lung disease
(GOLD, 2011) defines COPD as a complex of diseases char-
acterized by persistent airflow limitation, which is usually
progressive and associated with an enhanced chronic inflam-
matory response of the airways and lungs to noxious particles
or gases. COPD is a leading cause of morbidity and mortality
worldwide, causing a substantial and increasing economic and
social burden. The COPD diagnostic criteria are progressive
dyspnea, chronic cough, chronic sputum production, history of
exposure to risk factors (including tobacco smoke, smoke from
home cooking and heating fuels, occupational dusts and
chemicals), and a post-bronchodilator FEV1/FVC <0.70.
Exacerbations of COPD airway disease may be caused by viral
or bacterial infections, or by exposure to air pollutants.
Bronchoalveolar lavage fluid (BALF) and induced sputum
have increased neutrophil and macrophage levels. The submu-
cosa of patients’ small airways are chronically inflamed, with
increased macrophages and T lymphocytes [1]. Depending on
the cellular inflammatory profile, there are increased levels of
IL-1β, IL-6, IL-8, tumor necrosis factor-α (TNF-α), andmono-
cyte chemotactic protein-1 in induced sputum or BALF of
patients with stable COPD [2]. Neutrophils and macrophages
release proteases that contribute to inflammation and over-
whelm anti-protease defenses. Reactive oxygen species (ROS)
generated by cigarette smoke or by inflammatory cells may
cause airway and parenchymal injury. Together, these inflam-
mation mediators and products injure the airway, activating
programs for structural changes to the airway wall (so-called
airway remodeling) leading to airway narrowness and mucus
obstruction. Structural changes to COPD airways include:
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mucus metaplasia, bronchiolar smooth-muscle hypertrophy,
mural edema, peribronchiolar fibrosis, and excess mucus pro-
duction in airways less than 400 μm in diameter.

Of all pathological changes associated with COPD air-
way disease, mucus obstruction is the most prominent cause
of airflow limitation and disease mortality, particularly for
elderly patients and those prone to chest infections [3, 4].
Some mucoactive medications have been proved beneficial
for COPD management [5, 6••]. In this paper we review
progress in understanding airway mucus and mucin biology,
with emphasis on the less well-understood function of mu-
cins in COPD airway disease.

Mucus and mucin biology in the airway

The airway epithelium is normally coated with a thin layer
of airway surface liquid (ASL) and of gel-like mucus, which
lies on top of the ASL. In large airways (>2 mm in luminal
diameter) mucus is produced by goblet cells and by submu-
cosal glands, whereas in small airways the only source of
mucus is the goblet cell [7]. The general functions of mucus
are protection, lubrication, and transport. Under healthy
conditions, mucus maintains hydration in the airways and
protects against inhaled pathogens, toxic gases, and other
airborne pollutants via mucociliary clearance. Mucus also
contributes to innate immune response in the lungs by
transporting a variety of antioxidants, antiproteases, antimi-
crobial substances (e.g. defensins, lysozyme, and Ig A),
immunmodulatory molecules (e.g. secretoglobins and cyto-
kines), and protective molecules (e.g. trefoil proteins and
heregulin) [8–10]. However, abnormal mucus production
and clearance can cause airway obstruction and contribute
to respiratory disease pathology [11, 12].

Mucus is approximately 97 % water and 3 % solids.
Besides salts, lipids, polypeptides, cells, and cell debris, mu-
cins are the chief constituents of the solid part of mucus [13].
Mucins are defined by their serine and/or threonine and/or
proline-rich tandem repeat (TR) domains. They are very high-
molecular-weight glycoproteins (~3 MDa) [12], 50–90 %
carbohydrate by mass and with dozens to several hundreds
of O-glycosylation sites per molecule, the result of the large
number of TRs in the protein backbone. On the basis of their
cellular location, mucins are classified into two groups:
membrane-tethered or secreted mucins. A subset of secreted
mucins, the gel-forming mucins, have large, heavily O-
glycosylated apoprotein cores, and N and C-terminal,
cysteine-rich, von-Willebrand factor-like domains that partic-
ipate in disulfide bond-mediated oligomerization. Once se-
creted, gel-forming mucins form very large (1 to >10 MDa)
viscoelastic macromolecular complexes, contributing to the
elastic and viscous properties of mucus [14]. Membrane-
tethered mucins may behave as receptors and participate in

cell adhesion, glycocalyx generation, and airway defense;
they may also be secreted into the mucus layer as the result
of shedding or synthesis of splice variants lacking transmem-
brane domains [15, 16].

More than 22 mucin genes have been identified in the
human and murine genome [12, 17]. All but MUC2,
MUC5AC, MUC5B, MUC6, MUC7, MUC8, MUC9, and
MUC19 are membrane-tethered mucins [15, 16]. At least 14
mucin genes (MUC1, MUC2, MUC4, MUC5AC, MUC5B,
MUC7, MUC8, MUC11, MUC13, MUC15, MUC16,
MUC19, MUC20, and MUC21) are present at protein or
mRNA levels in normal airways (Table 1) [12, 18–21].
MUC3 and MUC6 are expressed in well-differentiated
NHBE cells cultured in vitro; their expression in normal bron-
chi is controversial [18, 21–23]. In normal sputum secreted
mucins, mainly MUC5AC and MUC5B, comprise approxi-
mately 90 % of mucin content, the remaining 10 % mainly
consisting of the three membrane-tethered mucins MUC1,
MUC4, and MUC16 [24, 25].

In airway tissues from healthy individuals, mucins are
produced by ciliated, basal, goblet, and submucosal-gland
secretory cells in the upper and lower airway epithelia [12].
MUC1, MUC4, and MUC16 are the best-characterized of
the membrane-associated mucins, and are mostly found at
the apical surfaces of ciliated cells and Clara cells [21, 25].
MUC1 has also been detected in alveolar type-II epithelial
cells [26, 27]. MUC2 mRNA and protein are weakly
expressed in the surface epithelium, in some goblet cells,
within submucosal glands, in mucus cells, and in some
serous cells; because of either its low expression or its
insolubility, it is barely detectable in sputum [14, 21].
MUC5AC is usually expressed by goblet cells, with some
expression in the submucosal glands. The mucus cells of
submucosal glands mainly produce MUC5B, with some
expression of MUC8 and MUC19 [28, 29]. MUC6 is local
to the bronchial and bronchiolar epithelium [23]; MUC7 is
local to the serous cells of submucosal glands [30].

Table 1 Mucins expressed in
the airway [9] Airway mucin

Membrane
tethered

Gel-
forming

MUC1 MUC2

MUC3A/B MUC5AC

MUC4 MUC5B

MUC11 MUC6

MUC13 MUC7

MUC15 MUC8

MUC16

MUC20 MUC19

MUC21
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Regulation of airway mucus secretion

Mucin macromolecules in secretory cells (i.e. goblet cells)
form secretory granules or vesicles and undergo a multi-step
process of exocytic secretion, via intercompartmental vesic-
ular trafficking. They progress from the ER, where they are
synthesized, to the cis-Golgi, where they undergo core gly-
cosylation; then through the Golgi, where they undergo
further post-translational processing and sorting; and finally
from the trans-Golgi to the cell surface. The secretory gran-
ules move from the trans-Golgi region to the cell periphery
along microtubules and then along actin filaments. Only a
few of the proteins that regulate the secretory process in
airway goblet cells have been identified. Rab GTPases reg-
ulate the transition from microtubules to actin filaments.
SNARE proteins, including vesicular-associated membrane
protein 8 (VAMP8), regulate mucin granule exocytosis [31].
Deletion of Munc 13-2, a priming protein for mucin granule
exocytosis that is activated by diacylglycerol during agonist
stimulation, affects tonic mucin secretion in mouse airways
[32]. Synaptotagmin 2, a low-affinity Ca2+ sensor, mediates
acute agonist-stimulated mucin secretion in mouse airway
goblet cells [33]. Myristoylated, alanine-rich C-kinase sub-
strate (MARCKS) protein regulates mucin granule release
via linking of mucin granules to the contractile cytoskeleton;
the activity of MARCKS is regulated by protein kinase C
and protein kinase G [34]. An inhibitory MARCKS peptide
has been shown to reduce airway mucin secretion in a
mouse model of asthma [35]. The identities and precise
functions of many other molecular components of the
goblet-cell secretory pathway are yet to be defined.

The secretion of mucus in the surface epithelium is
controlled by a range of neurohumoral mediators, including
tobacco smoke, SO2, NH3, leukotrienes C4 and D4, neutro-
phil elastase, histamine, platelet-activating factor (PAF),
substance P, reactive oxygen species, ATP, TNF-α, NO,
and extremes of pH [36]. Of these mediators ATP, possibly
released into the airway lumen via mechanical stretching, is
believed to be the most potent secretagogue of goblet cells.
ATP and its analogue UTP cause rapid mucin-granule dis-
charge by interacting directly with P2Y2 purinoceptors on
airway goblet cells. They also stimulate Cl− and fluid secretion
[37, 38], ciliary activity [39], and, importantly, mucociliary
clearance [40].

Airway gland secretion is regulated by neural actions
[36]. In humans, the submucosal glands are richly innervat-
ed by the parasympathetic, sympathetic, and nonadrenergic,
noncholinergic (NANC) nervous systems [41]. Muscarinic,
α-adrenergic, β-adrenergic, and peptidergic receptors have
all been observed on airway gland cells. Cholinergic ago-
nists are the most potent releasers of mucus from the airway
glands of humans and other mammals. In cats, α-adrenergic
agents and cholinergic agents stimulate approximately equal

volume flow. β-Adrenergic agents induce lower volumes of
secretions than either cholinergic or α-adrenergic agents.

The intracellular second messengers of mucus secretion
may involve inositol 1,4,5-trisphosphate (IP3), DAG, and
Ca2+. The PLC-specific inhibitor U73122 and loading of
cells with the calcium chelator BAPTA inhibit agonist-
stimulated secretion [42, 43], whereas secretion is stimulat-
ed by:

1. the DAG-mimic PMA;
2. increasing intracellular Ca2+ with the ionophore ionomycin;
3. permeabilizing the cells into an extracellular Ca2+

EGTA-based buffer with streptolysin-O; and
4. applying IP3 to permeabilized cells [44].

Purinergic activation led to intracellular Ca2+ mobiliza-
tion in human goblet cells, with a classic peak-and-plateau
waveform. This mobilization was inhibited by U73122 or
by BAPTA loading [45]. Ca2+ may regulate mucin granule
exocytosis by activating actin filament disruption and re-
modeling (scinderin), priming (Munc13), and exocytic fu-
sion (synaptotagmin) [44]. PLC is believed to be important
in regulating mucin secretion. It is probable that multiple
inputs (purinergic agonists and inflammatory mediators)
converge via PLC to generate two cellular messengers,
DAG and Ca2+, which then lead to exocytosis.

Mucus hypersecretion in COPD airway

Mucus hypersecretion is a prominent feature of COPD,
manifested as increased sputum. Excess mucus has been
associated with several pathological features of COPD:

& increased frequency and duration of infection;
& reduced lung function; and
& increased morbidity and mortality [46].

In the small airways of healthy individuals goblet cells
are absent or sparse [1, 11] whereas in COPD patients
elevated numbers of goblet cells (goblet cell metaplasia
(GCM)) are found, with excessive mucus production [47].
The components of sputum are derived mainly from the
central airways, with some contribution from the peripheral
airways; however, over-production of mucus in the periph-
eral airways is the main cause of airflow obstruction in
patients with COPD [48].

In COPD, airway mucus hypersecretion is often associated
with changes to both location and profile of mucin expression
in epithelium and submucosal glands. MUC1 is the first
cloned and best-understood membrane-tethered mucin. Our
unpublished data indicate that its extracellular part may be
released into the airway lumen, because the level was in-
creased in the BALF of mice with cigarette-smoke-induced
COPD. Ishikawa et al. recently reported that the sputum level
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of KL-6 (MUC1) was significantly higher for COPD patients
than for non-smokers, smokers, and prolonged coughers with
normal lung function. The increases positively correlated with
smoking history, aging, sputum macrophages, and eosino-
phils, and MUC1 was more prominently expressed in the
bronchiolar and/or alveolar epithelium in COPD than in con-
trol lungs [49, 50].The predominant gel-forming mucins in the
airways, MUC5AC and MUC5B, are present at lower levels
in mucus from non-diseased airways [11]; in COPD airways
their expression is much increased and their expression pat-
terns altered compared with those of smokers and normal
subjects. Studies analyzing the mucin components of airway
mucus in COPD patients have revealed that MUC5AC and
MUC5B are the major mucins in sputum, with MUC5B being
the predominant form [51, 52•]. Caramori et al. reported that
in peripheral COPD airways COPD is associated with in-
creased expression of MUC5B in the bronchiolar lumen and
with increased MUC5AC in the bronchiolar epithelium [23].
In COPD patients, expression of MUC5AC is increased not
only in surface epithelium but also in submucosal glands, and
the increases are correlated with smoking history and inverse-
ly correlated with FEV1 (% of predicted) [53]. MUC5B,
normally expressed in the submucosal glands of the bron-
chials, was also present in the surface epithelium [52•]. The
expression and location of MUC2, MUC4, and MUC6 in
peripheral airways were not affected by smoking history or
by COPD [23, 51, 54]. Other mucins have not been evaluated,
but MUC7 and MUC8 are postulated to change during
COPD. This assumption is made because cigarette smoke
extract and LPS exposure induced MUC7 in human airway
epithelial cells in vitro and in mouse cells in vivo [55], and
becauseMUC8was induced in airway epithelial cells by high-
mobility-group box-1 protein (HMGB1), a recently-identified
pro-inflammatory mediator in a variety of inflammatory dis-
eases [56].

In addition to the altered expression profile and increased
synthesis of mucins, COPD airway mucus is usually
dehydrated and more viscous, impeding mucus clearance.
Recent studies suggest that the dehydrated mucus is proba-
bly the result of defects in activity or expression of CFTR,
aquaporins, and other ion channels, leading to reduced ion
and water secretion. CFTR functions both as a Cl− channel
and as an important anti-inflammatory molecule [57].
Moreover, CFTR can mediate secretion of bicarbonate
(HCO3

−), which is believed to enhance mucin swelling
and hydration by reducing Ca2+ cross-linking in mucins,
thereby reducing mucus viscosity and probably increasing
its transportability [58]. Consequently, mutations in the
CFTR gene are associated with mucus dehydration and
airway inflammation, as seen in cystic fibrosis (CF).
Cigarette smoke exposure rapidly impairs CFTR function
by internalizing CFTR, leading to ASL dehydration. This
promotes mucus stasis and failure of mucus clearance,

leaving smokers at risk of developing chronic bronchitis
(CB) [59]. AQP5 may affect mucus secretion by regulat-
ing fluid and mucin secretion [60]. Wang and associates
[61] showed that airway expression of AQP5 was re-
duced in COPD patients compared with control subjects.
Attenuated expression of AQP5 was related to severity of
airflow obstruction and negatively correlated with ex-
pression of MUC5AC in the airway epithelium and of
mucins in the submucosal glands. Chen et al. [62] found
that the AQP5 gene could negatively regulate expression
of the MUC5AC gene and proteins in the human airway
submucosal gland-cell line SPC-A1.

Function of mucins in COPD airway

The general functions of mucins

Normally mucus floats like a raft above the cilia, capturing
foreign bodies including microbes, particles, inflammatory
cells, and cell debris by means of its gel-like structure and
adhesive properties, and transporting them to locations
where they can be expelled from the body via ciliary beat-
ing. The mucus layer may also provide a physical barrier to
the epithelium against microorganisms and insoluble mate-
rial, thereby maintaining the local molecular environment’s
hydration, ionic composition and concentration, and acces-
sibility to macromolecules. The best-known function of
mucus is this first innate defense of the respiratory tract
[63]. The function of mucus is believed to be primarily
conferred by mucins. In addition to defending the respirato-
ry tract, functions of those mucins that have been described
include [15]: capturing, holding, and releasing biologically-
active molecules; signal transduction; regulation of inflam-
mation and immune responses; and regulation of differenti-
ation and proliferation.

Mucins have been shown to capture, hold, and release
biologically active molecules, including cytokines, growth
factor, and trefoil factors (TFFs). [15, 64]. Via these molecules,
mucins may participate in regulation of inflammation and
immune responses, and regulation of the repair of the injured
airway. Besides capturing inflammatory cells, mucins have
been found to capture interleukins, including IL-1, IL-4, IL-
6, and IL-7, by means of interactions with the specific lectin
moieties on these molecules [15, 64]. Thus, mucins may
enable inflammatory mediators and effectors to interact with
pathogens, enabling resolution of inflammation. TFFs are
expressed by most mucin-producing epithelia, including those
of the respiratory tract. They bind to mucins, interact with them
[65, 66] and regulating mucus viscosity [67], and via these
actions may enhance the protective capability of the mucosal
defense barrier. Studies of trefoil peptides in gastrointestinal
epithelial cells found TFFs can enhance cell migration in vitro
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and promote epithelial restitution and mucosal repair in vivo
[68, 69]. In a murine asthma model it was discovered that
trans-differentiating Clara cells express TFF1, which is stored
in a subset of secretory granules [70]. Royce et al. reported that
TFF2 regulates airway remodeling in animals models of asth-
ma: TFF2-deficient mice developed asthma and had increased
goblet-cell hyperplasia and sub-epithelial collagen layer thick-
ness [71]. Lung transcript profiling of mice identified TFF2 as
one of the candidate genes determining lung function [72].
Oertell and colleagues revealed that human recombinant TFF2
and TFF3 both stimulate migration of human airway epithelial
cells in chemotactic and two-dimensional wound repair assays,
either alone or in concert with EGF [73]. TFF3 was shown to
promote airway epithelial ciliated cell differentiation, and in-
duced expression of TFF3 was associated with differentiation
of in-vivo humanized tracheal xenograft and in-vitro air–liq-
uid-interface culture models. Furthermore, exogenous TFF3
promoted differentiation of ciliated cells in an EGF-receptor-
dependent manner [74]. In a recent study,Wiede and associates
found TFF3, but not TFF1 and TFF2, in airway mucosa and in
the sputum of subjects with chronic bronchitis [75]. Reduced
lung TFF3 mRNA expression was found in rats with COPD
induced by passive smoking and LPS [76]. The function of
TFFs in normal airways and in the repair of injured COPD
epithelium is unknown.

Descriptions of mucins’ functions in mediating signal
transduction and in regulating differentiation and prolifera-
tion are mostly derived from studies of cancerous cells, with
some already proved to apply to individual mucins in the
airway epithelium. Below we summarize the known func-
tions of the best-characterized airway mucins.

Membrane-tethered mucins

Of the membrane-tethered mucins MUCs 1, 4, 11, 15, 16,
and 20 which have been identified in the lung, MUC1,
MUC4, and MUC16 are the main three produced and re-
leased by airway surface-epithelial cells [77]. Understanding
of the functions of MUC4 and MUC16 is still limited.
MUC4 is broadly expressed in the small intestine, colon,
stomach, cervix, and lung [78]. It is an inter-membrane
ligand for ErbB2 [79]: binding of MUC4 to ErbB2 may
block access of ErbB2 to its soluble ligands, thereby affect-
ing regulation of cell proliferation and growth. In COPD the
airway epithelium is chronically exposed to neutrophil elas-
tase, a highly inflammatory protease released by infiltrated
neutrophils. Neutrophil elastase has been shown to up-
regulate MUC4 mRNA and protein expression in normal
human bronchial epithelial cells in vitro [80], suggesting
MUC4 may affect lung inflammation. MUC16 has been
mostly studied in ovarian cancer cells, and is also expressed
in normal airway epithelium and submucosal gland cells
[19]. The MUC16 (CA-125) blood level of COPD patients

is significantly higher than that of control subjects, and is
correlated with systolic pulmonary artery pressure [81]. The
function of MUC16 in the airway is unknown.

MUC1 is the first cloned and best-understood mucin.
MUC1 is expressed on the surface of most epithelial cells
and some hematopoietic cells [82, 83]. It is a type I transmem-
brane protein with three domains: a highly glycosylated large
extracellular (EC) domain made up of 25 to 125 twenty-
amino-acid tandem repeats, a hydrophobic transmembrane
(TM) domain, and a cytoplasmic tail (CT) [82]. The
glycosylated tandem repeat of MUC1 is an extended rod-
like structure that can extend 200–500 nm above the cell
surface. Both anti-adhesive and adhesive properties of
MUC1 have been proposed on the basis of this large, extended
conformation of the EC domain and the sialyl Lewisx and
sialyl Lewisa carbohydrate found on it. MUC1 may also
adhere, with ICAM-1, on endothelial cells and antigen-
presenting dendritic cells (APC), facilitating tumor-cell me-
tastasis or promoting T-cell and APC interaction [82]. The CT
domain of MUC1 contains functional binding sites for numer-
ous signaling molecules, including c-Src, ErbB family mem-
bers, GSK3β, PKCδ, β-catenin, Grb-2, p53, p120 catenin,
HSP70, and HSP90, and can be phosphorylated in response to
a variety of extracellular stimulations, suggesting an important
function of MUC1 CT in signal transduction [25, 84].

It has been suggested MUC1 is an oncoprotein because
functions which include:

1. stimulating cell proliferation via beta-catenin, ErbB and
ERα-dependent mechanisms;

2. facilitating cell survival via regulation of FOXO3a and
p53 [25];

3. facilitating PyV MT-1 and Wnt-1-mediated oncogenesis
[85]; and

4. facilitating tumor metastasis by interacting with endo-
thelial intercellular adhesive molecule-1 (ICAM-1) [86].

Interaction with β-catenin and nuclear translocation of
MUC1 CT initiates epithelial-to-mesenchymal transition
(EMT) of pancreatic cancer cells, resulting in increased
invasiveness and metastasis [87]. The secreted form of
MUC1 (shed MUC1) seems also to be required for EMT
[87, 88].

Investigating the function of MUC1 in the airway, our
research group revealed that both hamster Muc1 and human
MUC1 can provide a binding site on cells for Pseudomonas
aeruginosa (PA), via interaction with the flagellin [89–91].
Binding of PA or flagellin to Muc1 induces tyrosine phos-
phorylation on the CT domain of MUC1 and resulting
activation of ERK2 [84]. Later, using Muc1 null mice
(Muc1−/−), we found airway challenge from either PA or
its major pathogenic protein flagellin caused exaggerated
lung inflammation for Muc1−/− mice compared with that
for Muc1 wild-type mice (Muc1+/+), indicating that Muc1
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has an anti-inflammatory effect on airway PA infection,
probably via interference with TLR5-mediated signaling
[92••]. In HEK193 cells simultaneously over-expressing
MUC1 and TLR5, we revealed that the mechanism of the
inhibitory function of MUC1 in TLR5 signaling involves its
association with TLR5, with subsequent inhibition of
MyD88 recruitment to TLR5 in response to inflammatory
stimulus [93]. In addition, we found neutraphil elastase can
up-regulate MUC1 via a signaling pathway involving
PKCδ→dual oxidase 1→ reactive oxygen species→
TNF-α-converting enzyme→TNF-α→TNFR1→ERK2→
Sp1 [94, 95]. After PA infection, Muc1 levels in the lungs of
Muc1+/+ mice steadily increased. The inflammatory re-
sponses of TNFR−/− mice were similar to those of Muc1−/−

mice. After PA infection, both Muc1−/− mice and TNFR-
knockout mice (TNFR−/−) failed to up-regulate Muc1 and
failed to resolve PA-induced inflammation [96]. These re-
sults indicate that TNF-α production is required for PA-
induced Muc1 up-regulation: during airway infection, the
feedback loop involving TNF-α (pro-inflammatory) and
Muc1 (anti-inflammatory) is crucial for resolution of inflam-
mation. As well as TLR5-mediated inflammation during PA
infection or inhalation of flagellin, we found Muc1 also
inhibits other TLR signaling (TLR2, 3, 4, 7, and 9) [97],
and suppresses non-typeable Hemophilus influenzae [98]
and respiratory syncytial virus-induced [99] airway inflam-
mation, suggesting that MUC1 and Muc1 greatly affect
infection and inflammation of the airway by various patho-
genic bacteria and viruses.

It has been shown that MUC1 can be shed by means of
proteolytic cleavage, both spontaneously and upon stimula-
tion from, for example, TNF-α and PMA [100]. Proteases
responsible for MUC1 shedding include neutrophil elastase
[101, 102], TACE [100], MT1 MMP [103], MMP-14 [104],
and gamma-secretase [105]. The function of MUC1 shedding
is not fully understood. It has been suggested that shed
MUC1, and possibly other membrane-tethered mucins, may
form a gel in the immediate vicinity of the apical cell surface,
probably serving as a protective barrier against invading path-
ogens and chemicals [24]. How and when membrane glyco-
proteins are cleaved is largely unknown, and are important
questions to address in the context of airway infection and
inflammation. Given the ability of the MUC1 ectodomain to
bind invading bacteria [89, 91, 104], it is possible that shed
MUC1 may serve as a decoy receptor [104], preventing direct
interaction of bacteria with the epithelial cell surface and
facilitating bacterial clearance during infection. CF mice had
mucus accumulation in the small intestine, which was not the
result of Muc2, Muc3, and Muc5ac: protein expression of
these mucins was similar, whereas there was a moderate
increase in Muc1 protein [106]. Making CF mice Muc1
deficient (CF/Muc1−/− mice) prevented mucus accumulation,
and these mice survived better on solid food [106]. Shed

Muc1 may therefore form part of mucus and contribute to
mucus obstructions. In addition, accumulating evidence in-
dicates shed MUC1 may also suppress immune responses by:

1. affecting leukocyte motility;
2. providing an impenetrable barrier for immune effector cells,

thereby preventing an anti-tumor or anti-bacterial response;
3. inactivating immune effector cells via receptor–ligand

interactions; and
4. sequestering cytokines (i.e. transforming growth factor

(TGF)-α and TGF-β) or other compounds that suppress
immune response.

Besides its predominant expression on epithelial cells,
MUC1 is also expressed by subsets of naïve and activated T
cells (CD4+, CD8+, Th17) [83, 107–110], dendritic cells [110,
111], monocytes [112], and macrophages (unpublished results).
In immune cells of Muc1-deficient mice, MUC1 causes defects
in T cell development and in natural killer and dendritic cells
[82]. Dendritic cells lacking expression of Muc1 were consti-
tutively activated and were more responsive to TLR signaling
[113]. MUC1 inhibited development of myeloid-derived sup-
pressor cells (MDSCs) from bone marrow (BM) progenitor
cells, via regulation of beta-catenin stability [114].

In conclusion, MUC1 expression in the airway may
greatly affect mucociliary clearance, regulation of immune
response, and lung inflammation resolution. The function of
MUC1 in COPD airway disease is unknown. Because
MUC1 expression increases in COPD lungs, we assume
over-expression of MUC1 may contribute to COPD lung
pathology in the following ways [49]:

1. causing immunosuppression in the systemic and lung
immune system via its EC and CT domain;

2. promoting airway remodeling and mucus differentia-
tion, via its action in causing EMT;

3. masking bacteria, helping them escape killing by im-
mune cells;

4. participating in mucus components, or acting as a tether
for mucus gel, thus contributing to mucus obstruction
[106]; and

5. disrupting intra-epithelial adhesion via c-Src and GSK3β-
dependent interaction with β-catenin [115].

These hypotheses must be proved in future studies.

Secreted mucins

As described above, there are four main secretedmucins in the
lung: MUC2, MUC5AC, MUC5B, and MUC19. MUC2 is
the main intestinal mucin and is expressed by the goblet cells
of the colon and small intestine, although expression may be
detected in diseased lungs of humans and rats [116]. Muc2-
knockout mice have defects of goblet cell development in the
colon, with absence of the protective colonic mucus layer
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leading to colonic inflammation and to spontaneous develop-
ment of colitis [117] and of colorectal cancer [118]. The anti-
inflammatory and tumor-suppressive functions of MUC2 in
the colon are not fully understood. MUC2 is expressed in the
lungs of humans with chronic bronchitis and cystic fibrosis
[119], but immunoassay and proteomics analysis of normal
and COPD sputum indicate that it may not be a major com-
ponent of mucins [54, 77, 120]. MUC19, the main salivary
glandular mucin, has also been identified in the tracheolarynx
[121] and found to be expressed in mouse lungs [122]. The
functions of MUC2 and MUC19 in the lung are unknown.

MUC5AC and MUC5B are the main components of gel-
forming mucins in normal airways and are believed to contrib-
ute to both the defensive barrier function and the rheology of
airway mucus. Their biochemistry was recently reviewed by
Thornton et al. [123]. MUC5AC has been shown to be the
goblet cell mucin [124] and MUC5B the submucosal gland
mucin [125]. MUC5AC is widely used as a marker for goblet
cell metaplasia [126]. MUC5B is the main mucin type in the
apical secretions of air–liquid-interface-cultured NHBE cells
and in induced sputum [77]. MUC5AC is up-regulated in a
variety of pathologies, including COPD [53, 127]. MUC5AC
expression is increased in the bronchial submucosal glands of
stable COPD patients [53]. During allergic airway inflamma-
tionMUC5AC expression greatly increases, whereas MUC5B
expression remains constant [122, 128, 129]. By use of the
western blotting assay, Thorton et al. measured levels of
MUC2, MUC5AC, and the different glycoforms of MUC5B
mucin directly in sputum [14, 51]. Comparing secretions from
normal subjects and from individuals with asthma, CF, and
COPD, they found more MUC5Bmucin, particularly the low-
charge form, in CF and COPD sputumwith possible infection.
Therefore, MUC5AC is believed to be more related to asthma
[128, 130, 131] and MUC5B to COPD [52•]. A significant
association was found between the overall distribution of
MUC5AC variable number tandem repeat (VNTR) length
and CF lung disease severity; there was also a strong associa-
tion of the 6.4 kb HinfI VNTR fragment with severity of lung
disease [127]. It is suggested that MUC5AC may function by
facilitating ciliary clearance of mucus, whereas MUC5B may
form the basis of a gel to facilitate clearance of specific
pathogens or other irritants. Recently, an MUC5B-promoter
polymorphism has been associated with pulmonary fibrosis
[132]. The comprehensive functions of MUC5AC and
MUC5B in COPD are yet to be discovered; it is expected this
will happen very soon now that knockout mice are available.

Regulation of mucus hypersecretion related to COPD

Growing evidence indicates that mucus hypersecretion in
COPD is probably induced by microbial products, airborne
pollutants, and mediators of inflammation. Both virus and

bacterial products have been shown to directly up-regulate
mucin expression [133]. Instillation of lipopolysaccharide
(LPS) and inhalation of sulfur dioxide, ozone, cigarette smoke,
and acrolein can all induce GCM and up-regulate MUC5AC
expression in rat or mouse airway epithelia [30, 134–138].
Exposure to these airway irritants leads to GCM and to
neutrophilia inflammation in animals. It is noteworthy that this
associated inflammation also seems to mediate development of
GCM. Instillation of neutrophil elastase stimulates bronchial
GCM in hamsters and mice [139, 140]. TH1 and TH2 cyto-
kines shown to regulate mucin gene expression and GCM in
vivo include IL-9 and IL-13 (the predominant TH2 cytokines),
IL-1β, tumor necrosis factor-α (TNF- α), TGF- α, IL-6, and
IL-17 [141]. Downstream signaling mechanisms of mucin up-
regulation and GCM probably involve epidermal growth factor
receptor (EGF-R), STAT6, FOXA2, SAM-domain-containing
prostate-derived Ets factor (SPDEF), and NF-kappaB [141]. In
addition, activation of hypoxia-inducible factor-1 signaling was
recently found to contribute to the mechanism of GCM in
COPD patients [142]. Notch signaling is critical to negative
regulation of Muc5ac expression and GCM in postnatal mouse
lungs [143]. Of these known signaling mechanisms for mucin
and GCM regulation, EGF-R and Th2 cytokine pathways may
have the greatest potential for inhibiting excessive mucus pro-
duction [144].

Management of COPD airway mucus

Mucus retention in COPD is associated with disease exacer-
bation [145], accelerated decline in FEV1 [146], and inflam-
matory cell infiltration [145]. Mucus retention usually results
from a combination of hypersecretion and impaired clearance.
Therefore, mucoactive medications used to enhance secretion
removal or reduce hypersecretion are important in managing
COPD. Mucoactive agents are classified, on the basis of their
pharmacological functions, as [36]:

1. expectorants, e.g. guaifenesin, which induces a “vagal
gastric” reflex, and hypertonic saline and mannitol,
which stimulate epithelial water secretion;

2. ion-transport modifiers, e.g. CPX, genistein, and
phenylbutyrate, CFTR activators, which improve the
ability of abnormal CFTR to transport Cl−, and UTP,
which increases non-CFTR Cl− and water transport;

3. mucolytics, including N-acetylcysteine (NAC), heparin,
and low-molecular-weight dextran, which disrupt mu-
cus or sputum polymers;

4. mucokinetics, e.g. beta-agonists and surfactants, which
increase clearance of sputum in coughs; and

5. mucoregulatory agents, including atropine and
glucocorticosteroids, which reduce mucin production
and/or secretion.
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The efficacy of mucoactive agents for COPD manage-
ment is shown in a well-summarized systemic review by
Poole and Black [147]. This review included 26 random-
ized, placebo-controlled studies recruiting 7,335 participants
with COPD. Their data showed that treatment with muco-
lytics for at least two months significantly reduced the
occurrence of exacerbation, and suggested longer-term treat-
ment with mucolytics might achieve even better results.

Of the mucoactive agents, NAC is the most commonly-
used and cost-effective. Several clinical studies found that
administration of NAC to COPD patients reduced acute
exacerbation. The exception is the BRONCHUS study
[148], in which significant reduction in the occurrence of
exacerbation by use of NAC 600 mg day−1 was shown only
for patients without concomitant use of inhaled corticoste-
roids. According to studies by Gerrits [149] and by Zuin et
al. [150], the effectiveness of NAC in reducing risk of
COPD exacerbation could be dose-dependent. Therefore, a
higher dose of NAC (1200 mg day−1) was used in our
PANTHEON study trial [151].

Carbocysteine is an analogue of NAC, and is more meta-
bolically stable and lower in cost. Our recent clinical trial
revealed that oral administration of 1,500 mg day−1 for one
year resulted in significant reduction of the annual occurrence
of exacerbation for COPD patients (risk ratio 0.75 (95 % CI
0.62–0.92, p=0.004)) [6••], irrespective of disease severity,
smoking status, and concomitant use of inhaled corticosteroids.
Quality of life, determined by use of St George’s Respiratory
Questionnaire (SGRQ), also improved significantly. The effi-
cacy of carbocysteine may be attributable to its mucolytic, anti-
inflammatory, and anti-oxidation activity. First, carbocysteine
improves removal of mucus via activating Cl− conductance in
human respiratory cells, correcting the balance between sialo
and fuco-mucins, and modulating Cl− and water secretion.
Second, carbocysteine is able to stimulate secretion of glutathi-
one (GSH) [152]. A promoter of mucolysis because of its
ability to cleave disulfide bonds in mucus, GSH is also one of
themost important defensemechanisms against oxidative stress
in COPD. Third, it is possible that carbocysteine performs this
function via inhibiting mucin production, reducing MUC5AC
production and inflammation induced by influenza viruses A
and B and by respiratory syncytial virus [133].

Conclusions

Mucus hypersecretion is an important pathological feature of
COPD airway disease. Knowledge of mucus and mucin biol-
ogy, and of the mechanisms of their regulation, has greatly
increased. Understanding the function of mucins in COPD
airway disease may result in development of novel therapeutic
approaches for COPD; the lack of current knowledge in this
area justifies more studies.
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