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Abstract 

The incidence of prematurity has been increasing since the twenty-first century. Premature neonates are extremely 
vulnerable and require a rich supply of nutrients, including carbohydrates, proteins, docosahexaenoic acid (DHA), 
arachidonic acid (ARA) and others. Typical breast milk serves as the primary source for infants under six months old 
to provide these nutrients. However, depending on the individual needs of preterm infants, a more diverse and intri-
cate range of nutrients may be necessary. This paper provides a comprehensive review of the current research 
progress on the physical and chemical properties, biological activity, function, and structure of breast milk, as well 
as explores the relationship between the main components of milk globular membrane and infant growth. Addi-
tionally, compare the nutritional composition of milk from different mammals and newborn milk powder, providing 
a comprehensive understanding of the differences in milk composition and detailed reference for meeting daily 
nutritional needs during lactation.
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Graphical Abstract

1 Introduction
Breast milk analysis, as an extensively researched field, 
serves as the primary source of nutrition and bioactive 
compounds for neonates. It encompasses five main com-
ponents: carbohydrates (including lactose and human 
milk oligosaccharides (HMOs) [1], proteins (such as 
lactoferrin, lysozyme, secretory IgA (sIgA), haptocor-
rin, α-lactalbumin, bile salt-stimulated lipase, k-casein, 
β-casein), lipids (including phospholipids found in milk 
fat globule membrane (MFGM) chitin), phenolics, and 
cytokines. HMOs exhibit antimicrobial activity that 
effectively protects infants against harmful pathogens 
[2]. Lactose serves as an energy source for growth and 
contributes to weight gain in infants [3]. Proteins are 
the primary nutrients in breast milk and provide essen-
tial bioactive substances crucial for infant growth and 
development [4]. Lipids play a vital role by providing 
energy for growth and development while also support-
ing neurological and brain development during infancy 
[5]. A strong correlation has been observed between 
the cytokines and growth factors present in breast milk 
and the onset of specific infant ailments [6]. Breast milk 
is widely recognized by the medical community as the 
optimal source of nutrition for infants. In cases where 

a mother’s own milk is unavailable or insufficient, such 
as with vulnerable preterm infants, donor human milk 
from breast milk banks can serve as a valuable substitute 
to significantly reduce morbidity and mortality rates [7]. 
DHA and ARA are widely recognized as crucial nutrients 
in breast milk, with active lipid molecules being the most 
prevalent additives found in currently available infant for-
mulas on the market. Consequently, they receive consid-
erable attention from mothers when selecting a formula 
for their infants. However, many mothers may not fully 
comprehend the practical applications or specific roles of 
these two substances beyond their importance to infant 
development. In fact, from a scientific perspective, the 
carbohydrates, proteins, phenolic compounds, cytokines 
and lipids (including DHA and ARA) present in breast 
milk all exhibit corresponding physiological activities. 
Specifically regarding DHA and ARA, the primary focus 
of their effects lies within neural growth within the brain 
[8]. Furthermore, in comparison to those who received 
normal amounts, it has been demonstrated that infants 
fed low levels of DHA and ARA exhibited elevated levels 
of omega-6 fatty acids. However, studies have also shown 
that omega-6 may hinder the growth of secondary neu-
rotransmitters and reduce docosahexaenoic acid in the 
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developing brain [9]. An increasing body of study explor-
ing the correlation between breast milk functionality 
and infant development. For instance, during the recent 
COVID-19 outbreak, significant IgA-dominant immune 
responses against SARS-CoV-2 were detected in the 
breast milk of convalescent mothers [10, 11], presenting 
a novel approach and idea for treating emerging corona-
viruses by isolating antibody-active material from recov-
ered mothers’ breast milk [12]. Breast milk is not only 
effectively treating novel coronaviruses, but also provides 
infants with essential immunity, active nutrients and pro-
biotics to promote growth and safeguard intestinal flora. 
As evidenced by reports from the United Nations and 
some studies on neonatal deaths caused by nutritional 
problems annually, breast milk is closely linked to infant 
health. Furthermore, some research has shown that non-
breastfed infants have a higher risk of major diseases 
compared to those who are breastfed [13, 14]. This paper 
presents a comparative and comprehensive analysis of 
the composition and content of key substances in breast 
milk under various conditions, while also providing a 
horizontal comparison with the milk of different mam-
malian species to visually illustrate their distinctive char-
acteristics. The findings aim to offer valuable insights and 
references for promoting optimal growth, development, 
and early nutrient intake in infants.

2  Main composition and properties of milk
2.1  physical and chemical properties
The acidity of breast milk is primarily influenced by 
casein, minerals organic acids, carbon dioxide and citrate. 
However, the pH value of milk may decrease to varying 
degrees over time and during storage, which can serve 
as an indicator for potential quality issues with the milk 
[15]. Fresh breast milk usually has a pH value of around 

7 [16]. Mature breast milk samples frozen at − 20 °C for 
three months exhibited significantly lower pH and signif-
icantly higher titratable acidity values compared to fresh 
breast milk (Table 1) [17, 18]. The main factors contrib-
uting to these changes in pH are the hydrolysis of milk 
lipids and proliferation of bacterial populations. Over 
time under basic environmental conditions, biological 
enzymes and bacteria break down lipids in the milk into 
free fatty acids, resulting in a decrease in pH. However, 
experimental data has demonstrated the presence of pH 
fluctuations in milk, which can be attributed to its inher-
ent buffering capacity. The primary buffering compounds 
in milk include soluble calcium phosphate salts, citric 
acid, bicarbonate, as well as the acidic and basic amino 
acid side chains found on proteins, particularly casein 
[19–21].

The color of breast milk is also one of its most impor-
tant physical and chemical properties, can also reflect the 
composition and physiological status problem of certain 
chemicals. The white color of milk primarily arises from 
the scattering of light by casein micelles (CMs) and milk 
fat globules (MFG), while variations in CM size con-
tribute to the color changes observed in skimmed milk 
[21]. Notably, there have been reports of a moderately 
preterm mother with green-colored breast milk, despite 
her adherence to a proper diet and medication regi-
men. Intriguingly, her newborn appeared healthy with-
out any apparent issues, and over time the green hue in 
her breast milk dissipated. Although ample evidence 
suggests that maternal food choices or medications can 
influence the coloration of breast milk, research findings 
specifically addressing food and medication-induced dis-
coloration remain scarce [22]. In addition, there was a 
temporary occurrence of purple breast milk, leading to a 
precautionary pause in breastfeeding, however, the color 

Table 1 Physicochemical parameters of the fresh human milk (*) and frozen samples in different periods of lactation (x ± SD) [17, 18]

Period of lactation Electrical 
conductivity (mS/
cm)

Refractive index Dynamic viscosity 
(Pas  10–3)

Surface tension 
 (10–3 N/m)

Titratable acidity 
(% lactic acid)

pH

4th day 1.89 ± 0.02 1.35 ± 0.00 2.40 ± 0.01 47.73 ± 1.50 0.070 ± 0.004 6.99 ± 0.03

10th day 1.55 ± 0.03 1.35 ± 0.00 1.44 ± 0.01 47.66 ± 1.10 0.051 ± 0.005 7.07 ± 0.03

20th day 1.46 ± 0.02 1.35 ± 0.00 1.46 ± 0.01 45.60 ± 1.35 0.023 ± 0.008 7.24 ± 0.05

30th day 1.36 ± 0.03 1.35 ± 0.00 1.39 ± 0.01 44.91 ± 1.10 0.075 ± 0.004 6.36 ± 0.01

6th week 1.30 ± 0.02 1.35 ± 0.00 1.35 ± 0.01 40.81 ± 0.95 0.090 ± 0.005 6.36 ± 0.02

9th week 1.40 ± 0.02 1.34 ± 0.00 1.40 ± 0.01 37.14 ± 0.70 0.085 ± 0.005 6.26 ± 0.01

10th week 1.33 ± 0.03 1.34 ± 0.00 1.35 ± 0.01 42.51 ± 0.95 0.105 ± 0.007 6.26 ± 0.04

12th week 1.42 ± 0.03 1.3 ± 0.00 1.28 ± 0.01 35.96 ± 0.80 0.100 ± 0.003 6.34 ± 0.03

14th week 1.43 ± 0.02 1.34 ± 0.00 1.40 ± 0.01 36.97 ± 0.85 0.108 ± 0.005 6.20 ± 0.05

4th month 1.38 ± 0.04 1.35 ± 0.00 1.39 ± 0.01 37.02 ± 0.95 0.125 ± 0.004 6.13 ± 0.04

5th month 1.36 ± 0.04 1.35 ± 0.00 1.32 ± 0.01 34.62 ± 0.75 0.098 ± 0.005 6.25 ± 0.04
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returned to its normal state within a week. Subsequently, 
ultrasound examinations revealed slight ductal protru-
sion in both breasts. The surgeon attributed this staining 
to ductal dilation and hormonal stimulation and con-
firmed no adverse effects on the infant from the presence 
of purple breast milk [23]. Generally speaking, variations 
in the color of breast milk can occur. For instance, green 
hue may be associated with the consumption of vegeta-
bles or beverages containing green additives and poten-
tially influenced by isoproterenol. Rusty tube syndrome 
represents a pathological phenomenon where blood and 
degradation products pass through lactation ducts result-
ing in slightly red, green or brown colored breast milk 
[24]. Nevertheless, these colors are essentially harmless 
and transient. Therefore, it is crucial to appropriately rec-
ognize such occurrences during breastfeeding.

2.2  Carbohydrates
Lactose, a key constituent of breast milk, serves as a vital 
energy source for infants during the early stages of devel-
opment. Its content remains relatively stable through-
out lactation without significant fluctuations [25]. Apart 
from providing essential energy, lactose plays a crucial 
role in regulating milk osmotic pressure and enhancing 
the absorption of critical minerals like calcium [26]. This 
phenomenon may be attributed to the conversion of lac-
tose into lactic acid within the digestive tract, leading to 
pH reduction and alterations in mineral solubility.

Human milk oligosaccharides (HMOs) abundantly 
present in breast milk, represent a significant compo-
nent of human milk carbohydrates ranking third in terms 
of abundance. The average concentration is approxi-
mately 12.9  g/L in mature milk and rises to around 
20.9  g/L four days postpartum. HMOs exhibit remark-
able structural diversity [27, 28]. Ranging from two to 
thirty-two sugars in length, HMO composition differs 
significantly from that found in other mammals [29, 30]. 
Notably, HMOs consist of five distinct monosaccharides 
arranged in various sequences and orientations: l-car-
amel, d-glucose, d-galactose, n-acetylglucosamine and 
n-acetylneuraminic acid [31]. Breast milk contains over 
200 known oligosaccharides, all of which have lactose 
at the reducing end [32]. Additionally, 200 breast milk 
oligosaccharides have been identified, with successful 
resolution of structures for 100 of them [33, 34]. While 
many believe that human milk oligosaccharides (HMOs) 
lack nutritional value for infants, they are actually syn-
thetic glycosyltransferases capable of synthesizing similar 
structures on other human mucous membranes. Moreo-
ver, HMOs function as prebiotics by selectively promot-
ing the growth of beneficial organisms [35]. Previously 
thought to be sterile, but breast milk has been found to 
contain microbes whose composition varies based on the 

mother’s characteristics and breastfeeding process [36, 
37]. Acting as a prebiotic in the infant’s gut, HMOs pre-
vent colonization by pathogenic bacteria while promot-
ing probiotic growth (Fig.  1) [31]. Furthermore, HMOs 
have demonstrated efficacy in treating diarrhea and res-
piratory infections. For instance, one study showed that 
HMOs effectively inhibit Group B streptococcus GBS 
microbiota infection [2], prompting further investiga-
tion into their potential against ESKAPE (Enterococcus 
faecium, Staphylococcus aureus, Klebsiella pneumoniae, 
Acinetobacter baumannii, Pseudomonas aeruginosa, and 
Enterobacter species) pathogens, a group comprising 
Enterococcus faecium, Staphylococcus aureus, Klebsiella 
pneumoniae, Acinetobacter baumannii, and Enterobac-
ter pseudomonas aeruginosa known for their antibiotic 
resistance capabilities [38–40]. The study selected staph-
ylococcus aureus and Acinetobacter baumannii, both of 
which can cause severe health complications in infants. 
The findings revealed that HMO exhibited inhibi-
tory activity against Acinetobacter baumannii, albeit 
less potent than GBS. Surprisingly, HMO had minimal 
impact on the growth of methicillin-resistant Staphylo-
coccus aureus (MRSA) [41] (Table 2). Analysis using live/
dead baclight demonstrated that increasing concentra-
tions of HMO led to enhanced membrane permeability 
in GBS (Table  3), indicating strain-dependent antibac-
terial activity of HMOs. The investigation highlighted 
the significant influence of slight structural variations in 
HMOs on their antimicrobial efficacy (Table 4) [42–44]. 
Numerous studies have also indicated that branched 
chains of HMOs contribute to viral infection prevention 
[45], while it is true that chemical synthesis, enzymatic 
processes or fermentation can produce HMO molecules, 
these approaches remain challenging and costly. There-
fore, further research into various aspects of HMOs is 
warranted [34]. For instance, it remains unclear how bac-
terial or viral infections affect the composition of breast 
milk. If such infections do alter the content composition 
of breast milk, does breastfeeding still remain the pre-
ferred method for infant feeding? These questions con-
tinue to perplex researchers.

2.3  Protein
The bioactive proteins present in breast milk play a 
crucial role in the growth and development of infants, 
making them an important research focus in clini-
cal medicine [46, 47]. Proteomics studies have iden-
tified over 400 types of proteins in human milk, with 
some exhibiting immune response, cell metabolism, 
and protein metabolism functions [48]. These pro-
teins can be classified into three groups—whey pro-
teins (60–80%), casein proteins (20–40%), and MFGM 
proteins (1–4%) based on their abundance levels [49]. 
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Lactoferrin, lysozyme, secretory IgA (sIgA), haptocor-
rin (vitamin B12-binding protein), α-lactalbumin, bile 
salt stimulated lipase (BSSL), κ-casein and β-casein are 
among the bioactive components found within these 
groups [4]. Additionally, after β-casein brown pep-
tide metabolism or α/β/milk protein digestion occurs 
along with glycan-protein binding release by lactofer-
rin decomposition results in numerous small molecules 
that exhibit various biological activities [50–53]. Cur-
rent research has demonstrated opioid activity as well 
as antibacterial and immunomodulatory properties for 
many of these peptides [54, 55]. Some of the different 
types of proteins in breast milk and their specific bio-
logical activities have been explored. How to add these 
proteins, which are crucial to the growth and develop-
ment of infants and young children, into infant formula 
is a prominent research focus among various formula 
manufacturers.

Fig. 1 Overview of known functions of HMOs in the intestine

Table 2 HMO antimicrobial and antibiofilm activity against 
various bacterial pathogens at 24 h [41]

Maximum growth 
inhibition

Maximum 
biofifilm 
inhibition

S. agalactiae 89% 93%

S.aureus none 60%

A. baumannii 11% none

Table 3 Results of the live/dead BacLight Assay [160] live/dead 
cell ratio decrease from control, all groups growth in THB for 24 h

Control: grown in absence of HMOs without add supplement

HMO concn (mg/mL) 20.5 10.25 5.25 2.56

S. agalactiae strain GB590 28% 28% 27% 33%

S. agalactiae strain CNCTC 10/84 28% 30% 43% 30%

S. agalactiae strain GB2 30% 27% 23% 54%
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2.3.1  Casein
Casein, one of the three proteins in human milk, belongs 
to the squamous protein family that is found in all typi-
cal mammals and comprises four isoforms αs1-casein, 
αs2-casein, β-casein and κ-casein. While bovine milk 
contains αs2-casein, it is absent from human milk [56], 
The primary caseins in human milk are β- and κ-caseins 
with a low concentration of α-casein [57], where β-casein 
accounts for 70% of the total caseins [58]. Human 
β-casein has six subtypes ranging from 0 to 5 based on 
its degree of phosphorylation [59]. Among these caseins 
isoforms, κ-casein stabilizes insoluble α- and β-casein 
by forming colloidal suspension. However, due to the 
absence of disulfide bonds formation capability in caseins 
results in a tangled network of micelles. Furthermore, 
although only constituting about 13 percent of human 
milk protein content, but it serves as a primary source 
for active peptides during infant development that corre-
sponds to their growth rate [60, 61]. Some study focused 
on β-casein and κ-casein, with the latter being a high 
protein glycosylation that acts as a bacterial adhesion 
inhibitor, preventing helicobacter pylori from adhering 
to the human intestinal wall. This explains why breastfed 
babies are less susceptible to helicobacter pylori infec-
tion [62], Additionally, lactoferrin also exhibits similar 
effects, highlighting the synergistic effect of milk pro-
teins. The glycans in casein have a structure similar to 

carbohydrates found on gastrointestinal mucosal cells’ 
surfaces and can act as soluble bait for pathogens [63, 
64]. Furthermore, after casein cleavage, carbohydrate-
containing glycomacropeptide has antibacterial adhesion 
properties and other biological activities [65]. β-casein 
is unique due to its multiple phosphorylated amino 
acids on the backbone that facilitate calcium absorption 
through smaller casein phosphopeptides formation upon 
digestion. β-casomorphine (BCM), formed by decompos-
ing β-casein into small molecule active opioid peptides 
such as sleep induction, mucosal development immune 
regulation antioxidant satiation gastrointestinal function 
[4, 66]. Moreover Casein-197, a new endogenous pep-
tide in human milk also has an antibacterial effect mainly 
through inhibition of cell membrane [67]. The investiga-
tion into endogenous peptides continues to progress.

After analyzing casein activity and composition of 
human casein, research on casein of other mammals 
also have many valuable directions. Firstly, it is impor-
tant to investigate the differences in levels and proper-
ties of casein between humans and bovines (Table  5). 
Secondly, the digestibility and kinetics of casein vary 
among different mammalian milks within the human 
intestinal tract. Most caseins are hydrolyzed by duode-
nal fluid during digestion. Notably, horse milk exhibits 
a significantly faster digestion rate compared to cattle 
and sheep milk. This phenomenon may be attributed 

Table 4 Summary of antimicrobial and antibiofilm activities of HMOs against GBS [42–44]

a Strongest activity is bolded. bAverage over 24 h of growth. cAverage at 24 h of growth. dSignificantly increased biofilm formation

HMO Avg growth 
 reductionb

Avg viability 
 reductionb

Avg biofilm 
 reductionc

Avg growth 
 reductionb

Avg viability 
 reductionb

Avg 
biofilm 
 reductionc

lactose (Lac) 3% 0% 0% 0% 2% 0%

2%ctose (Lac) ary of Antim 8% 0% 0% 9% 9% 0%

3-fucosyllactose (3-FL) 15% 0% 4% 0% 4% 0%

Difucosyllactose (DFL) 51% 17% 0%d 0% 11% 3%

Lacto-N-triose II (LNT II) 54% 12% 0%d 22% 8% 0%

3%%to-N-triose II (LNT I) 13% 0% 0% 0% 5% 10%

60%to-N-triose II (LNT I) 18% 0% 13% 0% 4% 9%

Lacto-N-tetraose (LNT) 24% 11% 0%d 0% 0% 28%

Lacto-N fucopentaose I (LNFP I) 1% 24% 35% 0% 10% 0%

Lacto-N-fucopentaose II (LNFP II) 31% 15% 0% 0% 9% 0%

LS-tetrasaccharide a (LST a) 38% 23% 0%d 42% 25% 0%d

Disialyllacto-N-tetraose (DSLNT) 28% 18% 0% 18% 21% 0%

Lacto-N-neotetraose (LNnT) 42% 13% 0% 5% 4% 13%

Lacto-N-fucopentaose III (LNFP III) 26% 14% 0% 0% 9% 6%

Lacto-N-neohexaose (LNnH) 48% 12% 0%d 39% 15% 0%

Para-lacto-N-neohexaose (para-LNnH) 23% 9% 0% 0% 8% 13%

LS-tetrasaccharide c (LST c) 15% 16% 0% 35% 18% 0%

Heterogeneous HMO extract 82% 23% N/A 73% 24% N/A
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to its low content of κ-casein and larger size of casein 
micelles, which render it more susceptible to enzy-
matic hydrolysis. Additionally, horse milk contains 
β-casein with varying degrees of phosphorylation that 
contribute to this rapid digestion process. Interest-
ingly, lysozyme found in mare’s milk remains largely 
intact after being digested by the human body [68]. 
Furthermore, investigating immune and antimicrobial 
activities in mammalian milks is an essential research 
direction since some individuals experience allergic 
reactions when consuming cow’s milk. However, such 
reactions are rarely observed with donkey milk con-
sumption due to lack of cross-reactivity between puri-
fied β-caseins from donkeys and cows [69]. Moreover, 
donkey milk (DM) shares certain components and 
functions with breast milk while also possessing unique 
structural features and compounds. While lactoferrin 
is the active component responsible for antibacterial 
action in human milk, DM exhibits even greater effec-
tiveness through lysozyme, L-amino acid oxidase, and 
various other protein components. It is worth noting 
that DM possesses more stable physical and chemical 
properties compared to other ruminants, thereby bet-
ter preserving its nutritional properties [70]. However, 
bovine milk also holds significant activity and research 
value. For instance, κ-casein found in both human and 
mature cow milk demonstrates anti-human rotavirus 
(HRV) activity. This phenomenon may be attributed 
to the high glycosylation of milk κ-casein and human 
κ-casein. Subsequent experiments revealed a notable 
decrease in anti-HRV activity following deglycosylation 
of κ-casein [71]. Currently, the analysis of protein struc-
ture and properties in human milk remains incomplete 
while ongoing research on mammalian milks continues.

2.3.2  Whey proteins
Although the proportion of whey protein in milk is rel-
atively small. Whey protein is extensively utilized due 
to its rich content of bioactive substances and physi-
ological effects. It has been widely incorporated into 
various whey protein beverages and food products. 
Whey protein exhibits hypotensive properties, with 
hypotensive whey peptides considered as key compo-
nents responsible for this effect. Numerous bioactive 
peptides have been designed to inhibit angiotensin-
converting enzyme (ACE). For instance, α-lactalbumin 
(α-La), β-lactoglobulin (β-La), and glycomacropeptide 
synthesized by plant enzymes demonstrate significant 
ACE inhibitory activity both in vitro and during simu-
lated gastrointestinal digestion. Despite the isolation 
and testing of several antihypotensive whey peptides 
in  vivo, their precise mechanism of action remains 
unclear [72, 73]. Whey protein exerts antibacterial 
effects against a variety of microorganisms includ-
ing gram-negative bacteria (such as bacillus subtilis, 
Escherichia coli, and Pseudomonas aeruginosa), yeast, 
fungi, while also collaborating with lactoferrin to 
enhance immune function. Additionally, it possesses 
therapeutic and regulatory cardiovascular effects 
when combined with other bioactive substances [74]. 
The presence of whey protein in human serum sug-
gests a potential connection between human milk and 
serum, indicating that maternal diet may influence 
the composition of milk. The predominant whey pro-
teins found in human serum include α-whey protein, 
lactoferrin, lysozyme, IgA, and serum albumin [49]. 
β-lactoglobulin is the primary whey protein in milk 
but is absent in breast milk. However, any beta-lacto-
globulin detected in breast milk is likely derived from 

Table 5 Differences in levels, properties, between caseins in human and bovine milk [161–172]

Type of milk Level (g L − 1)

β-Casein κ-Casein αs1-Casein αs2-Casein

Human 1.25 (0.04–4.42) 0.75 (0.1–1.72) 0.33 (0.04–1.68)

Bovine 8.6–9.3 2.3–3.3 8.0–10.7 2.8–3.4

Type of milk Molar mass

β-Casein κ-Casein αs1-Casein αs2-Casein

Human 23.9–24.2 19.0 21.0

Bovine 23.9–24.1 19.0 22.1–23.7 25.2–25.4

Type of milk Structure

β-Casein κ-Casein αs1-Casein αs2-Casein

Human Multi-phosphorylation (0–5P) High glycosylation (carbohy-
drate weight: 40%)

9 potential phosphorylation sites; -0P 
or partially  phosphorylated form

Bovine Major -5P, occasionally -4P form Carbohydrate weight: 10% Major -8P and -9P form 10–13P form
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the mother’s diet [75]. This suggests that the protein 
intake of the mother’s daily diet may influence to some 
extent the type and amount of protein in breast milk.

Lactoferrin is commonly added to formula as a sup-
plement for essential nutrients required by the body. 
Since it cannot be directly extracted from human milk, 
lactoferrin must be obtained from mammalian sources, 
such as bovine or goat milk [76]. Although lactoferrin 
extracted from mammalian milk shares similar phys-
icochemical properties with its counterpart in human 
milk, there might be notable differences in physiologi-
cal activity. Previous studies have suggested a protec-
tive effect of lactoferrin against infections in preterm 
infants [77]. However, recent large-scale trials have 
not demonstrated a clear association between lactofer-
rin supplementation and reduced mortality, morbidity 
rates or infection risk among preterm infants.

Lysozyme present in human milk is an acid-resistant 
glycoprotein with a molecular weight of approximately 
15  kDa. It possesses antimicrobial properties against 
gram-positive bacteria by attacking their cell walls and 
can also synergize with lactoferrin to combat gram-
negative bacteria. Lysozyme has been shown to reduce 
diarrhea duration following acute diarrhea episodes 
among children after rehydration therapy [78]. Fur-
thermore, lysozyme exhibits inhibitory effects on HIV 
replication [49]. Although this inhibition only applies 
to free viruses, it provides insights into addressing the 
severe global issue of HIV transmission.

The most effective whey protein for inflammation 
and viral infections is sIgA immunoglobulin, which 
possesses the ability to recognize receptor bind-
ing sites and directly impact bacterial virulence. This 
capacity to suppress the immune response against 
microbes is referred to as immune rejection [79]. T 
immune rejection of sIgA can be triggered by bacte-
ria as well as potential allergenic antigens, highlight-
ing its significance in the human immune system. SIgA 
and immunoglobulin G have been observed to form 
complexes with antigens present in breast milk [80]. 
The recent COVID-19 outbreak has demonstrated 
that sIgA exhibits immunity towards it, eliciting an 
immune response when present in breast milk [12]. 
These findings also suggest that sIgA may serve as a 
natural antibody against various pathogenic agents. 
However, further research is required to elucidate its 
mechanism and scope of action. Other whey proteins 
are currently under exploration, with some garnering 
significant attention and research due to their specific 
functions and relatively high concentrations. Notable 
examples include a vitamin B12 binding protein and 
osteopontin, both exhibiting potential antibacterial 
activity.

2.3.3  Milk fat globule membrane proteins
Although the protein content of MFGM in milk is only 
approximately 1%, it encompasses over 100 proteins 
that are unique to human milk. The primary molecular 
functions attributed to MFGM proteins include guanine 
nucleotide binding and lipoprotein binding, which play 
crucial roles in lipid synthesis and secretion. Many of 
these bioactive proteins have been found to possess anti-
bacterial and antiviral activities [81–83]. However, the 
specific mechanisms and applications of them, are still 
being investigated.

2.4  Phenols
In a search for references on key nutrients in human 
milk, it was observed that the majority of studies or 
reviews overlooked an important class of compounds 
known as phenols.

Phenols have been extensively studied and shown to 
possess potent biological activities. Furthermore, it has 
been demonstrated that the composition of maternal 
milk during lactation is influenced by various bioactive 
substances present in the mother’s daily diet, which enter 
the milk through plasma and are subsequently consumed 
by the infant [84]. Notably, isoflavones, a common phe-
nolic substance found in human diets and belonging to 
flavonoids, were discovered to exist in breast milk pri-
marily as glucuronic acid and sulfate conjugates based 
on numerous experiments [85]. Various sulfuric acid 
conjugates along with certain glucuronic acids (such as 
4-hydroxybenzoate glucuronic acid, 3-hydroxybenzo-
ate glucuronic acid, dihydroferulic acid glucuronide) and 
some free phenolic acids (vanillic acid, iso-vanillic acid) 
were detected both in urine and breast milk samples. Ini-
tially believed to be only excreted via urine when infants 
were fed soy formula exclusively [86]. Subsequent experi-
ments revealed that consumption of soybeans or soy 
products by lactating mothers significantly increased iso-
flavone content in breast milk [87]. Moreover, prolonged 
maternal intake of soy-based foods resulted in more 
consistent and average levels of isoflavones within breast 
milk samples [88]. Additionally noteworthy is the higher 
bioavailability of isoflavones observed among infants and 
young children compared to adults, even infants as young 
as 4–6  months old exhibited efficient intestinal absorp-
tion of these compounds [89]. The high prevalence of soy 
consumption in certain Asian countries may contribute 
to elevated levels of isoflavones among Asian children. 
The low incidence of breast and prostate cancer in these 
populations may be attributed to their high exposure to 
isoflavones [90]. Furthermore, all samples contained sig-
nificant amounts of important phenols such as hesperi-
din, naringin, and quercetin. Quercetin Q concentrations 
were found to be time-dependent, with no significant 
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decrease observed in breast milk during the period when 
quercetin Q was tested. This suggests that this com-
pound may accumulate in the body even when dietary 
intake reduced. Flavan-3-ols (epicatechin, epicatechin 
gallate, epigallocatechin gallate), flavonols (quercetin 
and kaempferol) and flavanones (naringin and hespere-
tin) were detected at the highest concentrations among 
the various phenolic compounds analyzed [91]. Citrus 
fruits and juices, such as oranges and grapefruits, are 
particularly rich sources of flavonoids. Additionally, gal-
lic catechin and gallic acid ester content were found to be 
high in the experimental testing table but only present in 
eight individuals. Meanwhile, breastfed babies metabo-
lize epicatechin through host-microbial interactions [92]. 
Breastfeeding mothers are typically advised to avoid con-
suming foods or drinks containing flavanol-3-ols due to 
their caffeine content. However, tea consumption cannot 
always be completely avoided despite limitations on its 
intake. Another study reported increased levels of poly-
phenols in cranberries, as well as elevated concentrations 
of polyphenol metabolites in plasma, urine and breast 
milk [93]. These findings are consistent with the pres-
ence of previously identified phenolic metabolites such as 
parental anthocyanins, uroliths, benzoic acid derivatives 
and cinnamic acid derivatives.

In addition to the well-established antioxidant prop-
erties of phenolic compounds, certain flavonoids also 
exhibit promising anti-cancer potential. Moreover, with 
regard to the growth and development of infants and 
young children, phenolic compounds demonstrate evi-
dent neuroprotective and antibacterial effects [94]. Such 
as caffeic acid, exhibit inhibitory effects on the growth of 
bacteria such as escherichia coli, staphylococcus aureus, 
bacillus cereus, listeria monocytogenes and certain yeasts 
[95]. Caffeic acid demonstrates significant antioxidant 
and antibacterial activities in cosmetic emulsions with an 
acidic pH range of 3–5. Moreover, it has been observed 
that caffeic acid exerts its antimicrobial influence on 
various microorganisms (escherichia coli, pseudomonas 
aeruginosa, bacillus wax-like species, thermophilic root 
kokuria species, hyperplastic Staphylococcus aureus 
strains, monocyte Listeria species and Candida albicans) 
through aromatic and phenolic compounds by affect-
ing the cytoplasmic membrane structure and function 
[96]. This leads to alterations in transport activity and 
cellular membrane reactions resulting in increased per-
meability of the cell membrane as well as loss of cellular 
components.

Therefore, lactating mothers can appropriately increase 
the consumption of flavonoid and other phenol-rich 
foods, thereby facilitating nerve growth and development 
in infants, reducing the prevalence of major diseases, and 
enhancing the immune system development in lactating 

infants. The presence of various phenolic compounds in 
breast milk is crucial for the growth and development 
of infants and young children. This aspect has become 
a focal point in guiding infant nutrition research as well 
as one of the key areas of investigation for formula milk 
powder.

2.5  Cytokines
In the growth and development of the human body, a 
diverse array of cytokines plays crucial roles. During 
infancy, these cytokines appear to be more prominent 
as they can induce or inhibit inflammation, facilitate cell 
communication, modulate cognitive function and partic-
ipate in stem cell differentiation. Cytokines are primarily 
produced by immune cells in the human body and exhibit 
variations in their structural sizes. Cytokines encompass 
various types including chemokines, adipokines, inter-
ferons, interleukins, transforming growth factor (TGF), 
and tumor necrosis factor (TNF) [97–99]. Chemokines 
specifically contribute to blood vessel growth, embryo 
development, and organogenesis while also promoting 
inflammation and playing a significant role in disease 
pathogenesis. Notably, they have been closely associated 
with autoimmune diseases and tumorigenesis within the 
human body—highlighting their importance as research 
subjects. Interferons represent cellular factors rapidly 
produced by the host upon viral infection with particular 
relevance to double-stranded RNA viruses. Interleukins 
are another class of immune-related cytokines that pri-
marily function as signal transducers within the immune 
system [100, 101]. Adipocytokines encompass a range of 
compounds, including leptin, adiponectin, resistin, vis-
fatin, chemokine, angiotensin and other molecules. The 
primary function of adipokines is to directly or indirectly 
participate in apoptosis, angiogenesis, atherosclerosis 
and inflammation. Furthermore, it has been established 
that adipokines also exhibit regulatory effects on human 
blood pressure [102, 103]. Tumor necrosis factor α (TNF-
α) is a cytokine consisting of 157 amino acids and exists 
in two forms as pro-inflammatory molecules. It possesses 
diverse biological activities such as tumor cell killing or 
inhibition, enhancement of neutrophil phagocytic ability, 
anti-infection properties, endogenous pyrogenic effects, 
facilitation of myeloid leukemia cell differentiation into 
macrophages and promotion of cell proliferation and 
differentiation [104–106]. The diverse array of cytokines 
plays pivotal roles in the human body and possesses sig-
nificant research and utilization value.

In addition to the classification analysis of cytokines, 
various studies have focused on the biological activi-
ties exhibited by cytokines present in breast milk. 
Cytokines found in breast milk are crucial for neonatal 
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development. Breast milk serves as the main source of 
cytokines during infancy with particular emphasis on 
anti-inflammatory factors. These factors demonstrate 
potent anti-inflammatory activity which can modulate 
inflammatory processes, stimulate wound healing and 
activate maintain immune responses within the body. 
For instance, TGF-b regulates cellular homeostasis and 
inflammation while inducing or inhibiting immune 
responses. Animal experiments have demonstrated 
that TGF-b exerts protective effects by reducing intes-
tinal cell apoptosis [107]. In a study, chondroitin sul-
fate proteoglycan was found to isolate TGF factors in 
breast milk. After enzymatic decomposition, the pro-
tective, growth and anti-inflammatory effects of TGF2 
were detected [108]. However, TGF-like cytokines 
were positively correlated with TH1, TH2 cells as well 
as other allergic factors. This correlation has led to the 
deliberate absence or reduction of TGF-like cytokines 
in certain formula milk powders to minimize the risk 
of allergies [109]. Another cytokine called MFG-E8 has 
been experimentally proven to significantly increase 
mortality rates in mice when lacking this particular 
cytokine. Neonatal inflammation and sepsis-related 
mortality are particularly affected by its absence. 
These findings suggest that LGF8 may hold potential 
as a therapeutic agent for neonatal leukemia treat-
ment [110]. Additionally, another experiment demon-
strated that this cytokine plays a significant role in the 
pathogenesis of rheumatoid arthritis, subsequent bone 
loss exacerbating symptoms and prevalence of arthri-
tis. Therefore, targeting this specific cytokine could be 
considered for therapeutic interventions against arthri-
tis [111–113]. After a comprehensive understanding 
of cytokines, an intriguing phenomenon emerges. The 
uncontrolled release of a large quantity of pro-inflam-
matory cytokines by the immune system leads to the 
occurrence of a cytokine storm, characterized by an 
excessive and unregulated immune response that trig-
gers cascading reactions an unstoppable process. It 
is well-established that cytokines in the human body 
are subject to both positive and negative feedback 
regulation, maintaining the delicate balance between 
growth, development as well as inflammation produc-
tion, encompassing both detrimental and beneficial 
effects on human health. However, the precise origin of 
cytokines in breast milk remains elusive. One potential 
source could be mammary epithelial cells. Addition-
ally, white blood cells such as neutrophils, monocytes, 
macrophages and lymphocytes migrate to the breasts 
through lymphatic and systemic circulation [114–118]. 
Nevertheless, whether maternal inflammation-induced 

cytokine storms can inflict similar harm on infants 
necessitates further investigation.

3  Research and development prospect of breast 
milk lipids

3.1  Lipids in breast milk
Lipids are essential components in all types of milk, 
including human milk, where they play a crucial role. 
They can be broadly categorized into triacylglycerols, 
phospholipids, cholesterol and free fatty acids [5]. Fatty 
acids encompass both saturated and unsaturated forms. 
The addition of unsaturated fatty acids to formula is 
often found in various media and advertisements due to 
their significant impact on neonatal health [119]. Conse-
quently, numerous studies have focused on investigating 
the content and types of lipids present in breast milk to 
provide guidance for infant formula development. Exper-
imental findings indicate that triglycerides account for 
approximately 98.7% of general breast milk lipid content, 
while cholesterol represents about 0.3%, free fatty acids 
around 0.1%, phospholipids roughly 0.9%, with trace 
amounts of other lipid contents detected as 1,2-diacyl-
glycerol [120]. Most of these lipids exist within human 
lactolipid microspheres, particularly those with notable 
biological activity such as sphingomyelin, phosphatidyl-
choline, phosphatidylinositol, phosphatidylserine and 
phosphatidylethanolamine. These microspheres also con-
tain short-chain or medium-chain fatty acids esterified at 
position 3 of the glycerol skeleton. However, palmitic acid 
is predominantly esterified at position 2 in human milk 
[121]. The unique structure of long-chain palmitic acid 
provides effective protection against saponification with 
calcium and magnesium, thereby preventing its hydroly-
sis into free palmitic acid. Infants struggle to digest and 
absorb free fatty acids, resulting in impaired absorption 
of essential minerals like calcium [122]. Research has 
indicated that the presence of free palmitic acid can also 
contribute to infant constipation [123], which explains 
why some infants experience relief from constipation and 
dry stool upon discontinuing formula milk powder con-
sumption in favor of breast milk.

3.2  Lipids in milk fat globule membrane
MFG represents the primary form of lipids in human 
and other mammalian milk, with a highly similar struc-
ture between mammals and humans. The core of MFG is 
TG, which is packaged within MFGM a three-layer mem-
brane structure composed of phospholipids, cholesterol, 
and MFGM protein (Fig.  2). The inner layer of this lac-
toglobular membrane’s three-layered structure consists 
of a monolayer formed by the endoplasmic reticulum of 
breast cells while the outer bilayer comprises a bilayer 
formed by the apical membrane of breast epithelial cells. 
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Due to its complex composition primarily consisting of 
lipid, cholesterol and milk lipid globular membrane pro-
tein components, MFGM contains various bioactive 
substances that contribute to milk’s bioactivity [83, 124]. 
In terms of lipids, the lipids in milk can be broadly cat-
egorized as polar and nonpolar lipids. The polar lipids in 
milk are primarily found on the milk lipid globule mem-
brane, with lactomyelin (glycerophosphingomyelin and 
sphingomyelin) serving as representative polar lipids 
along with other types of lipids such as phosphatidylcho-
line (PC), phosphatidylethanolamine (PE), phosphati-
dylinositol (PI) and phosphatidylserine (PS). These lipids 
are commonly classified and reported as phospholipids 
due to their significant presence in milk. Given that leci-
thin has been shown to promote infant brain develop-
ment [125], it has garnered increasing attention and is 
now used as a reference standard for fat content in for-
mula milk powder [126]. Lipids in MFGM exhibit a mul-
titude of significant biological activities. For instance, 
phospholipids play a crucial role in mediating cell growth 
and differentiation [127], enhancing neural and cogni-
tive development [128, 129], improving brain function 
and neural plasticity [130], promoting postpartum neu-
romuscular development [131], regulating postprandial 
cholesterol levels and exerting anti-infective effects [132–
134]. Sphingomyelin has potential anticancer properties 
[135], phosphatidylcholine possesses antitoxin properties 
[136] and the hydrolysate of phospholipids demonstrates 
antibacterial activity [137]. Recent experiments have pro-
vided evidence for statistically significant anti-inflam-
matory effects of MFGM lipids [138], as well as their 

inhibitory and attenuating effects on Escherichia coli-
induced diarrhea [139]. Furthermore, they may also con-
tribute to the inhibition of rotavirus infection [140]. The 
diverse range of biological activities exhibited by simple 
lipids present in MFGM underscores the need for further 
comprehensive research on this subject. Simultaneously, 
existing studies serve as valuable references providing 
important insights into infant formula research.

3.3  Lipids in breast milk during different periods
Breast milk serves as the primary source of nutrition 
for infant growth and development. Extensive research 
conducted by numerous scholars has revealed varia-
tions in lipid composition and content among breast 
milk secreted by mothers during different lactation peri-
ods and delivery cycles. For instance, from 1 to 6 months 
postpartum, there is a general decline in overall lipid 
content. Older mothers exhibit significantly lower lev-
els of polyunsaturated fatty acids (PUFAs) and linoleic 
acid compared to younger mothers, while proportions 
of eicosapentaenoic acid, docosahexaenoic acid (DHA), 
monounsaturated fatty acids, n-3 LC PUFAs, n-3 and n-6 
are higher in older mothers [141]. However, experimental 
evidence does not conclusively establish a direct correla-
tion between fat content and age. Among pre-pregnancy 
women with higher body mass index values, the concen-
tration of monounsaturated fatty acids tends to be lower. 
Moreover, an increase in body mass index corresponds 
to elevated energy, fat, protein and galactose levels. Nev-
ertheless, these differences were found to be statistically 
insignificant after conducting several experiments [142]. 

Fig. 2 Human milk fat globules and human milk fat globule membrane
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Preterm breast milk exhibits significantly higher aver-
age fat values than full-term breast milk does. Moreover, 
average fat content demonstrates an upward trend with 
decreasing gestational weeks [25]. The concentration of 
phospholipids (PL) in preterm milk exhibits a significant 
decrease, while maintaining stability from colostrum to 
maturity. Conversely, the concentration of phosphati-
dylcholine (PC) in colostrum is initially higher during 
the transition and mature stages, gradually declining to 
a lower level. In comparison to full-term milk, preterm 
milk demonstrates an elevated presence of medium chain 
fatty acids and higher levels of phosphatidylethanolamine 
(PE) and PC [143]. Furthermore, the content of 18:1 N-9 
fatty acids in preterm milk surpasses that found in full-
term milk. Although no notable difference exists regard-
ing the content of 18:1 N-9 in full-term milk, while there 
is a discernible downward trend observed within preterm 
milk. Additionally, another N-9 fatty acid known as 20:1 
N-9 displays significantly higher levels in term milk com-
pared to those present in preterm infants [126]. The ara-
chidonic acid (20:0) content is lower in preterm infants’ 
milk, while the monounsaturated fatty acid (MUFA) con-
tent is significantly higher in term milk compared to pre-
term infants’ milk. Additionally, the alpha-linolenic acid 
(ALA) content is higher in preterm infants’ breast milk 
than in full-term breast milk [144]. Furthermore, vari-
ations exist in the levels of 235 different lipids between 
preterm and full-term breast milk samples [145]. How-
ever, studies have demonstrated that there are no differ-
ences in the proportions of long-chain polyunsaturated 
fatty acids (LCPUFA) between full-term and preterm 
milk samples [146], as well as no disparities in the ratios 
of arachidonic acid (ARA) and docosahexaenoic acid 
(DHA) between full-term and preterm milk samples one 
week post-production [147]. Some experiments indicate 
that within the first week after delivery, ARA and DHA 
contents are nearly twice as high in preterm infants com-
pared to full-term milk [148]. Reported higher levels of 
ARA in breast milk from full-term mothers compared to 
preterm samples. Observed a gradual decline in the pro-
portion of ARA and docosahexaenoic acid (DHA), par-
ticularly in full-term milk samples, as the levels of ARA 
and DHA increased by 1.5–2 times in preterm milk dur-
ing the sixth month of lactation [149]. This experiment 
highlights that breastfeeding mothers of preterm infants 
are unable to compensate for the increased demand for 
long-chain polyunsaturated fatty acids (LCPUFA) result-
ing from premature birth. Therefore, solely considering 
changes in lipid composition within breast milk allows 
us to draw a conclusion that this paper aims to provide a 
reference for formula milk powder by summarizing and 
observing relevant characteristics of breast milk. How-
ever, there remain numerous unresolved issues regarding 

the study on composition and changes in breast milk, 
along with several new directions worthy of further 
investigation.

3.4  Lipids in mammalian milk provide a reference 
for formula

Breast milk is the optimal source of nutrition for infants 
during early stages of growth and development. How-
ever, when breastfeeding is not possible, infant formula 
serves as a suitable alternative. Typically, formula milk 
powder consists of artificially extracted materials or 
plant extracts [150, 151]. Nevertheless, current research 
reveals several limitations associated with this method of 
formula production. Consequently, an increasing number 
of formula milk powders are incorporating milk from dif-
ferent mammals to bridge the gap between artificial for-
mulas and breast milk. Notably, variations in fatty acid 
composition exist among different mammalian milks 
[152]. Goat milk is believed to be more easily digestible 
than cow’s milk due to its resemblance to the nutritional 
profile required for infant growth and development 
[153–155]. Its uniqueness lies in having up to 70% of pal-
mitic acid located at the sn-2 position within triglyceride 
molecules [121], facilitating easier digestion of fatty acids 
by infants while reducing calcium loss. In contrast, most 
palmitic acid in cow’s milk is situated at the sn-1, -3 posi-
tions within triglyceride molecules. Both goat milk and 
cow’s milk serve as natural sources of sn-2 palmitic acid 
[156]. Studies have demonstrated that goat’s milk exhibits 
a higher fat content of 6.9 ± 1% compared to well-known 
mammals [157]. Conversely, mare’s milk (1.21%), human 
milk (3.64%), and cow’s milk (3.61%) display lower fat 
contents, while certain other mammals such as hat seal 
(61%), reindeer’s milk (22.46%) exhibit significantly 
higher fat contents [158] and water buffalo milk reach-
ing up to 15%. However, the elevated cholesterol levels in 
goat’s milk exert a protective effect on infants and facili-
tate cholesterol metabolism during later stages of infancy. 
Ruminant and human milks demonstrate considerably 
lower concentrations of free fatty acids and phospholip-
ids compared to mare’s and donkey milks. Non-rumi-
nant milks exhibit low proportions of saturated fatty 
acids and monounsaturated fatty acids but high levels of 
unsaturated fatty acids, whereas goat’s milk displays the 
highest concentration of short-chain fatty acids among 
all studied species [159]. Based on these findings along 
with the known effects of fatty acids on the human body, 
the control of lipid and other nutrients in formula milk 
powder must be strengthened to mimic the composi-
tion of human breastmilk lipids while also incorporat-
ing polar lipids as long-chain polyunsaturated fatty acid 
sources in infant formulas, and reference to the composi-
tion of other mammalian milk to further optimize infant 
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formula to meet the nutritional needs of infants in vari-
ous situations. Furthermore, regulating the composition 
and content of phospholipids in powdered formula based 
on those found in human breastmilk MFGM is essential 
for meeting infants’ varying needs throughout different 
developmental stages.

4  Conclusion
An increasing number of studies are being conducted 
on breast milk, primarily focusing on the identifica-
tion and exploration of various bioactive components 
present in breast milk, with the aim of discovering 
potential therapeutic precursors for certain diseases. 
Alternatively, through comprehensive analysis and 
characterization of the composition and content of 
diverse substances and bioactive compounds in breast 
milk, along with integration of experimental data and 
findings, it is recognized by the World Health Organi-
zation as a crucial source of nutrition during infant 
growth and development. Consequently, these data 
can serve as an accurate reference for developing suit-
able alternatives to breastfeeding for infants who are 
unable to do so. Additionally, there exist intriguing 
aspects that have received limited attention thus far for 
instance, certain mammals lack visual observation abil-
ities at birth but possess innate recognition capabilities 
towards their mothers without any visual cues while 
solely relying on consuming breast milk. This phenom-
enon prompts contemplation regarding the presence 
of active signaling molecules within breast milk. Irre-
spective of the perspective considered, research per-
taining to breast milk remains a highly significant field 
with substantial practical implications that necessitates 
meticulous exploration.
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