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Abstract 

Metagenomics has opened new avenues for exploring the genetic potential of uncultured microorganisms, which 
may serve as promising sources of enzymes and natural products for industrial applications. Identifying enzymes 
with improved catalytic properties from the vast amount of available metagenomic data poses a significant chal‑
lenge that demands the development of novel computational and functional screening tools. The catalytic proper‑
ties of all enzymes are primarily dictated by their structures, which are predominantly determined by their amino 
acid sequences. However, this aspect has not been fully considered in the enzyme bioprospecting processes. With 
the accumulating number of available enzyme sequences and the increasing demand for discovering novel bio‑
catalysts, structural and functional modeling can be employed to identify potential enzymes with novel catalytic 
properties. Recent efforts to discover new polysaccharide‑degrading enzymes from rumen metagenome data using 
homology‑based searches and machine learning‑based models have shown significant promise. Here, we will explore 
various computational approaches that can be employed to screen and shortlist metagenome‑derived enzymes 
as potential biocatalyst candidates, in conjunction with the wet lab analytical methods traditionally used for enzyme 
characterization.
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1 Introduction
Enzymes are becoming increasingly valuable for the 
development of industrial catalysts due to their ability to 
significantly enhance the rate of biochemical reactions. 
High efficiency and selectivity are crucial characteristics 
for choosing enzymes for commercial applications in 
bio-catalysis, biofuels, and bioremediation. It is not sur-
prising that microbial enzymes make up most commer-
cial enzymes (88%) used in industry, as they offer several 
advantages over plant- or animal-derived enzymes [1, 2]. 
These advantages include higher stability, greater pro-
duction yield, easier optimization, and increased cost-
effectiveness in the industrial applications [3, 4]. Despite 
their advantages, the number of commercially avail-
able microbial enzymes is limited. The use of traditional 
culture-dependent microbiological methods to screen 
natural diversity for unknown enzymes is a common 
approach to obtaining appropriate microbial biocata-
lysts with desirable properties. This approach involves 
enriching microorganisms from environmental samples 
in the presence of appropriate substrates, isolating pure 
cultures, and screening microbial isolates to ultimately 
identify enzymes of interest [5]. While this method has 
proven successful in identifying many commercially 
available enzymes, more than 99% of microorganisms 
present in environmental samples cannot be cultured 
using standard laboratory techniques [6]. The conse-
quence of this limitation is a potential loss of microbial 
diversity and the opportunity to discover novel enzymes 
with desired catalytic properties.

Advances in next-generation sequencing technologies 
have made it possible to access the genome sequences of 
all microorganisms present in an environment, without 
the need for their isolation and cultivation. The process 
of subjecting the DNA extracted from a community of 
microorganisms recovered from an environmental sam-
ple to whole-genome shotgun sequencing is referred 
to as metagenomics [7, 8]. The method enables direct 
sequencing of environmental DNA (eDNA) to explore 
community diversity, functional activities, and interac-
tions of microorganisms inhabiting a specific environ-
ment [9]. Metagenomic sequences can be assembled de 
novo into contigs that represent the genomic segments of 
microorganisms from which they originate. This allows 
us to access the coding sequences of enzymes from 
uncultured microorganisms and predict their functional 
potentials under specific environmental conditions.

This approach can be used to explore the genomic 
sequences of unknown microorganisms residing in an 
environment for the discovery of novel enzymes with 
improved catalytic properties [10, 11]. It is demon-
strated by the steadily increased number of predicted 
protein-coding sequences from metagenome sequencing 

of microbial communities obtained from diverse envi-
ronments. Despite the current annotation pipelines, a 
significant portion of these sequences remains function-
ally uncharacterized, leaving many of them as unknown 
entities. The challenge is further magnified during the 
identification of a particular enzyme with an enhanced 
catalytic property. To tackle this problem, there is a 
growing interest in developing novel computational tools 
that can model the catalytic properties of enzymes by uti-
lizing shared structural and functional features preserved 
in their amino acid sequences.

The current experimental approaches for identifying 
and characterizing new enzymes are limited in terms 
of speed and throughput, resulting in a gap between 
the numbers of discovered sequences and enzymes that 
are experimentally characterized with respect to their 
catalytic properties [12]. Assaying the activity of these 
enzyme sequences, especially the large number of novel 
enzymes predicted from metagenomic sequences, is 
impractical. Additionally, to realize the industrial appli-
cation of an enzyme, it needs to be designed to meet 
specific process requirements [13]. All these limita-
tions highlight the importance of physicochemical and 
structural features to be considered when searching for 
enzymes with properties suitable for a specific industrial 
or biotechnological application. The current approaches 
for in-silico enzyme discovery rely on the properties of 
enzymes inferred from phylogenetic analyses, sequence 
similarity searches, genomic positional information, 
three-dimensional (3D) structural modeling, and pre-
dictions based on machine learning [14]. Phylogenetic 
analyses can help infer the common ancestral origin of 
enzymes with shared catalytic properties. The sequence 
divergence that occurs during natural evolution can 
introduce variability in catalytic properties. The inclu-
sion of sequences from catalytically efficient enzymes 
in phylogenetic analyses can help to identify distantly 
related sequences that may possess novel functional 
activities. Deep learning models can be employed to pre-
dict the structures of target enzymes by utilizing multiple 
sequence alignments and protein contact maps of many 
metagenomic sequences [15, 16]. Sequence similarity 
networks are valuable tools for identifying new candi-
date protein subfamily clusters by leveraging pairwise 
sequence similarities [17]. Genomic context provides 
important information regarding substrates, cofactors, 
bioactivity, and other co-regulated genes associated with 
the target enzymes [14]. For example, enzymes target-
ing a specific glycan substrate can be identified based on 
their genomic localization in polysaccharide utilization 
loci [18, 19].

Most deciphered 3D structures to date pertain to the 
enzymes isolated from cultured organisms, leaving 
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limited experimental evidence regarding the structural 
characteristics of enzymes discovered through metage-
nome sequencing. Predicting protein function from 
structural data presents a significant challenge due to 
numerous instances of highly conserved protein folds 
that catalyze different reactions [14]. However, perform-
ing protein structural similarity searches is a crucial step 
in narrowing down the sequences that encode enzymes 
of interest from metagenome datasets. This approach 
aids in gaining functional insights into unknown 
sequences, eliminating the need for costly wet lab experi-
ments. When combined with sequence homology-based 
searches, this approach possesses significant power in 
shortlisting specific enzymes within vast metagenomic 
datasets. While the 3D structure of enzymes plays a cru-
cial role in their functionality, its utilization in the in-sil-
ico bioprospecting of novel enzymes remains limited.

Although several review papers have investigated the 
application of function-based, homology-based, and 
machine-learning-based methods to identify, predict, 
and annotate enzyme-encoding sequences in metage-
nome data [14, 20–24], there is a lack of knowledge 
regarding the integration of structural data into anno-
tation pipelines. In this review, we provide an overview 
of various approaches and pipelines currently employed 
to explore metagenomic sequences for the discovery of 
new enzymes. In particular, we will emphasize the sig-
nificance of incorporating structural data when searching 
for potential biocatalysts and natural bioproducts in large 
metagenome datasets.

2  Bioprospecting of novel enzymes 
from environmental samples

Microbes residing in diverse environments, includ-
ing soil, hydrothermal vents, saline or alkaline lakes, 
acid mine drainage, permafrost, hot springs, wastewa-
ter treatment sludges, and animal guts, offer the poten-
tial for discovering novel enzymatic processes [9]. The 
microbial communities inhabiting these environments 
are typically complex in terms of their composition and 
abundance. It is also worth noting that most members 
within these communities may not possess desired func-
tions. As a result, comprehensive screening approaches 
are necessary to identify the desired enzymatic process in 
a complex environmental sample. Traditional screening 
approaches involved cultivating microorganisms under 
defined culture conditions and subsequently screening 
for microbial clones that exhibit the function of interest. 
As noted earlier, this approach is unable to capture all 
microbial diversity in the environment, a phenomenon 
known as the “great plate count anomaly” [25].

To address the limitations associated with culture-based 
screening approaches, culture-independent methods were 

introduced. These methods are classified into two major 
approaches: functional-based screening (FBS) and sequence-
based screening (SBS). Figure  1 provides a comprehensive 
summary of culture-independent screening approaches 
commonly used to search for novel biocatalysts in eDNA.

2.1  Function‑based screening (FBS)
FBS involves direct cloning of eDNA libraries into suit-
able vectors, followed by functional screening in sur-
rogate hosts such as E. coli [26]. During the screening 
process, the clones are examined to identify enzymes 
capable of utilizing a specific substrate or producing a 
specific product. After identifying the clones with desired 
functional properties, the DNA encoding for the function 
of interest is sequenced to identify the gene responsible 
for observed enzymatic activity. It is important to note 
that while this method has the potential to screen thou-
sands of eDNA libraries, there are several limitations. 
The method becomes labor-intensive due to the neces-
sity of analyzing a large number of clones to encompass 
the entire range of microorganisms present in an envi-
ronmental sample [27]. The lack of expression of DNA 
originating from distantly related microorganisms in the 
surrogate host may result in a reduced representation of 
significant diversity in the screened samples. In addition, 
if the desired function relies on the coordinated activity 
of multiple enzymes, it is essential for all the encoding 
genes clustered in the same genomic region to be recov-
ered in a single clone [28].

One significant advantage of FBS is its independence 
from prior knowledge of gene sequences or even the 
existence of such enzymes. Nevertheless, screening a 
typical metagenome library necessitates the evaluation 
of a substantial number of clones. As the complexity of 
the library increases, this process becomes labor-inten-
sive, time-consuming, and expensive. To expedite the 
screening process, robotic instruments have been devel-
oped, allowing for efficient processing of complex eDNA 
libraries at a rate of up to 10 million per day. This method 
enables assaying for a single substrate, thereby reducing 
the chance of identifying highly promiscuous and multi-
functional enzymes [20]. The success of identifying a 
target enzyme depends on several factors, including the 
assay method, gene size, gene abundance in the metagen-
omic sample, host-vector system, and the efficiency of 
gene expression in the surrogate host [26, 29].

FBS has been widely used for screening novel enzymes, 
including cellulase [30], esterase [31, 32], carboxylesterase 
[33], and lipases [34] from diverse environmental sources. 
In a recent study using activity-based screening through 
complementary sequence and structure analyses, a novel 
esterase was isolated by investigating lipolytic enzymes 
from a compost metagenome library [35]. The same 



Page 4 of 17Ariaeenejad et al. Natural Products and Bioprospecting            (2024) 14:7 

approach was used to identify four thermo-alkaliphilic 
glycosyl hydrolases from wheat straw-degrading microbial 

consortia [36]. These enzymes hold the potential for utili-
zation in lignocellulosic biomass-degrading cocktails.

Fig. 1 Culture‑independent screening methods for mining novel enzymes from environmental samples. Both function‑based and sequence‑based 
methods can benefit from the information gained through structural analysis to refine the initial list of candidate enzymes



Page 5 of 17Ariaeenejad et al. Natural Products and Bioprospecting            (2024) 14:7  

2.2  Sequence‑based screening (SBS)
The conventional methods for enzyme discovery are 
generally laborious, costly, resource-intensive, and time-
consuming, with no guarantee of success. Due to the 
availability of a vast number of manually curated pro-
tein sequences as well as experimentally characterized 
enzymes in public databases, the development of novel 
computational approaches has become imperative to lev-
erage this information in the enzyme discovery process 
[2, 24]. Specifically, these valuable resources can be uti-
lized to construct machine-learning models that can aid 
in biocatalyst prospecting. SBS methods expedite the 
discovery of novel enzymes while minimizing resource 
usage and achieving a higher success rate.

Prior to the emergence of metagenome sequenc-
ing, SBS relied predominantly on the design of prim-
ers or probes derived from conserved regions of known 
enzymes to amplify or screen eDNA libraries in the quest 
for novel enzyme sequences. This method allows for 
the identification of novel candidate variants of known 
enzyme sequences but does not possess the capabil-
ity to discover entirely new enzymes [27]. Metagenome 
sequencing has revolutionized the field by enabling the 
sequencing of complete DNA extracted from a specific 
environmental sample [37]. Considering this capability, 
we can now delve into the genetic constituent of every 
microorganism present in any environment and gain 
access to all coding sequences, enabling the exploration 
of any enzymes. The primary challenge associated with 
this approach lies in accurately annotating the coding 
sequences predicted in metagenomic sequences. Pres-
ently, the annotation process relies on sequence homol-
ogy searches against known genes or pathways available 
in public databases. However, the process lacks optimal 
efficiency, with over 40% of protein-coding sequences 
remaining unannotated and labeled as unknown or 
hypothetical. The situation becomes more complex 
when searching for an enzyme that catalyzes a specific 
hydrolytic or biosynthetic reaction within a vast num-
ber of protein-coding sequences predicted in a metagen-
omic dataset. The search for a new enzyme through 
bioprospecting of metagenomic sequences can be car-
ried out by using two general approaches: de novo and 
reference-based, depending on the availability of known 
enzyme families [14]. The de novo discovery of new bio-
catalysts using SBS is challenging, particularly when there 
is no prior knowledge about the function of interest. 
Recent studies suggest that predicting protein structures 
and comparing structural models using residue-residue 
contact maps can be used to model unknown structures 
and assist in identifying new biocatalysts in metagen-
omic datasets [38, 39]. Reference-based methods can be 
employed when there is existing knowledge about the 

members of a specific class of enzymes, but the search is 
for enzymes with distinct functionality. Identifying new 
enzymes may be less challenging when there are experi-
mentally characterized members, compared to situations 
where there is a lack of prior knowledge about enzyme 
function and structure. Robinson et  al. [14] proposed a 
roadmap for metagenomic enzyme discovery, termed 
“enzyme expansion”, which aims to discover enzymes 
with novel catalysts, substrate specificities, and reac-
tion conditions. Considering that both the reference-
based and “enzyme expansion” methods aim to identify 
enzymes with novel catalytic properties, we have inte-
grated them as a reference-based approach. It is clear that 
de novo and reference-based methods of enzyme discov-
ery can effectively leverage homology-based (HB), struc-
tural-based (SB), and machine learning-based (MLB) 
analyses.

2.2.1  Homology‑based (HB) analysis
Sequence homology search can be used to identify 
sequences that are closely or distantly related to known 
enzymes. The method holds significant potential for dis-
covering novel functional homologs of known enzymes 
[2]. The approach is not only effective in expanding 
homologs of known enzymes but also capable of search-
ing for enzymes with unique functions. The search is 
typically conducted on the sequences deposited in public 
databases, including Pfam, RefSeq, UniPort, and NCBI 
non-redundant protein (NCBI-nr). Due to inadequate 
annotations in most publicly available databases, the 
search results may include hits that are incorrectly anno-
tated [15], thus the results must be manually curated. 
Several tools have been developed to facilitate the search 
for closely related sequences, including BLAST [40], 
DIAMOND [41], and USEARCH [42]. Search algo-
rithms based on either profile Hidden Markov Models 
(HMMs) such as HMMER [43] or position-specific scor-
ing matrices such as PSI-BLAST [44] can be utilized to 
identify distantly related sequences. In addition, auto-
mated annotation platforms such as MetaHMM [45] 
and ANASTASIA [46] have been developed to facilitate 
enzyme discovery through homology-based search. The 
success of the method hinges on selecting the appropri-
ate target database for the homology search and ensuring 
the accuracy of annotations for the sequences within that 
database.

The sequence homology search can be utilized to nar-
row down a large set of ORFs predicted in a complex 
metagenome dataset, specifically focusing on enzymes 
with unique functional characteristics, including ther-
mostability, pH stability, specific activity, and more [47]. 
In a study by Elbehery et  al. [48], HB analysis was car-
ried out to identify two antibiotic resistance genes from 
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the metagenome of Atlantis II Deep Red Sea brine 
pool. Protein-coding sequences were annotated against 
sequences deposited in the Comprehensive Antibiotic 
Resistance Database (CARD, https:// card. mcmas ter. ca/) 
using BLASTx, leading to the successful identification 
of two ORFs encoding a class A beta-lactamase and an 
aminoglycoside-3’ phosphotransferase. The properties 
of these enzymes were further elucidated through 3D 
structure prediction. Garg et al. [49] applied HB analysis 
to identify a novel cellulase (Cel5R) from a soil metagen-
ome. The enzyme was subsequently characterized for its 
salt- and heat-stable properties. The 3D structure of the 
enzyme was determined through crystallography. In the 
landmark study leading to the development of the ANA-
STASIA platform, a novel esterase named EstDZ4 was 
mined in a hot spring metagenome [46]. The HB analysis 
proved successful in identifying EstDZ4, which showed 
thermostable properties, making it a promising candidate 
for biotechnological application. The result of this study 
demonstrated the efficacy of in-silico analyses in identi-
fying enzymes that exhibit remote similarity to known 
sequences.

2.2.2  Machine learning‑based (MLB) analysis
In HB analysis, it is assumed that homologous 
sequences share similar functions. However, it is 
important to acknowledge that there can be exceptions 
to this rule, where two closely related sequences may 
possess different functions. Consequently, relying solely 
on sequence homology may lead to wrongly interpreted 
or overlooked functional variations. To address these 

limitations, additional analyses and experimental vali-
dations are often necessary to accurately determine 
functional attributes of closely related sequences. To 
incorporate additional features in function prediction, 
methods that leverage MLB analysis can be employed. 
MLB analysis utilizes advanced algorithms and models 
to learn patterns and relationships from various data 
sources, including sequence information, structural 
properties, physicochemical characteristics, and func-
tional annotations [50, 51]. By considering a broader 
range of features, MLB analysis can enhance the accu-
racy and specificity of function prediction, enabling 
the identification of enzymes with unique and diverse 
functional characteristics. Moreover, MLB algorithms 
can detect non-linear relationships and patterns in the 
data, increasing the likelihood of discovering novel 
enzymes compared to HB analysis. MLB analysis has 
demonstrated its effectiveness in uncovering hidden 
functional relationships and facilitating the discovery 
of novel biocatalysts with specific catalytic activities 
and desirable properties.

Several MLB approaches have been developed for the 
functional classification of the enzymes. Table  1 lists 
some of the methods that utilize MLB models for the 
annotation of protein sequences and the prediction 
of EC numbers. It is important to note that while the 
methods presented in Table 1 primarily focus on iden-
tifying mono-functional enzymes, there are specialized 
tools such as mlDEEPre [52] that enable the predic-
tion of both multi-functional and mono-functional 
enzymes.

Table 1 Machine learning algorithms that are used for EC number prediction (all methods are accessible through web server)

Method Feature type Machine learning algorithm(s) EC level prediction Website Refs.

EzyPred pseudo PSSM (Pse‑PSSM) and FunD 
encoding

OET‑KNN Three levels http:// www. csbio. sjtu. edu. cn/ 
bioinf/ EzyPr ed/

[53]

SVM‑prot AAC, polarity, hydrophobicity, 
surface tension, charge, normalized 
Van der Waals volume, polariz‑
ability, secondary structure, solvent 
accessibility, molecular weight, 
solubility, number of hydrogen 
bond donors in side chain, 
and number of hydrogen bond 
acceptors in side chain

SVM—KNN—probabilistic neural 
networks

Three levels http:// jing. cz3. nus. edu. sg/ cgi‑ bin/ 
svmpr ot. cgi

[54]

DEEPre sequence length‑dependent
sequence length independent

CNN—RNN All levels http:// www. cbrc. kaust. edu. sa/ 
DEEPre

[55]

ECPred information from amino acid 
sequence alignment and physico‑
chemical properties

KNN, SVM All levels https:// ecpred. kansil. org/ [56]

CLEAN – Contrastive learning All levels https:// clean. platf orm. molec ulema 
ker. org/ confi gurat ion

[57]

HDMLF – Deep learning techniques All levels https:// ecrec er. biode sign. ac. cn [58]

EnzBert – Transformer model techniques All levels https:// gitlab. inria. fr/ nbuton/ tfpc [102]

https://card.mcmaster.ca/
http://www.csbio.sjtu.edu.cn/bioinf/EzyPred/
http://www.csbio.sjtu.edu.cn/bioinf/EzyPred/
http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi
http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi
http://www.cbrc.kaust.edu.sa/DEEPre
http://www.cbrc.kaust.edu.sa/DEEPre
https://ecpred.kansil.org/
https://clean.platform.moleculemaker.org/configuration
https://clean.platform.moleculemaker.org/configuration
https://ecrecer.biodesign.ac.cn
https://gitlab.inria.fr/nbuton/tfpc
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2.2.2.1 EzyPred EzyPred takes a protein sequence as 
input and then determines whether it is an enzyme. It 
then proceeds to classify the enzyme into its respec-
tive EC number, main EC class, and subclass. The clas-
sification of protein sequences in EzyPred is achieved 
through the implementation of a machine learning 
approach known as "optimized evidence-theoretic 
k-nearest neighbor (OET-KNN)" in conjunction with 
two types of features to capture information about the 
protein sequence [53].

2.2.2.2 SVM-prot SVM-prot was initially developed 
as a computational tool for predicting the EC num-
ber of enzymes. It utilizes a representation of the pro-
tein sequence using 13 different numerical properties. 
It employs composition, transition, and distribution to 
encode each property. The original version used sup-
port vector machines (SVM) as the classifier, while it was 
later updated to utilize two additional classifiers, namely 
K-nearest neighbors (KNN) and probabilistic neu-
ral networks, to expand its prediction capabilities [54]. 
The incorporation of newer classifiers has significantly 
improved the overall performance of the method in pre-
dicting the EC number of enzymes and their functionality.

2.2.2.3 DEEPre DEEPre is an EC number prediction 
tool that employs two types of features for mapping a 
protein sequence into a numerical space [55]. Sequence 
length-dependent features, such as position-specific scor-
ing matrices (PSSM), and sequence length-independent 
features, such as functional domain-based encoding are 
used as input to a deep learning model comprised of a 
convolutional neural network (CNN) and recurrent neu-
ral network (RNN). DEEPre can predict enzyme function 
on all four levels of the EC classification system.

2.2.2.4 ECPred ECPred is another popular method for 
predicting the EC number of enzymes [56]. This method 
adopts an independent learning model for each EC num-
ber. The classification is carried out in two levels. In the 
first level, features based on PSSM and physicochemical 
properties are utilized, and an SVM classifier is employed. 
In the second level, features derived from sequence align-
ments are used for classification by a Nearest Neighbor 
(NN) classifier.

2.2.2.5 CLEAN CLEAN is a ML algorithm to assign EC 
number to less-studied proteins or those with unchar-
acterized functions [57]. CLEAN utilizes a contrastive 
learning framework, enabling it to confidently assign EC 
numbers to understudied enzymes, correct mislabeled 
enzymes, and identify promiscuous enzymes with multi-
ple EC numbers. The effectiveness of CLEAN has been 

demonstrated through systematic in silico and in  vitro 
experiments.

2.2.2.6 HDMLF HDMLF is a novel hierarchical dual-
core multitask learning framework utilizing advanced 
deep learning techniques for protein sequence embed-
ding and EC number prediction [58]. An attention layer 
and a greedy strategy optimize the EC prediction process, 
resulting in stable and superior performance compared 
to other representative methods. The tool is accessible 
through the user-friendly web platform ECRECer (https:// 
ecrec er. biode sign. ac. cn) with a cloud-based serverless 
architecture and an offline package to enhance usability.

2.2.2.7 EnzBert EnzBert is a transformer model for 
sequence-based protein functional annotation [59]. It 
predicts the functional enzyme annotations by taking 
into account only sequence features. When compared to 
state-of-the-art tools, this model demonstrates superior 
performance in predicting EC numbers. Specifically, the 
EnzBert model significantly enhanced accuracy in mono-
functional enzyme class prediction and achieved a nota-
ble improvement in EC number predictions at level two 
within the benchmark dataset.

2.2.3  The integrative approaches based on homology 
and machine learning

Both HB and MLB approaches can be used to discover 
novel microbial enzymes from environmental samples. 
Integrating HB and MLB methods increases the accuracy 
of enzyme discovery and allows for the targeted mining 
of novel enzymes, thereby reducing the need for costly 
and time-consuming wet lab experiments. In a previ-
ous study, thermostable xylanases were identified by the 
HB method and further analyzed using an ML-aided 
approach based on random forest classification [60]. Spe-
cifically, they developed a ML model called TAXyl, based 
on a SVM, which was trained using various sequence-
based and length-independent protein features. The 
model was designed to discriminate between sequences 
encoding non-thermophilic, thermophilic, and hyper-
thermophilic xylanases. The model was successfully 
applied to predict three novel thermostable xylanases 
from sheep and cow rumen metagenomes.

Furthermore, by integrating HB and MLB approaches, 
the same group also developed an integrated tool called 
MCIC, which combines HB and MLB analyses to iden-
tify cellulases from metagenomic sequences [61]. MCIC 
focuses on screening novel cellulases based on their opti-
mal pH and temperature dependencies. The machine 
learning model employed in MCIC was trained using 
various sequence-based features. The tool facilitates 
the comparison of metagenome datasets based on their 

https://ecrecer.biodesign.ac.cn
https://ecrecer.biodesign.ac.cn
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cellulolytic capabilities. To validate the method, two can-
didate cellulase enzymes identified by MCIC were cloned 
and subjected to further characterization.

MeTarEnz (metagenomic targeted enzyme miner) 
(https:// cbb. ut. ac. ir/ MeTar Enz/) is a similar software 
providing various services for targeted isolation of dif-
ferent enzymes from user-defined databases. It accepts 
sequences in different formats including unassembled 
short reads, assembled contigs, and translated coding 
sequences. This software can also predict the optimum 
pH and temperature of lipolytic enzymes using regres-
sion models. It was implemented for an in-depth analy-
sis of tannery wastewater metagenomic data followed by 
mining a thermophilic alkaline lipase [62].

2.3  Utilization of structural information
The primary goal of bioprospecting enzymes for many 
industrial applications is to identify those that exhibit 
optimal functionality under specific conditions. Over-
coming obstacles and addressing challenges associated 
with screening methods will contribute to the develop-
ment of novel tools and technologies for enzyme dis-
covery through metagenomic analysis. By doing so, we 
can enhance the efficiency and effectiveness of the bio-
prospecting process, leading to the identification of 
enzymes with desired characteristics for various indus-
trial applications. Both SBS and FBS methods generate 
extensive lists of candidate enzymes. However, character-
izing these candidates and identifying specific enzymes 
with desired properties remains a challenging task. Struc-
tural analyses can play a crucial role in narrowing down 
the search space by reducing the candidate sequences to 
a limited subset. This targeted subset can then undergo 
further functional analysis through wet lab procedures. 
By integrating structural analyses, researchers can effi-
ciently prioritize and focus their experimental efforts on 
a more manageable set of candidate enzymes, facilitating 
the identification of enzymes with the desired properties.

It is widely accepted that the 3D structure of an enzyme 
directly influences its function. However, there are also 
instances where proteins with similar sequences exhibit 
dissimilar structures [63]. Surprisingly, even highly 
similar sequences can lead to proteins with distinct 
structures. This observed structural dissimilarity often 
correlates with differences in their functions [63]. There 
are also examples of proteins with limited sequence simi-
larities but the same folding structures, suggesting that 
conserved positions in proteins tend to preserve their 
folding and biological functionality [64]. These find-
ings highlight the complex relationship between protein 
sequence, structure, and function, demonstrating that 
sequence similarity alone cannot reliably predict struc-
tural similarities or functional properties of enzymes.

The analysis of protein structure–function relation-
ships can be conducted at three levels: amino acid 
sequence and composition, 3D structure, and spatial 
conformations of the active site [65]. Computational 
molecular simulation offers a robust approach for deter-
mining and analyzing enzyme structure, dynamics, and 
functional mechanisms within the framework of physical 
interactions. Analyzing the 3D structures of enzymes can 
provide valuable insights into their diverse properties, 
such as function, spatial conformation, thermal and pH 
stability.

Prominent methods for predicting 3D protein struc-
tures include comparative modeling and ab  initio struc-
ture prediction [66]. Comparative modeling can be 
achieved through homology modeling or threading meth-
ods for fold recognition. In homology modeling, predic-
tions are based on previously solved structures serving 
as templates, assuming that homologous proteins share 
similar 3D structures. Choosing an appropriate template 
model is crucial for achieving high-quality and accurate 
predictions. Threading methods involve scanning the pri-
mary structure of an unknown protein against a database 
of proteins with known structures [67, 68]. By employ-
ing scoring functions based on statistical or knowledge-
based potentials, the compatibility of the query protein 
with known structure is evaluated. Commonly used tools 
for comparative modeling include I-TASSER [69], Phyre 
[70], MODELLER [71], SWISS-MODEL [72], and Alpha-
Fold [73]. Particularly, AlphaFold represents a significant 
advancement in structure prediction methodologies, lev-
eraging state-of-the-art neural network architectures and 
training procedures. By integrating evolutionary, physi-
cal, and geometric constraints specific to protein struc-
tures, AlphaFold achieves remarkable improvements in 
accuracy.

Ab initio protein structure modeling involves the 
prediction of protein structures from scratch, rely-
ing solely on physical forces and energy principles [74]. 
This approach is particularly valuable when experimen-
tal structural information or suitable template structures 
are unavailable. Various tools are available to perform 
ab  initio structural prediction, each utilizing differ-
ent algorithms and methodologies. Notable examples 
include GROMACS [75], NAMD [76], and TeraChem 
[77]. These tools employ advanced simulation techniques 
such as molecular dynamics to explore the conforma-
tional space and identify the most energetically favorable 
protein structure. By leveraging the principles of physics 
and energy minimization, ab initio modeling enables the 
generation of protein structures in the absence of prior 
structural knowledge.

Protein 3D structure modeling plays a crucial role in 
distinguishing proteins with similar sequences, allowing 

https://cbb.ut.ac.ir/MeTarEnz/
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the exploration of hidden characteristics that cannot 
be revealed through conventional sequence homology 
searches alone. This capability becomes particularly valu-
able when searching for novel enzymes within protein 
sequences predicted from metagenome data. By pro-
viding detailed insights into the spatial arrangement of 
atoms within a protein, 3D structure modeling aids in 
the identification of unique structural features, functional 
regions, and key residues that contribute to enzyme 
activity. This deeper understanding of protein structure 
allows for more precise and comprehensive analysis, ulti-
mately facilitating the discovery and characterization of 
novel enzymes with desired properties from metagen-
ome-derived sequences.

The utilization of structural information has been 
extensively employed in enzyme bioprospecting from 
environmental samples, as demonstrated by various stud-
ies summarized in Table 2. The processes that lead to the 
identification of candidate enzymes are summarized into 
seven distinct stages (S1-S6), with each stage involving 
specific computational analyses. The different stages of 
enzyme bioprospecting and their corresponding compu-
tational analyses are presented in Table 2.

2.3.1  Predicting enzyme thermal stability through structural 
analysis

The 3D structure of native proteins is determined by 
a multitude of weak interactions, including hydrogen 
bonding, salt bridges, hydrophobic, and polar interac-
tions. These non-covalent forces, along with covalent 
disulfide bonds between cysteine residues, play essential 
roles in stabilizing protein structure [78]. These interac-
tions contribute to various structural properties such as 
protein stability, dynamics, recognition, catalysis, and 
degradation. Salt bridges are strong electrostatic inter-
actions formed between negatively charged groups [79] 
that stabilize protein structure and protect the protein 
from aggregation [80]. The stability of salt bridges is 
influenced by factors such as pH, distance and geometric 
orientation of the residues involved. Predicting the pres-
ence and location of salt bridges in a protein provides 
valuable insight into protein stability. There are several 
freely available tools to predict salt bridges, including Tm 
predictor [http:// tm. life. nthu. edu. tw/], PoPMusic [81], 
and SCooP [82]. These tools are mainly used to predict 
changes in the thermodynamic stability, melting temper-
ature, and temperature-dependent stability of a protein.

Hydrogen bonds are another crucial type of interaction 
that contributes to protein structure. They play a key role 
in the formation of secondary structures, such as α-heli-
ces and β-sheets, by establishing bonds between carbonyl 
oxygen and amide nitrogen [83]. Several tools are avail-
able for predicting the number of hydrogen bonds in a 

protein, including HBPLUS [84], PyMol [85], and HAAD 
[86].

Disulfide bonds also play a vital role in the formation 
of protein structures. They contribute to the stability of 
protein structures under harsh environments, enhance 
their mechanical and thermodynamic stability, and mini-
mize the likelihood of misfolding [87]. Computational 
tools have been developed to accurately predict disulfide-
bonding networks and patterns in a protein, thereby aid-
ing in the correct modeling of protein structure. Fariselli 
et  al. [78] introduced a tool for predicting the disulfide 
bonding state of cysteines in proteins with a prediction 
accuracy of over 90%.

3  Natural product discovery through metagenomics
Traditionally, the search for bioactive natural products in 
microorganisms relied largely on activity-based screening 
approaches [88], which in turn necessitate the isolation 
and pure culture of the source microorganism. How-
ever, recent advances in culture-independent metagen-
omic and bioinformatic analyses have made it possible 
to search for novel natural products in microorganisms 
without the need for their pure culture. This approach 
offers the exciting potential to delve into the enzymatic 
mechanisms involved in the biosynthesis and modifica-
tion of these natural medicinally important compounds. 
Despite the structural complexity of natural products, 
their biosynthetic pathways and the enzymes involved 
in their bioconversion exhibit a remarkable degree of 
conservation across diverse microbial lineages [23]. This 
conservation facilitates the discovery, annotation, and 
characterization of novel natural product biosynthetic 
enzymes and pathways through sequence homology 
searches and structural predictions [89]. The combined 
application of advanced bioinformatic tools and high-
throughput screening methodologies offers a powerful 
approach for targeted mining of metagenomic data, with 
the potential to significantly accelerate the discovery of 
novel natural product biosynthesis pathways and subse-
quent characterization of valuable therapeutic agents and 
bioactive compounds.

The majority of bacterial natural products fall into the 
category of secondary metabolites that are encoded by 
conserved biosynthetic gene clusters (BGCs), a group of 
two or more closely linked genes that encode enzymes of 
the biosynthetic pathway for a specific metabolite or nat-
ural product [90]. This genomic organization facilitates 
the identification of natural products through genome 
mining approaches. Genome mining tools such as ant-
iSMASH [91], PRISM [92], CLUSEAN [93], NP.searcher 
[94], and NRPminer [95] have been developed to iden-
tify putative BGCs in genome or metagenome datasets. 
AntiSMASH stands out among other tools by offering a 

http://tm.life.nthu.edu.tw/
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Table 2 The list of candidate enzymes discovered through integrated sequence and structure analyses

Novel metagenomic enzyme Environment Computational multi‑stage pipeline

S1 S2 S3 S4 S5 S6 Refs.

Alkali‑thermostable xylanases Aspergillus fumigatus ✓ ✓ ✓ ✓ ✓ ✓ [103]

Xylanase (XynNTU) Paenibacillus campinasensis NTU-11 – ✓ ✓ – – – [104]

Extreme halophilic xylanase Camel rumen microbiome ✓ – ✓ – ✓ ✓ [105]

Thermostable xylanase Hot spring microbiome ✓ ✓ ✓ – ✓ ✓ [106]

Alkali‑thermostable xylanase Termite gut microbiome ✓ ✓ ✓ – – ✓ [107]

Thermostable xylanase Hot sediment microbiome ✓ ✓ ✓ – – – [108]

Thermostable xylanase Hot spring sediment microbiome ✓ ✓ ✓ – – ✓ [109]

Thermostable xylanase Camel rumen microbiome ✓ – – – – ✓ [110]

Thermostable xylanase Cattle rumen microbiome – ✓ ✓ ✓ – ✓ [111]

Thermostable xylanase Pulp and paper wastewater microbiome – ✓ ✓ ✓ – – [112]

Alkali‑thermostable xylanases
(PersiXyn1)

Camel rumen microbiome ✓ – ✓ ✓ – ✓ [113]

Alkali‑thermostable xylanases
(PersiXyn2)

Camel rumen microbiome ✓ ✓ ✓ ✓ – ✓ [114]

Alkali‑thermostable Xylanase
(PersiXyn3,4)

Cattle rumen microbiome ✓ – ✓ ✓ ✓ ✓ [115]

Thermal dependent xylanases
(PersiXyn5,6,7)

Sheep and cattle rumen microbiome ✓ – ✓ ✓ ✓ ✓ [60]

Thermostable xylanase
(PersiXyn8)

Cattle rumen microbiome ✓ – ✓ ✓ ✓ ✓ [116]

Hyperthermostable xylanase (PersiXyn10) Camel rumen microbiome ✓ – ✓ ✓ – ✓ [117]

xylanase/ esterase Cattle rumen microbiome ✓ – ✓ ✓ – – [118]

Bifunctional mannanase/xylanase
(PersiManXyn1)

Sheep rumen microbiome ✓ – ✓ ✓ – ✓ [119]

Xylanase/β‑glucosidase (PersiBGLXyn1) Cattle rumen microbiome ✓ – ✓ ✓ – ✓ [120]

Thermostable cellulase Soil microbiome – ✓ ✓ ✓ ✓ ✓ [121]

Thermostable cellulase Cattle rumen microbiome ✓ – ✓ ✓ – ✓ [122]

Hyperthermophilic cellulase Arctic Mid‑Ocean Ridge vent field microbiome ✓ – ✓ ✓ – ✓ [123]

Acidic cellulase Buffalo rumen microbiome ✓ ✓ ✓ ✓ – ✓ [124]

Alkaline‑thermostable cellulase Goat rumen microbiome ✓ – ✓ ✓ – ✓ [125]

Thermostable endoglucanase Termite gut microbiome ✓ ✓ ✓ ✓ – ✓ [126]

Alkalic and thermostable cellulase
(PersiCel1,2)

Camel rumen microbiome ✓ – ✓ ✓ ✓ ✓ [127]

Thermostable and halotolerant cellulase
(PersiCel3)

Sheep rumen microbiome ✓ – ✓ ✓ ✓ ✓ [128]

Alkali‑thermostable endo‑β‑1,4‑glucanase
(PersiCel4)

Sheep rumen microbiome ✓ ✓ ✓ ✓ ✓ ✓ [129]

Cellulase/Hemicellulase Soil microbiome ✓ ✓ ✓ ✓ ✓ – [130]

Alkalophilic, thermophilic carboxylesterase Soil microbiome ✓ ✓ ✓ ✓ – – [131]

Carboxylesterase Soil microbiome ✓ ✓ ✓ ✓ – – [132]

Carboxylesterase Compost microbiome ✓ ✓ ✓ ✓ – ✓ [133]

Carboxylesterase Sediment microbiome ✓ ✓ ✓ ✓ – – [33]

Thermostable bifunctional cellulase/xylanase
(PersiCelXyn1)

Cattle rumen microbiome ✓ – ✓ ✓ ✓ ✓ [134]

Glucose and ethanol tolerant β‑Glucosidase Hot spring microbiome ✓ ✓ ✓ ✓ ✓ ✓ [135]

β‑glucosidase, α‑L‑arabinofuranosidase, 
β‑xylosidase, and endo‑1,4‑β‑xylanase

Porcupine microbiome ✓ ✓ ✓ ✓ ✓ – [136]

Homologue of human α‑glucosidase
(PersiAlpha-GL1)

In vitro gastrointestinal digestion ✓ – ✓ ✓ ✓ ✓ [137]

α‑amylase
(PersiAmy1)

Sheep rumen microbiome ✓ – ✓ ✓ ✓ ✓ [138]
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comprehensive suite of tools and databases for automated 
genome mining of a wide array of secondary metabolites. 
By combining genome mining for BGCs and chemical 
structure prediction for the encoded secondary metab-
olites, PRISM significantly improves the detection of 
genetically encoded nonribosomal peptides and polyke-
tides [92]. While these tools facilitate the identification of 

genomic loci responsible for natural product biosynthe-
sis, challenges arise in connecting these loci to the spe-
cific chemical structures of the encoded products [96]. 
Genomic analysis has revealed that bacterial genomes 
house numerous orphan BGCs, which are clusters not 
yet associated with the natural products they encode. 
There are also numerous examples of isolated natural 

The table includes information about the enzyme family, metagenome source, and the in-silico analyses conducted during the bioprospecting processes. Detailed 
analysis steps are outlined below 

S1: BLAST alignment of metagenome sequences against a curated list of experimentally validated enzymes with desired properties obtained from a literature review. 
Selection of the most similar sequences, determined by their E-value and alignment score, for further refinement

S2: Analysis of the selected sequences to determine their phylogenetic positions among the related sequences obtained from the literature search. Focus on closely 
related sequences after removing distant relatives

S3: Determining the frequency and position of important amino acids in the candidate metagenome sequences. Assessment of statistical compatibility of these 
amino acids with literature and experimentally characterized enzymes possessing desired properties. This stage requires in-depth and comprehensive review of 
literature

S4: Comparing the candidate sequences for their active sites and other key amino acids with enzymes possessing the desired properties

S5: At this stage, the presence of conserved domains in the candidate enzymes is confirmed by utilizing tools such as CDD [141], Position Specific Scoring Matrices 
(PSSMs) or Hidden Markov Models (HMMs) or other motif modeling strategies

S6: Predicting the 3D structure of the candidate sequences and filtering for less related sequences

Table 2 (continued)

Novel metagenomic enzyme Environment Computational multi‑stage pipeline

S1 S2 S3 S4 S5 S6 Refs.

Acidic‑thermostable α‑amylase
(PersiAmy2)

Sheep rumen microbiome ✓ – ✓ ✓ ✓ ✓ [139]

Acidic‑Thermostable α‑amylase
(PersiAmy3)

Sheep rumen microbiome ✓ ✓ ✓ ✓ ✓ ✓ [139]

Cold‑active pullulanase Hot spring microbiome ✓ ✓ ✓ ✓ – ✓ [140]

Thermostable pullulanase
(PersiPul1)

Cattle rumen microbiome ✓ – ✓ ✓ ✓ ✓ [141]

Laccase Soil microbiome ✓ – ✓ ✓ – – [142]

Stable laccase
(PersiLac1)

Tannery wastewater microbiome ✓ – ✓ ✓ ✓ ✓ [143]

Thermo‑halotolerant laccase
(PersiLac2)

Tannery wastewater microbiome ✓ – ✓ ✓ ✓ ✓ [144]

Protease Solid tannery waste microbiome ✓ ✓ ✓ ✓ – – [145]

Protease Solid tannery waste microbiome ✓ ✓ ✓ ✓ – ✓ [146]

Thermo‑halo‑alkali‑stable protease
(PersiProtease1)

Tannery wastewater microbiome ✓ – ✓ ✓ ✓ ✓ [147]

Feruloyl esterase Soil microbiome ✓ ✓ ✓ ✓ – – [148]

Solvent‑tolerant esterase Compost microbiome ✓ ✓ ✓ ✓ – ✓ [35]

Esterase Wastewater sediments microbiome ✓ ✓ ✓ ✓ – – [149]

Esterase Soil microbiome ✓ ✓ ✓ ✓ – ✓ [150]

Lipid hydrolyzing enzyme Hot spring microbiome ✓ – ✓ ✓ – ✓ [151]

Tyrosine Phosphatase Soil microbiome ✓ ✓ ✓ ✓ ✓ ✓ [152]

PETase Environmental metagenome ✓ ✓ ✓ ✓ – ✓ [153]

PETase Human saliva microbiome ✓ ✓ ✓ ✓ ✓ – [154]

β‑galactosidase Marine microbiome ✓ ✓ ✓ ✓ – – [155]

β ‑Glucuronidase Mouse gut microbiome ✓ ✓ ✓ ✓ – – [156]

β ‑Glucanase Soil microbiome ✓ ✓ ✓ ✓ – ✓ [157]

β ‑Glucanase Vermicompost ✓ ✓ ✓ ✓ – – [158]

ferulic acid esterase, α‑L‑arabinofuranosidase, 
GH10 β‑D‑1,4‑xylanase

Wastewater treatment sludge ✓ – – – – – [159]
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products that have not been linked to their correspond-
ing BGCs [97]. ML approaches have shown potential in 
genome mining for natural biological products, predict-
ing the structure of natural products, and inferring bio-
logical activity from BGCs or the chemical structure of 
the respective secondary metabolite. Recently Prihoda 
et  al. [98] showed that ML can be used in several steps 
to find bioactive natural products in genome sequences, 
including genome annotations, feature representation, 
BGC detection, structure prediction, and activity pro-
filing. Another study developed a comprehensive ML 
method to predict the structures and biological activity of 
secondary metabolites from microbial genome sequences 
[99]. This approach can be used to predict the structures 
of natural products encoded by orphan BGCs.

In light of widespread metagenomic explorations of 
diverse microbial niches, huge amounts of genomic data 
are now at our fingertips. This genetic bounty holds 
immense potential for bioprospecting, offering novel 
microbial secondary metabolites, with a spectrum of 
promising medical and biotechnological applications. 
Numerous attempts have been made to explore metage-
nome data for novel natural products. In a study by 
Nayfach et al. [9], over 100,000 BGCs were predicted in 
52,515 metagenome-assembled genomes, which were 
cataloged from diverse microbial communities repre-
senting the Earth’s microbiome. This antiSMASH-based 
BGC discovery yielded up to 54 times more BGCs than 
manually curated entries in the MIBiG dataset, high-
lighting a vast reservoir of unexplored microbial natural 
products. In a comprehensive computational and experi-
mental study, a probabilistic algorithm named MetaBGC 
was developed and applied to identify potential BGCs in 
complex metagenomic sequences from various regions 
of the human microbiome (gut, mouth, skin, and vagina) 
[100]. Out of the 13 BGCs encoding type II polyketides, 
two were successfully cloned and expressed in a heterolo-
gous system, revealing their potent antibacterial activities 
against gut microbes and suggesting a potential role in 
microbial interactions within the gut environment. These 
findings underscore the urgent need for the development 
of advanced tools and pipelines for targeted mining of 
metagenomes for novel, game-changing microbial sec-
ondary metabolites with biotechnological and medicinal 
potential.

4  Future directions
An extensive literature review highlights that functional 
screening is, in fact, a major source of currently character-
ized enzymes from environmental samples. However, there 
are instances where the integration of FBS and SBS meth-
ods has proven to be successful. For example, in a study 
on the pre-screening of clone libraries using functional 

screening followed by insert sequencing, a remarkable 
106-fold increase in the success rate was achieved in iden-
tifying genes encoding desired enzymes compared to 
direct sequencing approaches [101]. Both FBS and SBS 
methods offer distinct advantages and disadvantages. SBS 
approaches may have limitations in terms of sequencing 
cost and errors. Furthermore, uncertainty in functional 
annotations and their limitations in discovering novel 
enzymes pose challenges to their widespread applications. 
FBS approaches can be used to identify novel enzymes 
and facilitate the direct determination of gene functions. 
However, the FBS methods also suffer from higher costs, 
the lack of effective screening methods for certain enzyme 
activities, and the challenges associated with heterologous 
expression systems.

In the past decade, significant improvements have been 
made in the computational modeling of 3D structures of 
proteins. These advancements have made it possible to take 
advantage of protein structure modeling in screening for 
novel enzymes from metagenomic sequences. Structural 
modeling can be used to evaluate enzymes for substrate 
specificity, enantioselectivity, metal ion specificity, pH and 
temperature dependence, as well as stability and secondary 
catalytic function.

In the era of a rapid expansion in enzyme-related bio-
logical databases as repositories for genome sequences, 
enzymes, tertiary structures, active sites, as well as 
metabolic pathways and reactions, there is an increased 
demand for the development of functional and compu-
tational screening tools. It is evident that the integration 
of SBS and FBS methods, coupled with the utilization 
of structural modeling, paves the way toward efficient 
exploration of novel enzymes from high throughput 
metagenomic data. This combination of approaches pre-
sents a promising roadmap for effective enzyme and nat-
ural product mining in the future.
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