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Abstract 

Plants of the genus Cordia (Boraginaceae family) are widely distributed in the tropical regions of America, Africa, 
and Asia. They are extensively used in folk medicine due to their rich medicinal properties. This review presents 
a comprehensive analysis of the isolation, structure, biogenesis, and biological properties of quinones from Cordia 
species reported from 1972 to 2023. Meroterpenoids were identified as the major quinones in most Cordia species 
and are reported as a chemotaxonomic markers of the Cordia. In addition to this property, quinones are reported 
to display a wider and broader spectrum of activities, are efficient scaffold in biological activity, compared to other 
classes of compounds reported in Cordia, hence our focus on the study of quinones reported from Cordia species. 
About 70 types of quinones have been isolated, while others have been identified by phytochemical screening or gas 
chromatography. Although the biosynthesis of quinones from Cordia species is not yet fully understood, previous 
reports suggest that they may be derived from geranyl pyrophosphate and an aromatic precursor unit, followed 
by oxidative cyclization of the allylic methyl group. Studies have demonstrated that quinones from this genus exhibit 
antifungal, larvicidal, antileishmanial, anti‑inflammatory, antibiofilm, antimycobacterial, antioxidant, antimalarial, 
neuroinhibitory, and hemolytic activities. In addition, they have been shown to exhibit remarkable cytotoxic effects 
against several cancer cell lines which is likely related to their ability to inhibit electron transport as well as oxidative 
phosphorylation, and generate reactive oxygen species (ROS). Their biological activities indicate potential utility 
in the development of new drugs, especially as active components in drug‑carrier systems, against a broad spectrum 
of pathogens and ailments.
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Graphical Abstract

1 Introduction
Many plants are traditionally used to treat human 
diseases, including plants from the genus Cordia [1]. 
Cordia is among the largest genera in the Boraginaceae 
family [2–4], with around 300 identified species [2, 5, 
6]. Medicines prepared from these plants are commonly 
used to treat pains, digestive system and blood 
disorders, urogenital infections, influenza, cardiac and 
vascular diseases, coughs, asthma, inflammation, worm 
infestation, ringworm [7–10], syphilis, as well as dermal 
and mucosal lesions [11]. The medical utilization of 
different parts (leaves, stem, stem bark, roots, flowers, 
and fruits) of Cordia species is due to the presence of 
diverse bioactive constituents, such as terpenoids [9, 12], 
cinnamates [13], flavonoids [14], pyrrolizidine alkaloids 
[15]. Cordia species are a source of natural products 
with an extensive range of pharmacological activities, 
including antimalarial, antioxidant, antiviral, and wound 
healing properties [9, 16]. They are promising sources 
for discovering and developing new drug formulations. 
Apart from their pharmacological application in folk 
medicine, they are grown as ornamental plants [7], 
and their wood is used for construction work, boat 
and furniture building [17–19]. The genus is known for 
producing a great diversity of quinone natural products, 
which are often found to be major phytochemical 
components, especially in extracts from the heartwood 
and roots [8].

Quinones have long been considered one of the 
important natural product classes in developing new 
drugs due to their valuable biological properties such 
as antioxidant, anti-inflammatory [20], antimalarial, 
antibacterial, antifungal, and anticancer activities [21, 
22]. They have the ability to exist in several redox states, 
can be highly reactive and play a major role in oxidative 
mechanisms [23]. Moreover, they are able to elicit 
oxidative DNA cleavage [24]. Exemplary mitomycin C, 
a chemotherapy drug used for the treatment of tumors, 
was isolated from cultures of the bacterium Streptomyces 
caespitosus in 1958 [25]; daunorubicin, an anthraquinone 
isolated from the soil bacterium Streptomyces peucetius 
in 1963 is known for its potent antileukemic effect; 
a close analogue, doxorubicin, was isolated from the 
same strain in 1969 and is used to treat a variety of 
malignant tumors [26, 27]; vitamin K, a naphthoquinone 
derivative, is indicated to improve blood coagulation [28]. 
Furthermore, oncocalyxone A, a benzoquinone isolated 
from Cordia oncocalyx and tested in  vivo and in  vitro 
models, showed a large spectrum of pharmacological 
uses such as antiproliferative/cytotoxic activities against 
mammalian cells, anti-inflammatory, neuroinhibitory and 
analgesic effects, as well as antimicrobial and antibiofilm 
activities [26]. Previous studies have also reported that 
Cordia quinones exhibited pharmacological activities 
such as antimalarial, antifungal, antimycobacterial and 
larvicidal activities in addition to cytotoxicity against 
mammalian cell lines [4, 17, 29–31].
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Quinones occurring in Cordia species are primarily 
classified as meroterpenoid benzoquinones, 
meroterpenoid hydroquinones, and meroterpenoid 
naphthoquinones [17, 32–34]. Moreover, literature 
reports on their isolation suggested quinones 
(meroterpenoids and their derivatives) as one of the 
chemomarkers of Cordia genus [4, 5, 32, 34]. Even though 
numerous meroterpenoid quinones have been isolated 
from Cordia species since 1970, no experimentally 
verified biosynthetic scheme has been reported [34]. 
However, logical deductions have led to the proposal of 
a potential biosynthetic pathway for some meroterpenoid 
quinones from Cordia species [17, 34–112]

Several studies have investigated the phytochemical 
and biological studies of Cordia species, and most 
reports focused on chemical constituents, their biological 
activities, and the chemical synthesis of meroterpenoid 
quinones. Some of this work has been reviewed in 
previous works. For instance, Oza et  al. reviewed the 
pharmacological uses, isolation and biology activities 
of compounds and extracts from the Cordia genus 
until 2016 [8]. Furthermore, Matias et  al. reviewed 
ethnopharmacological and ethnobotanical uses of 
the genus Cordia until March 2014 [7]. Most reports 
discussing quinones of Cordia species focus on South 
American species used in Brazilian folk medicine.

The relevant information about Cordia quinones 
published between 1972 and 2023, their chemistry, 
structure, biogenesis and pharmacological activities was 
obtained through online database search using Scifinder 
(https:// scifi nder. cas. org), Science Direct (https:// 
www. scien cedir ect. com), PubMed (https:// pubmed. 
ncbi. nlm. nih. gov), and Google Scholar (https:// schol 
ar. google. com). The search terms were the following 
keywords and combinations: Cordia species, quinone 
compounds, meroterpenoids, biosynthesis, biogenesis, 
and pharmacological activities. The search results thus 
obtained were critically reviewed for the descriptions of 
previously described Cordia quinones regarding their 
structure, biogenesis, biological activities, the occurrence 
of their source organisms, the extraction and purification 
protocols employed, and the plant parts used. Additional 
information was obtained by reviewing the cited 
references in the selected articles.

2  Occurrence of Cordia quinones
Quinones are a diverse natural product class 
biosynthesized by plants, fungi, algae, and bacteria [38], 
and numerous protocols for their chemical synthesis 
were reported [39]. They are characterized by ortho- 
or para-dione substituted cyclic aromatic systems 
as found in benzoquinones or condensed polycyclic 

aromatic systems [20] exemplified by naphthoquinones, 
anthraquinones, and phenanthraquinones [20, 21].

Quinones are biosynthesized in plants via different 
metabolic pathways with diverse precursors. These 
include acetate-polymalonate, aromatic amino acids, 
shikimic acid-o-succinoylbenzoic acid, and mevalonic 
acid pathways [40]. They play an essential part in 
physiological and enzymatic systems due to their 
principal role as redox agents in many electron-transfer 
processes in living organisms [21, 41].

Up to 2023, approximately 70 quinones were isolated 
from Cordia species consisting mainly of meroterpenoid 
quinones, the principal quinone type isolated from 
this genus. Additionally, meroterpenoid quinones were 
identified by GC–MS profiling of different extracts of 
Cordia rothii [42] and by chromatographic fingerprint 
analysis of bark dichloromethane extract and hexane leaf 
extract of Cordia dodecandra using UV-DAD HPLC [10].

Meroterpenoids are a class of natural products derived 
partially from terpenoid and quinone biosynthetic 
pathways [43, 44], where terpenoid and aromatic quinone 
moieties are linked by carbon–carbon (C–C) and 
carbon–oxygen (C–O) bonds [45]. Meroterpenoids have 
been isolated from animals, fungi, marine organisms 
(algae, microorganisms and invertebrates), and higher 
plants [46, 47]. Meroterpenoids exhibit a great diversity 
of structures. These can be a simple molecular structure 
comprising a prenyl unit linked to a phenolic derivative 
moiety such as hydroquinone or more complex 
structures by ring cyclization and chain rearrangement of 
various length terpenoid side chains [46, 48].

Terpenoids are broadly classified into two major groups 
depending on their biosynthetic origins:

Firstly, polyketide-terpenoids are grouped according 
to the number of acyl units that are incorporated to 
form the polyketide chain (originating from successive 
condensation of simple carboxylic acids under the control 
of the polyketide synthases (PKSs)) and the mode of 
cyclization present. [43, 48]. Polyketide meroterpenoids 
can have a tri-, tetra- or polyketide chain connected to 
the terpenoid moiety [48].

Secondly, non-polyketide-terpenoids in which 
quinones, protocatechuic acid derivatives, dehydroquinic 
acid or related subunits originating from shikimate 
pathways are joined to a terpenoid skeleton by a single 
carbon–carbon (C–C) bond [43].

Previous chemical studies of meroterpenoids revealed 
that their purification usually follows maceration and 
conventional extraction methods using organic solvents 
or their aqueous mixtures [48]. The macerated raw 
material was extracted with methanol and aqueous 
methanol (80%) [49–53]; ethanol and aqueous ethanol 
(70–95%) [54–56]; ethyl acetate [57–61] and petroleum 

https://scifinder.cas.org
https://www.sciencedirect.com
https://www.sciencedirect.com
https://pubmed.ncbi.nlm.nih.gov
https://pubmed.ncbi.nlm.nih.gov
https://scholar.google.com
https://scholar.google.com
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ether [62]. Crude extracts are commonly fractioned 
by liquid–liquid extraction (hexane; chloroform or 
dichloromethane, ethyl acetate and butanol) [49, 51, 
54, 63]; and purify by silica gel column chromatography 
(CC) (n-Hexane–ethyl acetate; n-hexane–acetone; 
cyclohexane-dichloromethane-methanol gradient; 
petroleum ether; ethyl acetate; isooctane-ethyl acetate–
methanol; ethyl acetate–methanol [49, 56, 61–65]; 
Sephadex LH-20 CC (Dichloromethane-methanol (1:1); 
chloroform–methanol (3:2); methanol) [65–69]; MCI gel 
CHP20P CC (water–methanol (20–100%); methanol–
water (60–100%) [55, 67, 68, 70] and RP-HPLC 
(acetonitrile—0.01% trifluoroacetic acid, 88:12 (v/v); 
acetonitrile–water (80:20–100:0); methanol–water 25%) 
[55, 66, 67, 71].

The present summarizes quinones from 25 Cordia 
species, among which meroterpenoid quinones were 
present in 22 species. The summary of various types of 
isolated meroterpenoid quinones from these 22 Cordia 
species and their biological activities are listed in Table 1.

Quinone constituents of Cordia species are highly 
diverse, and continuous phytochemical studies of the 
roots, stem barks, heartwood, wood, leaves, and whole 
plant extracts of Cordia species led to the isolation and 
structural identification of various quinone skeletons. 
The current review reports over 70 quinones (1–70) 
obtained from twenty-two Cordia species, most of 
which were isolated from ethanol and n-hexane extracts 
of the roots. These compounds showed significant 
pharmacological activities, and their biosynthesis has 
been hypothesized. Their structural elucidation was 
achieved by mass spectroscopic (MS), 1D and 2D 
nuclear magnetic resonance (NMR) analysis, chemical 
derivatization reactions, and X-ray crystallographic 
analysis. The structures of isolated quinones and their 
biological activities are summarized in Table 2.

Previous studies reported that the wood of C. 
dodecandra used in joinery can cause dermal allergic 
reactions after prolonged contact [95], and it was 
explained that the allergy towards woods of Cordia 
species might be due to the presence of cordiachromes 
[18, 95]. Thus, cordiachromes A (1), B (2), E (5) and F 
(6) from C. dodecandra mixed with 1% of petrolatum 
elicited high sensitization in experimental animals after 
48 h and 98 h of exposure [95]. However, another study 
revealed that cordiachrome F (6) had no noticeable 
effects on human patients after exposure to these 
mixtures over the same period. Thus, it was suggested 
that other cordiachromes that were not tested could be 
the responsible agents causing allergic reactions [18].

3  Biogenesis and synthesis of quinones 
from Cordia species

The biosynthesis of meroterpenoid quinones from 
Cordia species has not been experimentally validated, 
but their biosynthetic sequences have been proposed 
based on logical deductions. For instance, Moir et  al. 
[33] proposed that cordiachromes (A–F) can be derived 
from geranyl pyrophosphate and an aromatic precursor 
unit followed by oxidation of an allylic methyl group and 
cyclization to trans,trans-cylodecatriene. Subsequent 
acid-catalyzed cyclization led to cordiachromes A (1) 
and B (2). Cis,cis-cylodecatriene afforded cordiachrome 
C (3) via a Cope rearrangement [33]. Cordiachromes D 
(4), E (5), and F (6) were obtained by methoxylation of 
the previous cordiachromes, respectively [33]. According 
to Thomson [45], geranylquinol can be another precursor 
for cordiachromes. He suggested that geranylquinol 
may be obtained by oxidative cyclization at a terminal 
allylic methyl group via allylic alcohol pyrophosphate 
to provide a cyclodecatriene [45]. Another cyclization 
of the latter through boat conformation could then 
conduct to cordiachromes A (1) and B (2), whereas 
a cope rearrangement of a cyclodecatriene would 
lead to cordiachrome C (3) [45]. He also suggested 
that cordiachrome G (61) is more optically active 
than other cordiachromes because the stereospecific 
allylic oxygenation occurs before the rearrangement of 
cyclodecatriene [45].

Dettrakul et al. provide information about the biogen-
esis of cordiachromes. It was suggested that globiferin 
(45), isolated from Cordia species, is an intermediate 
for the biosynthesis of cordiachromes because its struc-
ture is similar to trans,trans-cylodecatriene proposed by 
Moir et  al. [17]. In addition, the link between the ben-
zoquinone skeleton and the aliphatic chain of globiferin 
was confirmed by its reduction with  Na2S2O4 to dihy-
droxyglobiferin (45a). Cordiachrome C (3) was obtained 
through Cope rearrangement by refluxing compound 45 
in xylene. Cordiaquinol C (36) was obtained by reflux-
ing compound 45 in DMSO-d6 for two hours. It was 
also obtained from cordiachrome C (3) under the same 
conditions. The respective cordiachromes A (1) and B 
(2) derivatives, diacetylcordiachromes A (71) and B (72), 
were obtained by cyclization of diacetylglobiferin (45b) 
under acidic conditions, were obtained respectively [17]. 
The suggestions about biosynthesis and synthesis pro-
posed by Dettrakul et al. are resumed in Scheme 1.

According to Matos et  al. and Silva et  al., meroter-
penoid quinones from Cordia species are formed via 
C-alkylation of the p-hydroxybenzoic acid with prenyl 
unities which result in the formation of geranyl hydro-
quinone followed by different chemical reactions such 
as intramolecular cyclization, oxidation, hydroxylation, 
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Table 1 Quinones and their biological studies

Species name Class (n = number of isolated 
compounds)

Biological study
IC50/MIC (μM)/MIQ (μg)

Reference standard values
IC50/MIC (μM)/MIQ (μg)

References

C. abyssinica Meroterpenoid benzoquinone 
(n = 3)

Antileishmanial
L. major (2.5)
Antimalarial (0.2 ± 0.1)
Anticancer
KB (6.0 ± 0.5)
BC‑1 (6.4 ± 0.8)
NCI‑H187 (0.4 ± 0.009)
Vero cell line
(1.7 ± 0.6)

Amphotericin B
(< 0.1)
Dihydroartemisinin (0.0012)
Ellipticine
0.2
0.2
0.3
0.4

[17, 72, 73]

C. alliodora Meroterpenoid hydroquinone 
(n = 7)

Antifungal
C. cucumerinum
15
antileishmanial
L. major (4.5)

Nystatin
1
Amphotericin B
(< 0.1)

[17, 29, 30, 36, 74]

C. americana (Patagonula 
americana)

Meroterpenoid benzoquinone 
(n = 1)
Meroterpenoid hydroquinone 
(n = 1)

– – [75]

C. elaeagnoides Meroterpenoid hydroquinone 
(n = 5)

Antimalarial,
3.6 ± 0.1

Dihydroartemisinin (0.0012) [17, 76]

C. corymbosa Meroterpenoid naphtoquinone 
(n = 4)

Antifungal
C. albicans
3
D. cucumerinum
3

Nystatin
1
1

[77, 78]

C. curassavica Meroterpenoid naphtoquinone 
(n = 4)

Antifungal
C. albicans
3
D. cucumerinum
3
Larvicidal
Aedes aegypti
25

Nystatin
1
1
Plumbagin
6.25

[28]

C. fragrantissima Meroterpenoid benzoquinone 
(n = 4)
Meroterpenoid hydroquinone 
(n = 4)

Antileishmanial
L. major (4.1)

Amphotericin B
(< 0.1)

[73, 79]

C. gerascanthus Meroterpenoid benzoquinone 
(n = 3)

Antileishmanial,
L. panamensis (5.5)
Antimalarial
0.2 ± 0.1

Amphotericin B
(< 0.1)
Dihydroartemisinin (0.0012)

[17, 72, 73]

C. gharaf Meroterpenoid benzoquinone 
(n = 3)

Antimalarial
0.2 ± 0.1
Antimycobacterial
1.5

Dihydroartemisinin (0.0012)
Rifampicin
0.0047

[
17, 72]

C. glazioviana Meroterpenoid benzoquinone 
(n = 1)
Meroterpenoid hydroquinone 
(n = 4)
Meroterpenoid naphtoquinone 
(n = 1)

Anti‑inflammatory
(RAW 264.7)
50.34 ± 9.88

Dexamethasone
1.7 ± 0.04

[34]

C. globifera Meroterpenoid benzoquinone 
(n = 4)
Meroterpenoid hydroquinone 
(n = 2)

Antimycobacterial
6.2
Antimalarial
2.1 ± 0.5
Anticancer
NCI‑H187 (0.5 ± 0.04)

Rifampicin
0.0047
Dihydroartemisinin (0.0012)
Ellipticine
0.3

[17, 80]

C. globosa Meroterpenoid benzoquinone 
(n = 1)
Meroterpenoid hydroquinone 
(n = 2)

Anticancer
B‑16 (1.30)
CEM (1.24)
HL‑60 (1.56)

Doxorubicin
0.03
0.02
0.02

[5, 31]
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Table 1 (continued)

Species name Class (n = number of isolated 
compounds)

Biological study
IC50/MIC (μM)/MIQ (μg)

Reference standard values
IC50/MIC (μM)/MIQ (μg)

References

C. goeldiana Meroterpenoid benzoquinone 
(n = 4)
Meroterpenoid hydroquinone 
(n = 1)
Meroterpenoid naphtoquinone 
(n = 1)

Antileishmanial
L. panamensis (5.5)
Anticancer
KB (1.5 ± 0.1)
BC‑1 (1.8 ± 0.1)
NCI‑H187 (0.2 ± 0.006)
Vero cell line
(1.4 ± 0.4)

Amphotericin B
(< 0.1)
Ellipticine
0.2
0.2
0.3
0.4

[72, 73, 79]

C. leucocephala Meroterpenoid naphtoquinone 
(n = 2)

– – [3]

C. linnaei Meroterpenoid naphtoquinone 
(n = 6)

Antifungal
C. albicans
6
D. cucumerinum
3
Larvicidal
Aedes aegyphti
25

Nystatin
1
1
Plumbagin
6.25

[81]

C. millenii Meroterpenoid benzoquinone 
(n = 4)
Meroterpenoid hydroquinone 
(n = 1)
Meroterpenoid naphtoquinone 
(n = 1)

Antimalarial
0.2 ± 0.1
Antimycobacterial
1.5
Anticancer
KB (1.5 ± 0.1)
BC‑1 (1.8 ± 0.1)
NCI‑H187 (0.2 ± 0.006)
Vero cell line
(1.4 ± 0.4)
Antileishmanial
L. panamensis (5.5)

Dihydroartemisinin (0.0012)
Rifampicin
0.0047
Ellipticine
0.2
0.2
0.3
0.4
Amphotericin B
(< 0.1)

[17, 33, 73, 79]

C. monoica Meroterpenoid benzoquinone 
(n = 2)

Antileishmanial
L. major (2.5)

Amphotericin B
(< 0.1)

[72, 73]

C. oncocalyx (Auxemma oncocalyx) Meroterpenoid benzoquinone 
(n = 6)
Meroterpenoid hydroquinone 
(n = 7)
Meroterpenoid naphtoquinone 
(n = 2)

Neuroinhibitory
Cytotoxic
PBMC (6.8 ± 3.0)
HL‑60 (11.2 ± 3.0)
CEM (0.76 ± 0.05)
Antimicrobial
S. epidermidis (ATCC 12228™)
9.43

Doxorubicin
1.7 ± 1.1
0.03 ± 0.02
Etoposide (< 1)
Vancomycin
1

[32, 82, 83]

C. platythyrsa Meroterpenoid benzoquinone 
(n = 4)
Meroterpenoid hydroquinone 
(n = 1)
Meroterpenoid naphtoquinone 
(n = 1)

Antileishmanial
L. major (4.1)
Anticancer
KB (6.0 ± 0.5)
BC‑1 (6.4 ± 0.8)
NCI‑H187 (0.4 ± 0.009)
Vero cell line
(1.7 ± 0.6)

Amphotericin B
(< 0.1)
Ellipticine
0.2
0.2
0.3
0.4

[72, 73, 79]

C. polycephala Meroterpenoid naphtoquinone 
(n = 5)

Anticancer
HCT‑8 (1.2 ± 1.5)
HL‑60 (2.2 ± 4.3)

Doxorubicin
(0.02 ± 0.03)
0.03 ± 0.05

[4]

C. rothii Meroterpenoid benzoquinone 
(n = 1)
Meroterpenoid hydroquinone 
(n = 3)

Antimicrobial [42]

C. trichotoma Meroterpenoid benzoquinone 
(n = 2)

Antimycobacterial
1.5

Rifampicin
0.0047

[84, 85]
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Table 2 Reported quinones from Cordia species

No Compound structure 
and name

Species name Plant part, extraction 
solvent

Pharmacological 
effect,  IC50 /MIC (μM)/
MIQ (μg)/Percentage 
of inhibition (%)

Positive control
IC50/MIC (μM)/MIQ 
(μg)

Reference

1 C. millenii
C. fragrantissima
C. abyssinica
C. gerascanthus
C. gharaf
C. goeldiana
C. monoica
C. platythyrsa

Heartwood,  CHCl3;
Wood, n‑hexane

Antileishmanial
L. major (4.1)

Amphotericin B
(< 0.1)

[33, 72, 73, 79]

2 C. millenii
C. globifera
C. fragrantissima
C. abyssinica
C. gerascanthus
C. gharaf
C. goeldiana
C. monoica
C. platythyrsa

Heartwood,  CHCl3;
Roots, n‑hexane;
Wood, n‑hexane

Antileishmanial
L. major (2.5)
Anticancer
KB (6.0 ± 0.5)
BC‑1 (6.4 ± 0.8)
NCI‑H187 (0.4 ± 0.009)
Vero cell line
(1.7 ± 0.6)

Amphotericin B
(< 0.1)
Ellipticine
0.2
0.2
0.3
0.4

[33, 72, 73, 79]

3 C. millenii
C. globosa
C. trichotoma
C. fragrantissima
C. abyssinica
C. gerascanthus
C. gharaf
C. goeldiana
C. platythyrsa
C. rothii

Heartwood,  CHCl3;
Roots, n‑hexane;
Heartwood, EtOH;
Wood, n‑hexane

Antimalarial
0.2 ± 0.1 
Antimycobacterial
1.5
Anticancer
KB (1.5 ± 0.1)
BC‑1 (1.8 ± 0.1)
NCI‑H187
(0.2 ± 0.006)
Vero cell line
(1.4 ± 0.4)
Antileishmanial
L. panamensis (5.5)

Dihydroartemisinin 
(0.0012)
Rifampicin
0.0047
Ellipticine
0.2
0.2
0.3
0.4
Amphotericin B
(< 0.1)

[17, 33, 42, 72, 73, 79, 84]

4 C. millenii
C. goeldiana
C. platythyrsa

Heartwood,  CHCl3 – – [33, 72]

5 C. millenii
C. goeldiana
C. platythyrsa

Heartwood,  CHCl3 – – [33, 72]

6 C. millenii
C. goeldiana
C. platythyrsa

Heartwood,  CHCl3 – [33, 72]

7 C. millenii Heartwood,  CHCl3 Antitumor
OVCAR‑3 (0.8)
HepG 2 (1)
Antimicrobial
(S.aureus) 6.25
Anti‑inflammatory
(Paw edema)
69

Doxorubicin
(< 1)
Oxacillin
0.39
Indomethacin 67

[33, 72, 86–88]

8 C. oncocalyx Sapwood, EtOH – – [32]
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Table 2 (continued)

No Compound structure 
and name

Species name Plant part, extraction 
solvent

Pharmacological 
effect,  IC50 /MIC (μM)/
MIQ (μg)/Percentage 
of inhibition (%)

Positive control
IC50/MIC (μM)/MIQ 
(μg)

Reference

9 C. oncocalyx Sapwood, EtOH Neuroinhibitory – [32]

10 C. oncocalyx Heartwood, EtOH Neuroinhibitory – [32, 82]

11 C. oncocalyx Heartwood, EtOH Neuroinhibitory – [32]

12 C. oncocalyx Heartwood, EtOH – – [32]

13 C. oncocalyx Heartwood, EtOH – – [32]

14 C. oncocalyx Heartwood, EtOH Neuroinhibitory – [32, 82]

15 C. oncocalyx
C. glazioviana

Heartwood, EtOH – – [32, 34, 82]

16 C. oncocalyx Heartwood, EtOH Neuroinhibitory – [32, 82]
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Table 2 (continued)

No Compound structure 
and name

Species name Plant part, extraction 
solvent

Pharmacological 
effect,  IC50 /MIC (μM)/
MIQ (μg)/Percentage 
of inhibition (%)

Positive control
IC50/MIC (μM)/MIQ 
(μg)

Reference

17 C. oncocalyx Heartwood, EtOH Neuroinhibitory – [32, 82]

18 C. oncocalyx Heartwood, EtOH Neuroinhibitory
Cytotoxic
PBMC (6.8 ± 3.0)
HL‑60 (11.2 ± 3.0)
CEM (0.76 ± 0.05)
Antimicrobial
S. epidermidis (ATCC 
12228™)
9.43
Analgesic

Doxorubicin
1.7 ± 1.1
0.03 ± 0.02
Etoposide (< 1)
Vancomycin
1

[32, 83, 85, 92, 93]

19 C. oncocalyx Heartwood, EtOH – – [32]

20 C. corymbosa
C. curassavica

Roots, n‑hexane;
Roots,  CH2Cl2

Antifungal
C. albicans
3
C. cucumerinum
3
Larvicidal
Aedes aegyphti
12.5

Nystatin
1
1
Plumbagin
6.25

[30, 77]

21 C. corymbosa
C. linnaei
C. polycephala
C. curassavica

Roots, n‑hexane;
Roots,  CH2Cl2

Anticancer
HL‑60 (2.2 ± 4.3)
Antifungal
C. albicans
3
D. cucumerinum
3
Larvicidal
Aedes aegyphti
25

Doxorubicin
0.03 ± 0.05
Nystatin
1
1
Plumbagin
6.25

[4, 30, 77, 81]

22 C. linnaei
C. corymbosa

Roots,  CH2Cl2;
Roots, n‑hexane

– – [78, 81]

23 C. corymbosa Roots, n‑hexane – – [78]
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Table 2 (continued)

No Compound structure 
and name

Species name Plant part, extraction 
solvent

Pharmacological 
effect,  IC50 /MIC (μM)/
MIQ (μg)/Percentage 
of inhibition (%)

Positive control
IC50/MIC (μM)/MIQ 
(μg)

Reference

24 C. polycephala
C. linnaei

Roots, n‑hexane;
Roots,  CH2Cl2

Anticancer
HL‑60 (8.80 ± 9.30)
Antifungal
C. albicans
6
D. cucumerinum
3
Larvicidal
Aedes aegyphti
12.50
Antileishmanial
L. amazonensis 
(4.50 ± 0.30)

Doxorubicin 
(0.03 ± 0.05)
Nystatin
1
1
Plumbagin
6.25
Amphotericin B
(0.35 ± 0.05)

[4, 81, 89]

25 C. linnaei Roots,  CH2Cl2 Antifungal
C. albicans
6
D. cucumerinum
1.5
Larvicidal
Aedes aegyphti
50

Nystatin
1
1
Plumbagin
6.25

[81]

26 C. linnaei Roots,  CH2Cl2 Antifungal
C. albicans
6
D. cucumerinum
3
Larvicidal
Aedes aegyphti
25

Nystatin
1
1
Plumbagin
6.25

[81]

27 C. linnaei Roots,  CH2Cl2 – – [81]

28 C. curassavica
C. leucocephala

Roots,  CH2Cl2 Antifungal
C. albicans
3
C. cucumerinum
3
Larvicidal
Aedes aegyphti
25
Cytotoxic
HL‑60 (2.7)
PBMC (10.4)

Nystatin
1
1
Plumbagin
6.25
Doxorubicin
0.03
1.7

[30, 90]

29 C. curassavica Roots,  CH2Cl2 Antifungal
C. albicans
3
C. cucumerinum
3
Larvicidal
Aedes aegyphti
12.5

Nystatin
1
1
Plumbagin
6.25

[30]

30 C. leucocephala Roots, n‑hexane Anticancer
SF 295 (4.6 ± 5.2)

Doxorubicin
0.4 ± 0.6

[3, 4]
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Table 2 (continued)

No Compound structure 
and name

Species name Plant part, extraction 
solvent

Pharmacological 
effect,  IC50 /MIC (μM)/
MIQ (μg)/Percentage 
of inhibition (%)

Positive control
IC50/MIC (μM)/MIQ 
(μg)

Reference

31 C. leucocephala Roots, n‑hexane – – [3]

32 C. polycephala Roots, n‑hexane Anticancer
HL‑60 (1.5 ± 2.0)

Doxorubicin 
(0.03 ± 0.05)

[14]

33 C. polycephala Roots, n‑hexane Anticancer
HCT‑8 (1.2 ± 1.5)

Doxorubicin 
(0.02 ± 0.03)

[4]

34 C. polycephala Roots,  CHCl3 – – [3]

35 C. anisophylla Roots,  CH2Cl2 Antifungal
C. albicans (DSY262)
 ≤ 5 μg

Miconazole 0.0006 [91]

36 C. globifera
C. alliodora
C. rothii

Roots, MeOH;
Heartwood, acetone

Antimalarial
0.3 ± 0.0
Anticancer
KB (6.9 ± 0.1)
BC‑1 (3.2 ± 0.2) NCI‑
H187
1.9 ± 0.1
Vero cell line
(1.6 ± 0.4)
Antileishmanial
L. major (4.5)

Dihydroartemisinin 
(0.0012)
Ellipticine
0.2
0.2
0.3
0.4
Amphotericin B
(< 0.1)

[17, 36, 42, 73]

37 C. glazioviana Heartwood, EtOH – – [34]

38 C. glazioviana Heartwood, EtOH – – [34]

39 C. fragrantissima Wood, MeOH Antileishmanial
L. major (81.4)

Amphotericin B
(< 0.1)

[73, 79]
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Table 2 (continued)

No Compound structure 
and name

Species name Plant part, extraction 
solvent

Pharmacological 
effect,  IC50 /MIC (μM)/
MIQ (μg)/Percentage 
of inhibition (%)

Positive control
IC50/MIC (μM)/MIQ 
(μg)

Reference

40 C. fragrantissima Wood, MeOH Antileishmanial
L. major (2.7)

Amphotericin B
(< 0.1)

[73, 79]

41 C. fragrantissima Wood, MeOH Antileishmanial
L. major (> 25)

Amphotericin B
(< 0.1)

[79]

42 C. glazioviana Heartwood, EtOH Anti‑inflammatory 
(RAW 264.7)
50.34 ± 9.88

Dexamethasone
1.7 ± 0.04

[34]

43 C. glazioviana Heartwood, EtOH Anti‑inflammatory 
(RAW 264.7)
105.83 ± 5.09

Dexamethasone
1.7 ± 0.04

[34]

44 C. glazioviana Heartwood, EtOH Anti‑inflammatory 
(RAW 264.7)
66.73 ± 10.28

Dexamethasone
1.7 ± 0.04

[34]

45 C. globifera Roots, n‑hexane Antimycobacterial
6.2
Antimalarial
2.1 ± 0.5
Anticancer
NCI‑H187 (0.5 ± 0.04)

Rifampicin
0.0047
Dihydroartemisinin 
(0.0012)
Ellipticine
0.3

[17]

46 C. globifera
C. alliodora
C. fragrantissima

Roots, MeOH;
Heartwood, acetone; 
Heartwood, ether;
Wood, MeOH

Anticancer
KB (12.0 ± 0.2)
BC‑1 (10.3 ± 0.2)
NCI‑H187
2.2 ± 0.8
Vero cell line
14.1 ± 1.4
Antileishmanial
L. major (7.0)

Ellipticine
0.2
0.2
0.3
0.4
Amphotericin B
(< 0.1)

[17, 36, 73, 74]

47 C. globifera Roots, MeOH – – [80]

48 C. globosa Roots, EtOH – – [5]
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Table 2 (continued)

No Compound structure 
and name

Species name Plant part, extraction 
solvent

Pharmacological 
effect,  IC50 /MIC (μM)/
MIQ (μg)/Percentage 
of inhibition (%)

Positive control
IC50/MIC (μM)/MIQ 
(μg)

Reference

49 C. globosa Roots, EtOH – – [5]

50 C. globosa Roots,  CH2Cl2 Anticancer
B16 (1.30)
CEM (1.24)
HL‑60 (1.56)

Doxorubicin
0.03
0.02
0.02

[31]

51 C. globosa Roots,  CHCl3 – – [31]

52 C. alliodora Roots,  CH2Cl2 – – [29]

53 C. alliodora Heartwood, acetone – – [36]

54 C. alliodora Heartwood, acetone – – [36]

55 C. alliodora
C. rothii

Heartwood, acetone;
Roots, ethyl acetate

– – [36, 42]

56 C. alliodora Heartwood, acetone – – [36]

57 C. alliodora
C. rothii

Heartwood, acetone;
Roots, MeOH

– – [36, 42]

58 C. oncocalyx Wood, EtOH – – [92]

59 C. oncocalyx Wood, EtOH Antiproliferative
CEM (1.5 ± 0.3)

Etoposide (< 1) [93]
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o-methylation, epoxidation, and decarboxylation [32, 
34]. Based on this idea, the biogenesis of the cordia-
chrome derivatives (8 to 19) isolated from C. oncocalyx 

was established [32]. Similarly, the hydroquinones (37, 
38, 42, and 43) and naphthoquinones (15 and 14) iso-
lated from C. glazoviana could follow the same pathway.

Table 2 (continued)

No Compound structure 
and name

Species name Plant part, extraction 
solvent

Pharmacological 
effect,  IC50 /MIC (μM)/
MIQ (μg)/Percentage 
of inhibition (%)

Positive control
IC50/MIC (μM)/MIQ 
(μg)

Reference

60 C. oncocalyx Heartwood, EtOH – – [82]

61 C. americana Heartwood, chloroform – – [75]

62 C. americana Heartwood, chloroform – – [75]

63 C. elaeagnoides Heartwood, ether – – [76]

64 C. elaeagnoides Heartwood, ether – – [76]

65 C. elaeagnoides Heartwood, ether – – [76]

66 C. elaeagnoides
C. globifera

Heartwood, ether;
Roots, n‑hexane

Antimalarial
3.6 ± 0.1

Dihydroartemisinin 
(0.0012)

[17, 76, 79]

67 C. elaeagnoides Heartwood, ether – – [76]

68 C. oncocalyx Heartwood, EtOH – – [94]

69 C. oncocalyx Roots, MeOH – – [94]

70 C. oncocalyx Roots, MeOH –
–

– [94]
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It has been suggested that alkannin (7), a quinone 
isolated from Cordia millenii, could be biosynthesized 
from p-hydroxybenzoic acid and mevalonate [33]. 
Leistner, this biosynthetic pathway to form alkannin (7) 
may occur in the Boraginaceae family [40] and, thus, in 
the Cordia genus.

As for Cordiaquinones biosynthesis, Arkoudis and 
Stratakis proposed that cordiaquinones are derived 
from (E)-Naphtoquinone epoxide, their precursor (75) 
which is obtained from E-trans,trans-Farnesol (73) and 
benzoquinone (74) through oxidation and Diels–Alder 
rearrangement, and different cordiaquinones are occur-
ring from precursor through chemical reactions (cycli-
zation, oxidation and esterification) (Scheme 2) [96].

Manners and Jurd suggested the biosynthesis of 
compounds from C. alliodora. According to them, 
the isolation of cordiachromene A (57) from C. allio-
dora confirms the presence of geranylphenol (76) as 
a precursor of compounds isolated from C. alliodora 
[36]. They proposed cyclization of the intermolecular 
geranyl side chain is due to the acid-catalyzed reac-
tion of phenolic nucleus with geranyl C-3 or C-7 allylic 

hydroxyl group, which afforded to cordallinol (54) and 
alliodorol (53), followed by another acid-catalyzed 
cyclization and intramolecular rearrangement to form 
cordiol (55), cordiaquinols (36–41), and allioquinol 
(56), which can also be oxidized to cordiachromes (1–
6) and their derivatives (Scheme 3) [36, 37].

According to Manners, Cordia compounds could be 
provided from a geranylphenol precursor that would then 
undergo oxidation reactions, intramolecular cyclization 
and rearrangement to give various geranylhydroquinone 
and geranylbenzoquinone derivatives occurring from 
Cordia species woods [76].

Many syntheses have been done to elucidate the struc-
tures, suggest biosynthetic pathways of isolated quinones 
from Cordia species, and compare the biological activi-
ties of the different compounds. This latter had resulted 
in other quinone derivatives with biological activities. 
For instance, the structure of cordiachrome C (3) was 
confirmed by its hydrogenation in ethyl acetate after 
reoxidation to obtain dihydrocordiachrome C (77). After 
reoxidation, its hydrogenation in acetic acid afforded 
tetrahydrocordiachrome C (78) [72]. After the isolation 

Scheme 1 A proposed synthetic pathway for the cordiachrome skeleton [17]
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of cordiachromes A–G (1–6, 60), cordiachrome H (79) 
was obtained through oxidation of leucocordiachrome 
H (61) by silver oxide [75]. The absolute configuration 
of cordiaquinol I (39) was determined by adding (14 mg, 
0.05 mmol) pyridine (4 mL) and p-bromobenzoylchloride 
(58 mg, 0.26 mmol) and stirring for 24 h at room temper-
ature to afford 1,4-p-dibromobenzoylcordiaquinol I (80) 
[79]. Diacetylcordiaquinol I (81) was obtained through 
the addition of (8 mg, 0.03 nmol), pyridine (0.5 mL), and 
acetic anhydride (0.5  mL) to cordiaquinol I (39) [79]. 
Cordiaquinol C (36) (83 mg, 0.34 mmol), in the presence 
of pyridine (2 mL) and acetic anhydride (2 mL) afforded 
diacetylcordiaquinol C (82) [79] (Fig. 1).

The abundance of isolated quinones from Cordia 
species provides a wide range of pharmacological 
activities that can lead to new drug discovery.

4  Biological studies and therapeutic potential
Prompted by ethnomedicinal uses of Cordia species in 
preventing and treating various diseases in traditional 
medicine [7, 8], various studies have been undertaken 
to shed light on the biological activity of extracts and 
isolated compounds.

4.1  Cytotoxicity
Evaluation of the cytotoxic activities of cordiachromes [B 
(2), C (3)], cordiaquinol C (36), globiferin (45), alliodorin 
(46), and elaeagin (66), isolated from C. globifera, against 
KB (human epidermoid carcinoma of the mouth), BC-1 
(human breast cancer cells), NCI-H187 (human small cell 
lung cancer), and Vero cell lines (African green monkey 
kidney fibroblast cells), were carried out. Compounds 
2, 3 and 36 exhibited activity against the cell lines 
mentioned above with  IC50 values ranging from 0.2 μM 
to 6.9  μM, while globiferin (45) was active only against 
NCI-H187 cells with an  IC50 value of 0.5 ± 0.04 μM [17].

The cytotoxicity of compounds 48 and 49 from C. 
globosa was evaluated in  vitro against human colon 
adenocarcinoma (HCT-116), ovarian carcinoma 
(OVCAR-8) and glioblastoma (SF-295) cell lines. 
None showed antiproliferative effects at maximum 
concentrations of 20 μM [5].

Cordiaquinones B (21), E (24), L (30), N (32), and 
O (33) from C. polycephala roots were tested against 
HCT-8 (colon), HL-60 (leukemia), MDA-MB-435 
(melanoma), and SF295 (brain) cancer cell lines [4]. All 
the compounds were active against all these cancer cell 

Scheme 2 Proposed biosynthesis and synthesis pathway to obtain cordiaquinone skeletons [35, 96]
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lines with  IC50 values ranging from 1.2 to 11.1  μM, but 
compounds 32 and 33 were most active with  IC50 values 
from 1.2 to 3.4  μM. Compound 21 was most active 
against HL-60 cells with an  IC50 value of 2.2 μM (positive 
reference Doxorubicin with  IC50 value = 0.02–0.8  μM) 
[4]. The authors suggested that the elevated activity of 
compounds 32 and 33 may be related to the presence of 
the α, β-conjugated carbonyl at the end of the tigloyloxy 
chain [4]. Chemical investigation of C. globifera led to 
the isolation of globiferane (47), which showed weak 
cytotoxicity against the following cell lines: HepG2 
(human hepatocellular liver carcinoma), MOLT-3 (acute 
lymphoblastic leukemia), A549 (human lung carcinoma), 
and HuCCA-1 (human lung cholangiocarcinoma) with 
 IC50 values of 148.6, 3.7, 148.6, and 66.0 μM, respectively, 
using an MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyl-2H-tetrazoliumbromide) assay [80]. Its 
derivative (1aS*,1bS*,7aS*,8aS*)-4,5-dimethoxy-1a,7a-
dimethyl-1,1a,1b,2,7,7a,8,8a-octahydrocyclopropa[3,4]
cyclopenta[1,2,b]naphtalene-3,6-dione (50) isolated 
from C. globosa roots exhibited significant cytotoxicity 
activity against colon (HCT-8), leukemia (HL-60, CEM), 
skin (B-16), and MCF-7 (breast) cancer cell lines, with 
 IC50 values ranging between 1.2 and 5.0  μM [31]. The 
observed cytotoxicity exhibited by compound (50) 
may be due to the electron-donating methoxy groups 
on the aromatic ring. They are considered essential 

for anticancer activity [97]. According to Liew et  al., 
compounds with a methoxy group substituted at C-2 
of a quinone ring inhibit the growth of cancer cells. In 
addition, two or more methoxy substituents attached to 
its side showed more significant cytotoxicity [98].

Pessoa et al. evaluated the cytotoxicity of oncocalyxones 
A (18) and C (59) isolated from C. oncocalyx on human 
cell lines CEM (leukaemia), SW 1573 (lung tumour) 
and CCD922 (normal skin fibroblasts). Oncocalyxone 
A revealed toxicity with  IC50 values of 0.76 ± 0.05, 
7.0 ± 1.7 and 13.4 ± 0.6  μg/mL on CEM, SW 1573, 
and CCD922, respectively. Oncocalyxone B (58) 
also showed cytotoxicity with  IC50 values of 1.5 ± 0.3, 
7.5 ± 0.7 and 12.4 ± 0.5  μg/mL on CEM, SW 1573, and 
CCD922, respectively [93]. In addition, the cytotoxicity 
of oncocalyxone A (18) was evaluated against human 
normal [PBMC (peripheral blood mononuclear cells)] 
and tumoral [HL-60 (promyelocytic leukemia), SF-295 
(glioblastoma), OVCAR-8 (ovarian carcinoma), and 
HCT-116 (colon carcinoma)] cell lines. It showed high 
cytotoxic activity on human leukemic cancer cells and 
normal leukocytes with  IC50 values of 11.2 and 6.8  μM, 
respectively while exhibiting  IC50 values above 16.5  μM 
against the remaining cell lines [85].

Moreover, Marinho-Filho et  al. examined the 
cytotoxic effect of ( +)-cordiaquinone J (28) isolated 
from C. leucocephala on tumor cells. In an MTT assay, 

Scheme 3 Proposed biosynthesis scheme of C. alliodora compounds [36, 37]
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( +)-cordiaquinone J (28) demonstrated cytotoxicity 
activity after 72  h of incubation against HL-60 
(leukemia), HCT-8 (colon), SF295 (brain), MDA-MB-435 
(melanoma), and normal PBMC (Lymphocytes) with  IC50 
values of 2.7 μM, 4.9 μM, 6.6 μM, 5.1 μM, and 10.4 μM, 
respectively compared to doxorubicin as a positive 
control with  IC50 0.03 μM, 0.02 μM, 0.4 μM, 0.8 μM, and 
1.7 μM, respectively [90].

The cytotoxicity of compounds 1, 2, 3, 36, 39, 40, 
41, and 46 isolated from C. fragrantissima and their 
synthesized analogues (80, 81, and 82) against COS-7 
(African green monkey kidney cells, epithelial-like) 
and HUH-7 (Human liver cancer cells, epithelial-like) 
were inactive in an XTT assay compared to MG 132 
(carbobenzoxy-l-leucyl-l-leucyl-l-leucinal) used as 
reference [79].

Previous biological studies reported that the cytotoxic 
activity of quinones is due to their ability to react 
as dehydrogenating and oxidizing agents [20]. The 
cytotoxicity of quinones can also be explained by their 
capacity to inhibit electron transporters [99], protein 
adduct formation [100], oxidative phosphorylation [101], 
and reactive oxygen species (ROS) production [102] 
as well as through enzyme SH groups and direct DNA 
damage [39, 90].

4.2  Antifungal and larvicidal activities
Ioset et  al. evaluated the antifungal and larvicidal 
activities of cordiaquinones B (21), E (24), F (25), G 
(26), and H (27) isolated from C. linnaei using TLC 
bioautographic and agar–dilution assays [81]. The 
compounds (21, 24–26) were active against Candida 
albicans and Dosporium cucumerinum with minimum 

inhibitory concentrations (MIC) ranging from 0.5 to 
6  μM compared to nystatin (0.2–1.0  μM) used as a 
positive reference. However, compound 27 was inactive 
on both fungi. Its inability to inhibit the bacterial 
strains might be due to an epoxide [81]. Regarding 
their larvicidal potential, all the compounds showed 
activity against Aedes aegypti with MIC values between 
12.5 and 50  μg/mL compared to reference plumbagin 
(MIC = 6.25 μg/mL), except for compound 27, which was 
not tested [81].

2-(2Z)-(3-Hydroxy-3,7-dimethylocta-2,6-dienyl)-1,4-
benzenediol (52), isolated from the roots and bark of C. 
alliodora, exhibited weak activity against Cladosporium 
cucumerinum in bioautography and in agar-dilution 
assays with an MA (Minimum amount to inhibit growth 
on the  SiO2 gel TLC) value of 5  μg and MIC of 15  μM 
respectively. This compound was inactive against C. 
albicans on TLC bioautography, and consequently, it was 
not tested by agar–dilution assay [27].

Cordiaquinones A (20), J (28), and K (29) showed 
antifungal activity against C. cucumerinum and C. 
albicans in bioautographic and agar-dilution assays with 
similar values (MA = 0.5  μg and MIC = 3  μg/mL) as the 
reference drug nystatin (MA = 0.1  μg and MIC = 1  μg/
mL). These compounds also demonstrated weak 
larvicidal effects on Aedes aegypti with MIC values of 
12.5—25 μg/mL [28].

The antifungal activity of ehretiquinone (35), isolated 
from C. anisophylla, was evaluated on C. albicans 
(DSY262 and CAF2-1 strains) using bioautography, agar–
dilution assays and mature biofilm [91]. The compound 
was more active against strain DSY262 with a minimum 
inhibition quantity (MIQ) ≤ 5  μg compared to CAF2-1 

Fig. 1 Synthesized quinone derivatives from the Cordia genus
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with a MIQ of 25 μg. However, the compound (25) was 
inactive in the agar–dilution assay and mature biofilm 
[91].

Dettrakul et  al. investigated the antifungal activity of 
cordiachrome B (2) and C (3), isolated from C. globifera. 
Both compounds exhibited weak antifungal activity 
against C. albicans with  IC50 values of 7.7 μM and 4.6 μM, 
respectively, whereas globiferin (45), cordiaquinol C (38), 
and alliodorin (46) were inactive with  IC50 values > 20 μM 
(positive control amphotericin B,  IC50 = 0.08  μM) [17]. 
The antifungal activity of oncocalyxone A (18) done by 
Silva et  al. showed that it did not inhibit the growth of 
tested fungi (C. albicans ATCC  10234™, C. neoformans 
ATCC 48184™, A. fumigatus ATCC  13073™, S. schenckii 
ATCC  201679™ and T. interdigitale 73896) with MIC 
values > 151 μg/mL [103].

4.3  Antileishmanial activity
The chemical investigation of C. fragrantissima wood 
extract led to the isolation of several cordiaquinols 
(36, 39, 40, and 41), cordiachromes (1, 2, and 3) and 
alliodorin (46) [73, 79]. The authors also synthesized 
related compounds, 1,4-p-dibromobenzoylcordiaquinol 
I (80), acetylcordiaquinol I (81), and acetylcordiaquinol 
C (82) [79]. All the compounds, including their 
derivatives, were assayed for antileishmanial assay 
against promastigote forms of Leishmania major, L. 
panamensis, and L. guyanensis using an MTT assay [79]. 
All the compounds were active with  IC50 values of 1.4–
81.4  μM were found more active on L. panamensis and 
L. guyanensis than L. major, while compounds 1, 2, 36, 
40, 46, and 82 exhibited good activity against L. major 
with  IC50 values of 4.1, 2.5, 4.5, 2.7, 7.0, and 1.4  μM, 
respectively, compared to Amphotericin B  (IC50 less than 
0.1 μM) used as a positive control [73, 79].

In related studies, cordiaquinone E (24), isolated from 
the roots of C. polycephala, was evaluated for its activity 
against promastigote and axenic-amastigote forms of 
L. amazonensis in vitro. The compound inhibited the 
growth of the promastigote form with an  IC50 value of 
4.5 ± 0.3 μM as well as against the axenic-amastigote form 
with 2.89 ± 0.11 μM, with selectivity indexes (SI) of 54.84 
and 85.4, respectively. The evaluation of cordiaquinone E 
(24) against intracellular amastigotes was carried out to 
support the notion of antileishmanial activity. It led to a 
better result with an  EC50 value of 1.92 ± 0.2 μM and an 
SI of 128.54 using an MTT assay. The growth inhibition 
assay of compound 24 on RAW 264.7 macrophages led 
to a  CC50 value of 1246.81 ± 14.5  μM. Antileishmanial 
activity of compound 24 on L. amazonensis was evaluated 
using Amphotericin B  [IC50 0.35 ± 0.05 μM (promastigote 
form);  IC50 0.51 ± 0.02  μM (axenic-amastigote form)] 
and Meglumine antimoniate  [IC50 21,502 ± 481  μM 

(promastigote form);  IC50 1730 ± 33.5  μM (axenic-
amastigote form)], as reference drugs respectively [89]. 
Rodrigues et al. explained the antileishmanial activity of 
cordiaquinone E. Firstly, by apoptosis, which associates 
externalization of phosphatidylserine and necrotic cell 
death, and secondly, by immunomodulation [89].

4.4  Anti‑inflammatory activity
Five meroterpenoids (15, 38, 42, 43, and 44) isolated 
from C. glazioviana were evaluated for their anti-
inflammatory activity against RAW 264.7 macrophage 
murine cells through cellular viability and lipopolysac-
charide (LPS) induction. The cytotoxicity of isolated 
compounds was evaluated by MTT assay [34]. Rel-1,4-
dihydroxy-8α,11α,9α,11α-diepoxy-2-methoxy-8aβ-
methyl-5,6,7,8,8a,9,10,10a-octahydro-10-antracenone 
(15), cordiaquinol E (38), 10,11-dihydrofuran-1,4-di-
hydroxyglobiferin (42), 2-[(1ʹE,6ʹE)-3ʹ,8ʹ-dihydroxy-
3ʹ,7ʹ-dimethylocta-1ʹ,6ʹ-dienyl]-benzene-1,4-diol (43), 
and 6-[(2ʹR)-2ʹ-hydroxy-3ʹ,6ʹ-dihydro-2H-pyran-
5 ʹ-yl]-2-methoxy-7-methylnaphthalene-1,4-dione 
(44) induced inflammation against RAW 264.7 mac-
rophage cells by reducing cells viability with  IC50 range 
value 71.66 ± 15.44–609.48 ± 5.05  μM. Lipopolysac-
charide production was evaluated by inducing oxide 
nitric in RAW 264.7 cells. Among these compounds, 
10,11-dihydrofuran-1,4-dihydroxyglobiferin (42) exhib-
ited the best inhibition of NO (Nitric Oxide) synthe-
sis with  IC50 50.34 ± 9.88  μM, followed by compounds 
44 (66.73 ± 10.28  μM) and 43 (105.83 ± 5.09  μM); the 
rest produced weak inhibition to induced inflammation 
against RAW 264.7 macrophage compared to dexameth-
asone  (IC50 1.79 ± 0.04  μM) used as a positive control 
[34].

Ferreira et  al. examined the anti-inflammatory 
activity of the water-soluble fraction of the heartwood 
methanolic extract of C. oncocallyx. The quinone fraction 
containing mainly oncocalyxone A (18) was very active in 
inhibiting paw edema induced by a carrageenan injection, 
with a 57% and 60% reduction three hours after a dose of 
10 and 30 mg/kg body weight, respectively [104].

4.5  Antimicrobial, antibiofilm, antimycobacterial 
and antioxidant activities

Previous biological evaluation of C. oncocalyx revealed 
that oncocalyxone A (18) could inhibit the growth of 
Gram-positive and Gram-negative pathogenic strains, 
even clinical specimens. It was more sensitive to 
Staphylococcus species than to Enterococcus, Listeria, 
Acinetobacter, and Stenotrophomonas species with an 
MCI range from 9.43 μg/mL to 151 μg/mL, and it showed 
high sensitivity against S. epidermidis (ATCC 12228™) 
with MIC 9.43 μM compared to vancomycin (MCI 1 μM) 
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used as reference[103]. It also inhibited the growth of 
S. aureus MED 55 (MIC 18.87 μM), S. aureus COL and 
S. epidermidis 70D (MIC 37.75  μM); and E. faecalis 
 ATCC512999™ (MIC 75.5 μM) [103]

It showed inhibition of biofilm production by ⁓70% in 
methicillin-resistant S. aureus MED 55 strain (resistant 
clinical specimen) [103]

Khan et al. examined the antimicrobial and antioxidant 
activities of the GC–MS profile fractions of C. rothii 
roots. The n-hexane fraction, which contained 
cordiachrome C (3), exhibited weak antibacterial activity 
against Gram-positive and Gram-negative bacteria. 
While the MeOH marc extract containing cordiaquinol 
C (36) and cordiachromene A (57) showed good 
antibacterial activity against Staphylococcus epidermidis 
with a minimum inhibitory concentration (MIC) 250 μg/
disk, EtOAc marc extract containing cordiol A (55) was 
inactive against all the tested bacteria [42].

Regarding the antioxidant activity of these extracts, 
MeOH and EtOAc marc left extract of C. rothii roots 
have good activity with  EC50 93.75  μM than n-hexane 
extract, which showed weak activity with  EC50 187.5 μM 
[42].

Previous biological studies examined the antioxidant 
activity of the methanol extract of the heartwood of C. 
oncocalyx. The quinone fraction (80% oncocalyxone A 
(18)) was evaluated in a rat model with  CCl4-induced 
hepatotoxicity and the prolongation of pentobarbital 
sleeping time in mice by measuring plasma GPT and 
GOT. Only the quinone fraction inhibited the GPT level 
significantly (29%) with a 30 mg/kg dose. It also caused a 
significant reduction (45%) of  CCl4-induced prolongation 
of pentobarbital sleeping time with a dose of 10 mg/kg. 
It confirmed the hepatoprotective effect involving free 
radical and lipoperoxidation and correlated with the 
antioxidant properties of quinones [105]. The latter is 
possibly due to the presence of oncocalyxone A, the main 
constituent [106]. Moreover, quinones are renowned 
for redox cycling ability [107]; this is related to their 
free radical scavenging activity which promotes their 
antioxidant activity [108].

In addition, cordiachrome C (3) and globiferin (45) 
showed significant antimycobacterial activity with MIC 
1.5 and 6.2  μg/mL, respectively, while cordiachrome 
B (2) (12.5  μg/mL), cordiaquinol C (36) (25.0  μg/mL), 
diacetylcordiaquinol C (82) (25.0 μg/mL), alliodorin (46) 
(12.5  μg/mL), and elaeagin (66) (12.5  μg/mL) displayed 
weak activity compared to Rifampicin (0.0047  μg/mL), 
Isoniazid (0.05 μg/mL), and Kanamycin (2.5 μg/mL) used 
as standard drugs [17].

4.6  Antimalarial and hemolytic activities
Cordiachrome C (3), cordiaquinol C (36), and 
diacetylcordiaquinol C (82) were evaluated for 
antimalarial activity against Plasmodium falciparum 
using dihydroartemisinin  (IC50 0.0012  μg/mL), used 
as reference. They exhibited significant activity with 
 IC50 0.2 ± 0.1  μg/mL, 0.3 ± 0.0  μg/mL, and 0.4 ± 0.1  μg/
mL respectively, more than cordiachrome B (2)  (IC50 
1.5 ± 0.2  μg/mL), globiferin (45)  (IC50 2.1 ± 0.5  μg/mL), 
alliodorin (46)  (IC50 3.1 ± 0.5  μg/mL), and elaeagin (66) 
(3.6 ± 0.1 μg/mL) [17].

Silva et  al. evaluated the hemolytic activity of 
oncacalyxone A (18) through erythrocyte damage due to 
hemoglobin release. The compound did not show activity 
at the tested concentrations ≥ 151 μg/mL [103].

Compounds 21, 24, 30, 32, and 33 from C. polycephala 
roots were evaluated for hemolytic activity in mice 
erythrocytes. None was active with  EC50 > 500 μmol  L−1 
[4].

4.7  Neuroinhibitory effect
Matos et al. (2017) examined the neuroinhibitory effect of 
different compounds (9–18) isolated from C. oncocalyx 
by mice vas deferens bioassay. Compounds 10, 11 and 
14 significantly inhibited the neurogenic contraction by 
76%, 69%, and 63%, respectively, whereas compounds 
12 and 15 did not considerably affect neurogenic 
contraction. Compounds 9, 10, 14, 16, 17 and 18 showed 
a completely reversible neuroinhibitory effect upon 
adding the pharmacological antagonist Promethazine 
and a partial reversible effect by yohimbine. Neurogenic 
contraction induced by compound 11 was irreversible by 
adding naloxone, famotidine, promethazine or yohimbine 
antagonists. However, compounds 9, 10, 14, 16, 17 and 
18 did not inhibit neurogenic contractions using the 
ODQ, famotidine or naloxone antagonists. The authors 
found that reversible action may be related to pre-
synaptic terminal and pre-synaptic receptor inhibition 
due to the co-release of histamine and norepinephrine 
[32].

Although previous reviews reported different isolation 
methods and biological activities of Cordia quinones, we 
noted a lack of information that could help to valorize 
them. We suggest that future research should focus on 
the structure–activity relationships and mechanisms of 
action of the quinones of the genus Cordia. More in vivo 
biological tests and clinical studies should be performed. 
Up to now, just one clinical study has been done on 
Cordia quinones (cordiachrome F for allergenic). To 
improve the number of quinones isolated from Cordia 
species, pressurized liquid extraction (PLE) could be 
used. [109]. Pressurized hot water extraction to optimize 
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the extraction of volatile components [110] and dry 
extraction to enrich powder fractions with an extensive 
range of secondary metabolites could also be done. [111, 
112].

5  Conclusion
Using Cordia species in traditional medicine to 
treat various diseases has increased interest in their 
phytochemistry. This review presents the collective 
phytopharmacological information on Cordia 
quinones from 1972 to 2023. The research shows that 
over 70 (1–70) quinones have been isolated from 
different parts of Cordia species with different skeletal 
structures. Meroterpenoid quinones were the major 
class of compounds isolated, with meroterpenoid 
benzoquinones being the most predominant in most 
species. The biosynthesis of Cordia quinones is not 
yet well understood, but the biogenesis and some 
biosynthetic pathways have been proposed to explain 
the presence of quinones in the Cordia genus.

The extracts and isolated quinones demonstrated 
antimalarial, antimicrobial, anti-inflammatory, 
antibiofilm, antioxidant, antimycobacterial, 
antileishmanial, larvicidal, hemolytic, neuroinhibitory, 
and cytotoxicity properties. Most studies reported 
cytotoxicity against particularly cancer cell lines. It may 
be due to the ethnomedicinal uses of these species and 
the anticancer properties of the quinones. Although the 
biological activities of compounds can often be related 
to their structures, there is currently little information 
available to explain structure–activity relationships 
for the quinones occurring in Cordia species. This 
review discussed the potential of the genus Cordia 
as a promising source of new bioactive compounds 
that can provide quinones for various pharmaceutical 
applications.
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