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Abstract 

Erythroxylum P. Browne is the largest and most representative genus of Erythroxylaceae family. It contains approxi‑
mately 230 species that are mainly distributed in tropical and subtropical regions. Some species in this genus, such 
as E. monogynum and E. coca, have been used as folk medicines in India or South America for a long history. It is well 
known that Erythroxylum plants are rich in tropane alkaloids, and the representative member cocaine shows remarka‑
ble activity in human central nervous system. However, many other types of active compounds have also been found 
in Erythroxylum along with the broadening and deepening of phytochemical research. To date, a total of 383 com‑
pounds from Erythroxylum have been reported, among which only 186 tropane alkaloids have been reviewed in 2010. 
In this review, we summarized all remained 197 compounds characterized from 53 Erythroxylum species from 1960 
to 2021, which include diterpenes, triterpenes, alkaloids, flavonoids, and other derivates, providing a comprehensive 
overview of phytoconstituents profile of Erythroxylum plants. In addition, the biological activities of representative 
phytochemicals and crude extracts were also highlighted.
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1  Introduction
In the long evolutionary process of nature, plants have 
acquired the ability to synthesize various compounds 
to better adapt to stimulations in the environment. The 
accumulation of practical experience has made human 
realize that these substances are also of significant 
importance for the treatment of human diseases and 
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the improvement of the quality of life. With the support 
of technology in compound extraction, separation and 
structural identification, the active substances in tradi-
tional herbs are gradually being discovered by humans. 
Therefore, modern medicine based on a single or several 
compounds has been developed. With the deepening 
of research on plant natural products, new biologically 
active compounds are constantly being discovered and 
further applied in medicine, health care and agriculture. 
Sorting out and summarizing the plant distribution, 
structure, and activity characteristics of these newly dis-
covered phytocompounds will confer us effective infor-
mation in rational use of plant resources.
Erythroxylum P. Browne, the representative genus of 

Erythroxylaceae family, is especially well known for its 
phytoconstituents of tropane alkaloids (TAs), such as 
cocaine [1, 2]. Species of this genus are mainly distrib-
uted in tropical and subtropical regions including South 
America, South Africa, Southeast Asia and Australian 
flora [2]. As the largest genus of the Erythroxylaceae fam-
ily, approximately 230 species are included in Erythroxy-
lum [2], among which E. coca and E. novogranatense are 
the famous plant sources of cocaine. Before achieving the 
purification of cocaine from plants in 1859 [3], the leaves 
of E. coca or E. novogranatense had been chewed by the 
Indigenous South American as stimulant and hunger-
suppressant for over a thousand years. The remarkable 
biological activity of cocaine in human central nervous 
system attracted widespread attention to compounds in 
plants of this genus. Accordingly, numerous of cocaine 
analogs (TAs), as well as other bioactive compounds have 
been found in Erythroxylum [4, 5].

To date, no comprehensive summary on chemical 
compositions found in Erythroxylum species and their 
bioactivities has been reported, though Oliveira et  al. 
[6] presented an excellent review focusing on struc-
tures of TAs isolated from this genus in 2010 and Dr. 
John D’Auria’ s group discussed application potentials 

of Erythroxylum species worldwide in mental health, 
nutrition, agriculture, and commercialization based on 
studies on representative compounds discovered in this 
genus [7]. Attracted by the diverse biological activity 
of compounds found in Erythroxylum, which included 
anaesthetic [8], antioxidative [9, 10], anti-inflammatory 
[9], cytotoxic [11], anticancer [12], and insecticidal activi-
ties [13], as well as neutralization of snake venom [14], 
we therefore aimed to provide a comprehensive review 
of all compounds reported in Erythroxylum species from 
1960 to 2021 and an update of alkaloids isolated after 
2010 here, which is supposed to be essential for further 
effective development and utilization of plant resources 
in the genus in the future. Additionally, we also presented 
an overview of the biological activities of representa-
tive phytochemicals and crude extracts at the end of the 
review, providing medicinal and commercial application 
prospects of Erythroxylum species.

2 � Chemical composition
Based on the published results dedicated to study chemi-
cal composition of Erythroxylum species, 383 com-
pounds, including diterpenes, triterpenes, flavonoids, 
alkaloids, and other derivates, have been found in 67 
Erythroxylum species. Among these, 186 TAs com-
pounds identified in Erythroxylum plants before 2010 
have been systematically reviewed by Oliveira et  al. [6]. 
Therefore, here we summarized all remained 197 com-
pounds characterized from 53 Erythroxylum species 
from 1960 to 2021, which include diterpenes, triterpenes, 
alkaloids, flavonoids, and other derivates.

According to the literature, Erythroxylum plants are 
rich in alkaloids. Especially E. coca, E. coca var. coca, 
and E. novogranatense var. novogranatense, the con-
tent of total alkaloids varies from 0.5% to 2.4% in leaves 
(dry mass, Table  1) [15]. Particularly, high cocaine con-
tent (0.13%-0.76% dry mass) was found in E. coca and 
E. novogranatense leaves [16]. In 2006, Stefan Bieri et al. 

Tabel 1  The content of principal components in several Erythroxylum species

Species Total alkaloids (dry 
leaves) (%)

Total phenols (dry 
leaves) (%)

Total tannins (dry 
leaves) (%)

Total flavonoids (dry 
leaves) (%)

Total diterpenes (dry 
stems) (%)

Refs.

E. coca 0.5–1.5 [15]

E. coca var. coca 1.05–2.26 [19]

E. novogranatense var. 
novogranatense

1.4–2.4 [19]

E. suberosum 17.97 6.31 3.87 [18]

E. tortuosum 10 8.4 0.064 [18]

E. deciduum 12.04 0.87 1.37 [18]

E. australe 1.8 [5]

E. pictum 0.09–1.1% [20]
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[17] analyzed the cocaine distribution in 51 plant spe-
cies and cocaine was detected only in 23 Erythroxylum 
species with the content less than 0.001% (dry leaves). 
High production of total phenols, total tannins and total 
flavonoids of up to 17.97%, 8.4%, and 3.87% (dry leaves), 
respectively, was reported in E. suberosum, E. tortuosum, 
and E. deciduum [18] (Table 1). Additionally, the total dit-
erpenes content determined in stems of E. australe and 
E. pictum ranged from 0.09% to 1.8% (dry mass, Table 1).

2.1 � Diterpenes
Plants of Erythroxylum are rich in diterpenoids, which 
have been extensively studied since the last century. In 
particular, Connolly [21–24] and Kapadi [25–27], who 
focused on investigating diterpenoids of E. monogynum 
in 1960s, provided the earliest knowledge of diterpenoids 
in Erythroxylum species. Using nuclear magnetic reso-
nance (NMR) spectroscopy and chemical reactions, they 
and their coworkers elucidated the structures of 17 diter-
penoids in E. monogynum. To date, about 11 types of dit-
erpene skeletons (a–k) have been identified from plants 
in this genus (Fig. 1). Based on the number of rings in the 
diterpene skeletons, diterpenes found in Erythroxylum 
species could be divided into bicyclic diterpenes, tricyclic 
diterpenes, and tetracyclic diterpenes.

2.1.1 � Bicyclic diterpenes
Labdane is a typical bicyclic diterpene, which forms 
the structural skeleton for many diterpene compounds 
found in plants [28–30]. In Erythroxylum, six ent-labdane 

derivatives (1–6) have been isolated and character-
ized from nine species of this genus in the past decades 
[20, 31, 32] (Table 2). Additionally, Ansell [20] et al. first 
found six 4,5-seco-rosane derivative diterpenoids (7–12) 
from E. pictum in 1993 (Table 2). Since these derivatives 
were shown to be characteristic of E. pictum, they named 
this novel bicyclic diterpene skeleton, 4,5-seco-rosane, 
as pictane. Later, they found one of these derivatives of 
pictane, ent-15ξ,16-dihydroxypictan-4(18)-en-5-one (7), 
was also present in other six species of Erythroxylum 
[31]. The distribution and structures of these bicyclic dit-
erpenes are listed in Table 2 and Fig. 2, respectively.

2.1.2 � Tricyclic diterpenes
21 tricyclic diterpene compounds with four skeleton 
types (abietane, pimarane, dolarbrane, and rosane) have 
been isolated from Erythroxylum genus (Fig. 3; Table 3). 
Among these compounds, there are three abietane 
(13–15) [33] and two pimarane diterpenoids (16–17) 
[31] obtained from E. suberosum and E. cuneatum, 
respectively. Dolarbrane-type diterpene was first found 
in the leaves of Thujopsis dolabrata of Cupressaceae in 
1964 [34]. Almost at the same time, Connolly [21], who 
focused on the phytochemistry of E. monogynum, char-
acterized erythroxydiol Y (18) from this Erythroxylum 
plant. In 1993, seven new dolarbrane-type derivatives 
(19–25) were reported by Ansell et al. [20, 31]. In addi-
tion, they identified seven rosane-type (26–32) diter-
penoids from several Erythroxylum species. Another 

a b c d

f g h

i kj

e

H H

H

H

H

H

H

H

HH

H

H H

H H

H

H

H

H

H

Fig. 1  Skeletons of diterpenes found in Erythroxylum plants
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rosane-type compound (33) was found in E. barbatum by 
dos Santos [35].

2.1.3 � Tetracyclic diterpenes
Erythroxylum is a prolific source of beyerene diterpenes 
[5, 24, 31]. More than 20 beyerene derivatives (34–59) 
have been identified from nine Erythroxylum species [5, 
24, 25, 31, 37–40], while diterpenoids isolated from E. 
australe consisted preponderantly of beyerene derivatives 
[5, 24] (Fig. 4; Table 4). Importantly, in a recent research, 
auto-oxidation of the aldehyde group of ent-beyer-15-en-
19-al (50) isolated from E. monogynum to a carboxylic 
acid group was observed, and this auto-oxidation could 

take place both with and without the concurrent epoxi-
dation of the 15,16-double bond, indicating that some 
beyerene type diterpenoids identified previously may be 
artefacts arising from the auto-oxidation reaction [40]. 
Tetracyclic diterpene ent-kaurene is a critical interme-
diate in gibberellin hormones biosynthesis pathway in 
plants, and kaurene diterpenes are widely distributed in 
nature. Seven kaurene diterpenes (61–67) have been iso-
lated and identified from Erythroxylum plants [5, 20, 31, 
33, 41] (Fig.  4; Table  4), among which erythroxylisin A 
(64) and erythroxylisin B (65) obtained from roots of E. 
barbatum are unusual kaurene diterpenes with a cis-ori-
entation of the C-20 methyl and the CH2-15 methylene 

Table 2  Bicyclic diterpenes isolated from Erythroxylum plants

No. Compounds Plant source Refs.

1 ent-labda-8(17),14-dien-13R-ol E. pictum, E. areolatum, E. cuneatum, E. rotundifolium [20, 31]

2 ent-13R-hydroxylabda-8(17)-dien-3-one E. pictum, E. betulaceum, E. cuneatum, E. rotundifolium [20, 31, 32]

3 ent-labda-8(17),14-dien-3β,13R-diol E. pictum, E. betulaceum, E. cuneatum, E. delagoense [20, 31, 32]

4 ent-labda-8(17),14-dien-13R,18-diol E. pictum, E. rotundifolium [20, 31]

5 ent-labda-8(17),13E-dien-15-ol E. pictum, E. deciduum, E. zambesiacum [20, 31]

6 ent-labda-8(17),13E-dien-15,16-diol E. argentinum [31]

7 ent-15ξ,16-dihydroxypictan-4(18)-en-5-one E. pictum, E. areolatum, E. cuneatum, E. delagoense, E. microphyl-
lum, E. zambesiacum, E. rotundifolium

[20, 31]

8 ent-4,15ξ,16-trihydroxypictan-5-one E. pictum [20]

9 ent-15ξ,16-dihydroxy-4,18-epoxypictane-5-one E. pictum [20]

10 ent-4,15ξ,16,18-tetrahydroxypictan-5-one E. pictum [20]

11 ent-16-hydroxypictan-4(18)-ene-5,15-dione E. pictum [20]

12 ent-4,13α-dihydroxy-15ξ,16-bisnorpictan-5-one E. pictum [20]
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Fig. 2  Chemical structures of bicyclic diterpenes (1–12) found in Erythroxylum plants
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groups [41]. Devadarane is a tetracyclic diterpene skel-
eton completely different from the two mentioned 
above (Fig. 4; Table 4). Devadarane-type diterpene com-
pounds (68–75) were first discovered in E. monogynum 
[21, 42]. However, the structure of triol Q (72) was not 
determined until McCrindle. R [43] undertook an X-ray 
analysis two years later. Although devadarane-type diter-
penes have been identified in five species of this genus, 
only eight devadarane derivatives (68–75) have been 
reported so far (Fig.  4; Table  4). Ryanodane diterpenes 
(76–77) [13] were originally isolated from ripe fruits of 
E. passerinum, and later ryanodanol (76) was also identi-
fied in E. nummularia leaves (Fig. 4; Table 4). This type 
of diterpenoids has a complicated skeleton. According to 
reports in the literature since 1960, only two compounds 
(76–77) of this type have been discovered in the genus 
Erythroxylum.

2.2 � Triterpenoids
To date, a total of 19 triterpenoids have been identified 
in Erythroxylum plants (Fig. 5; Table 5), ten of which are 
fatty acid esters of triterpenes (78–86, 88) from E. num-
mularia [44], E. leal-costae [45], E. rimosum [46] or E. 
passerinum [47]. Lupenyl acetate (87) [45], α-amyrin 
(89) [46], β-amyrin (90) [44, 46, 47] and erythrodiol (91) 
[47] are other four triterpenoids found in E. leal-costae, 
E. nummularia, E. rimosum or E. passerinum (Fig.  5; 
Table 5). Besides, recent studies reported five triterpenes 
(92–96) from E. ovalifolium [14], E. daphnites [48] or E. 
macrocalyx [49]. Interestingly, all the triterpenoids iden-
tified in this genus are pentacyclic triterpenes.

2.3 � Alkaloids
TAs are alkaloids with a tropane skeleton (8-azabicy-
clo[3.2.1]octane). As characteristic alkaloids widely 
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Fig. 3  Chemical structures of tricyclic diterpenes (13–33) found in Erythroxylum plants
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distributed in Erythroxylum species, TAs exhibit a 
range of pharmacological activities like vasorelaxation 
[50], antiproliferative [49], anesthesia [51], antimicro-
bial and anticancer [12]. In 2010, a fascinating review 
by Oliveira et  al. [6] comprehensively summarized 
structures of 186 TAs found in 35 species of Erythroxy-
lum. As an update, we here found 11 more new TAs 
reported in studies since then (Fig.  6; Table  6). Among 
these newly identified TAs, two members were iso-
lated from E. pungens (97) [52] and E. caatingae (98) 
[53], respectively; 6β,7β-dibenzoyloxytropan-3α-ol (99) 
was obtained from E. subsessile [54]; 7β-acetoxy-6β-
benzoyloxy-3α-hydroxytropane (100) was isolated from 
the twigs of E. macrocalyx [49]; six members named as 
erythrobezerrines A-F (101–106) were isolated from 
the stem bark of E. bezerrae [55]; and 7β-acetoxy-3β,6β-
dibenzoyloxytropane (107) was isolated from the leaves 
of E. rimosum [46]. Previous studies have also reported 
the isolation of non-TA alkaloids by GC–MS analysis 
[56–58]. However, since most of them were potential 
precursors or side products of TA biosynthetic pathway 
[56], we will not include them here. Readers interested in 
the details of these compounds are referred to the review 
by Brachet Anne and coworkers [56].

2.4 � Flavonoids
Flavonoids are a large and complex group of constitu-
ents found in almost all plants. Flavonoid variation 
in thirteen species of Erythroxylum has been studied 
systematically by Plowman et  al. in 1988 [59]. They 
found kaempferol, ombuin (7,4ʹ-dimethylquercetin), 
and quercetin were predominant flavonoid aglycones 
in Erythroxylum plants analyzed. Besides, Johnson 
and coworkers [60–65], based on their work on flavo-
noids profiles of six species or variants and flavonoids 
that had been reported in Erythroxylum, proposed that 
some unique flavonoids could be used as chemotaxo-
nomic markers for taxon. Overall, flavonoid aglycones 
in Erythroxylum mainly consist of quercetin, ombuin, 
fisetin, kaempferol, epicatechin, eriodictyol and taxi-
folin. In addition to these, isoflavone, isoflavanone and 
other flavone derivatives were also found in Erythroxy-
lum. Chemical structures of flavonoid aglycones that 
have been found in Erythroxylum plants were sum-
marized and presented in Fig.  7. Moreover, the major 
glycosides of these flavonoids include mono-glucosyl-
rhamnosyls and dirhamnosyl-glucosides, as well as 
mono-galactosyl and mono-arabinosyl. In total, 73 
flavonoids from 37 species of Erythroxylum have been 

Table 3  Tricyclic diterpenes isolated from Erythroxylum plants

No. Compounds Plant source Refs.

13 7-oxo-16-hydroxy-abiet-15(17)-en-19-al E. suberosum [33]

14 7-oxo-abiet-15(17)-en-16-ol E. suberosum [33]

15 7α,16-dihydroxy-abiet-15(17)-en-19-al E. suberosum [33]

16 ent-pimara-8(14),15-dien-3α-ol E. cuneatum [31]

17 ent-3α,11β-dihydroxypimara-8(14),15-diene E. cuneatum [31]

18 erythroxydiol Y
(allodevadarool)

E. monogynum [5, 21, 22, 36]

18a ent-dolabr-4(18)-ene-15S,16-diol E. pictum, E. argentinum, E. delagoense, E. macrocarpum, E. rotundifolium, 
E. sideroxyloides

[20, 31]

19 ent-5β-dolabr-4(18)-ene-15R,16-diol E. pictum

20 ent-15,16-dihydroxydolabr-4(18)-en-1-one E. sideroxyloides [31]

21 ent-1α-acetoxydolabr-4(18)-ene-11α,15ξ,16-triol E. sideroxyloides [31]

22 ent-dolabr-4(18)-ene-11α,15ξ,16-triol E. macrocarpum, E. sideroxyloides [31]

23 ent-11α-acetoxydolabr-4(18)-ene-15ξ,16-diol E. macrocarpum, E. sideroxyloides [31]

24 ent-dolabr-4(18)-ene-7β,15S,16-triol E. sideroxyloides, E. pictum, [20, 31]

25 ent-dolabr-4(18)-ene-7β,15R,16-triol E. pictum [20]

26 ent-5β-ros-1(10)-en-15ξ,16-diol E. zambesiacum [31]

27 ent-11α-acetoxy-5α-ros-1(10)-en-15ξ,16-diol E. zambesiacum [31]

28 ent-2-oxo-ros-1(10),15-diene E. zambesiacum [31]

29 ent-rosane-5α,15ξ,16-triol E. cuneatum, E. areolatum, E. sideroxyloides, E. pictum, E. zambesiacum [20, 31]

30 ent-5α,16-dihydroxyrosan-15-one E. pictum [20]

31 ent-rosane-5α,16-diol E. pictum [20]

32 ent-ros-5-en-15ξ,16-diol E. pictum [20]

33 ent-rosan-1-one-5β,15ξ,16-triol E. barbatum [35]
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studied (Table  7), though some structures lack NMR 
data support in the literature.

2.5 � Other constituents
Norisoprenoid compounds (megastigmanes, 181–187) 
have been characterized in E. cuneatum [74] and E. cam-
bodianum [72] by Kanchanapoom et al. (Fig. 8; Table 8). 
Phenolic derivatives and their glycosides were also 

obtained (Fig.  8; Table  8), which include two acetophe-
none diglycosides (188–189) isolated from E. cambodi-
anum [72], neochlorogenic acid (190) and protocatechuic 
acid (191) extracted from E. lucidum [68], and scoparon 
(192) yielded from E. barbatum [76]. Additionally, five 
steroids (193–197) have been identified in this genus 
according to the previous studies [35, 44, 46–48, 76, 77] 
(Fig.  8; Table  8). Importantly, compounds 193 and 194 
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Table 4  Tetracyclic diterpenes isolated from Erythroxylum plants

No. Compounds Plant source Refs.

34 ent-beyer-15-ene
(( +)-hibaene)

E. australe, E. monogynum, E. zambesiacum [5, 25, 31, 39]

35 ent-beyer-15-en-19-ol
(erythroxylol A)

E. australe, E. zambesiacum, E. monogynum [5, 31, 37, 38]

36 ent-beyer-15-en-17-ol E. australe, E. pictum, E. argentinum, E. rotundifolium, E. zambesiacum, E. 
monogynum

[5, 20, 31, 38]

37 ent-beyer-15-en-17,19-diol E. monogynum [38]

38 ent-beyer-15-en-1α-ol E. australe [5]

39 ent-beyer-15-en-12β-ol E. zambesiacum [31]

40 ent-beyer-15-en-7-one E. argentinum [31]

41 ent-2-hydroxybeyer-2,15-dien-1-one E. australe [5, 24]

42 ent-2,17-dihydroxybeyer-2,15-dien-1-one E. australe, E. pictum, E. microphyllum, E. argentinum [5, 20, 31]

43 ent-2,19-dihydroxybeyer-2,15-dien-1-one E. australe, E. microphyllum

44 ent-15,16-epoxy-beyer-1-one E. australe [5, 24]

45 ent-15,16-epoxy-beyerene E. zambesiacum, E. monogynum [31, 38, 39]

46 erythroxylol A epoxide E. monogynum [38]

47 erythroxylol A acetate epoxide E. monogynum [38]

48 4β-hydroxy-18-norhibaene E. monogynum [38]

49 4α-hydroxy-18-norhibaene E. monogynum [38]

50 ent-beyer-15-en-19-al E. monogynum [40]

51 ent-17-hydroxybeyer-15-en-1-one E. australe, E. pictum, E. areolatum, E. argentinum, E. microphyllum, E. rotundifo-
lium

[5, 20, 31]

52 ent-2α,17-dihydroxybeyer-15-en-1-one E. pictum, E. microphyllum, E. rotundifolium [20, 31]

53 ent-2α,19-dihydroxybeyer-15-en-1-one E. australe, E. betulaceum, E. microphyllum [5, 31, 32]

54 ent-beyer-15-en-1-one E. australe, E. argentinum, E. rotundifolium, E. zambesiacum [5, 24, 31]

55 ent-2α-hydroxybeyer-15-en-1-one E. australe [24]

56 ent-19-hydroxybeyer-15-en-1-one E. australe [5]

57 ent-1α-hydroxybeyer-15-en-2-one E. australe [5]

58 ent-1α,17-dihydroxybeyer-15-en-2-one E. pictum, E. rotundifolium [20, 31]

59 ent-1α,19-dihydroxybeyer-15-en-2-one E. microphyllum [31]

60 isoatisirene E. monogynum [27]

61 atisirene E. monogynum [27]

62 ent-kauran-16-ol E. pictum, E. australe [5, 20]

63 ent-kauran-16,17-diol E. rotundifolium, E. pictum [20, 31]

64 erythroxylisin A E. barbatum [41]

65 erythroxylisin B E. barbatum [41]

66 ent-12β-hydroxy-kaur-16-en-19-al E. suberosum [33]

67 methylent-7β,15α-dihydroxy-kaur-16-en-19-oate E. suberosum [33]

68 (+)-devadarene E. monogynum [27]

69 ent-devadarane-15ξ,16-diol E. monogynum, E. barbatum, E. macrocarpum, E. pictum, E. sideroxyloides [20, 31] [35, 36]

70 ent-devadaran-lα,11α,15ξ,16-tetrol E. australe, E. areolatum, E. sideroxyloides [5, 20, 31]

71 ent-lα-acetoxydevadaran-11α,15ξ,16-triol E. areolatum [31]

72 triol Q E. monogynum [43]

73 ent-11α-acetoxy-devadarane-15ξ,16-diol E. barbatum [35]

74 ent-devadarane-11α,15ξ,16-triol E. barbatum [35]

75 ent-devadarane-7β,15ξ,16-triol E. barbatum, E. monogynum [35, 36]

76 ryanodanol E. passerinum, E. nummularia [13]

77 14-O-methyl-ryanodanol E. passerinum [13]
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Fig. 5  Chemical structures of triterpenoids (78–96) found in Erythroxylum plants

Table 5  Triterpenoids isolated from Erythroxylum plants

No. Compounds name Plant source Refs.

78 β-amyrin palmitate and stearate E. nummularia, E. rimosum [44, 46]

79 erythrodiol palmitate and stearate E. nummularia [44]

80 oleanolic acid E. nummularia [44]

81 β-amyrin palmitate E. passerinum, E. leal-costae [45, 47]

82 3β-hydroxy-11-oxo-olean-12-enylpalmitate E. passerinum [47]

83 3β,11β-dihydroxy-olean-12-enyl palmitate E. passerinum [47]

84 3β,28-dihydroxy-olean-12-enyl palmitate E. passerinum [47]

85 3β-hydroxy-11,12-epoxy–friedoolean-14-enyl palmitate E. passerinum [47]

86 lupenyl palmitate E. leal-costae [45]

87 lupenyl acetate E. leal-costae [45]

88 α-amyrin esters E. rimosum [46]

89 α-amyrin E. rimosum [46]

90 β-amyrin E. nummularia, E. passerinum, E. rimosum [44, 46, 47]

91 erythrodiol E. passerinum [47]

92 lupeol E. macrocalyx, E. ovalifolium [14, 49]

93 lupenone E. macrocalyx, E. daphnites [48, 49]

94 friedelanol E. daphnites [48]

95 friedelan-3-one E. daphnites, E. subsessile [14, 48]

96 taraxerol E. macrocalyx [49]
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showed significant anti-oxidant and anti-glycation activi-
ties in vitro [77].

3 � Biological activities of natural products 
in Erythroxylum

3.1 � Bioactivities of diterpenes, triterpenes and sterols
Pharmacological investigation of diterpenes isolated from 
Erythroxylum species are still scarce despite the large 
resource found. Diterpene 14-O-methyl-ryanodanol (77) 
showed insecticidal activity against Aedes aegypti larvae 

[13], as well as a dose-dependent cytotoxic effect to astro-
cytes (GL-15 cell line) [78]. Cytotoxicity activities against 
five tumor cell lines of devadarane derivatives (69, 73–
75) were also investigated, but no activity was observed 
[35]. Exploring and evaluating bioactivities of the numer-
ous diterpenoids found in Erythroxylum species will be 
essential for further effective utilization of these natural 
product resources in this genus. For triterpenes, com-
pounds 93–95 were major constituents of the hexane 
extract of E. daphnites leaves which showed a cytotoxic 
effect against SCC-9 oral squamous cell carcinoma cell 
line [48]. Additionally, sterols (193, 194) isolated from 
E. monogynum possess good anti-oxidant and anti-glyca-
tion activities [77]. Additionally, although a large number 
of flavonoids have been found in Erythroxylum species, 
these compounds are not specifically distributed in this 
genus. Readers interested in the details of bioactive flavo-
noids are referred to the review by Shashank Kumar and 
coworkers [79].

3.2 � Bioactivities of TAs
In Erythroxylaceae family, TAs specially occur in spe-
cies of Erythroxylum. Until now, a total of 197 TAs com-
pounds have been characterized in Erythroxylum plants. 
There are plenty of researches on pharmacology activi-
ties of TAs in Erythroxylum, especially cocaine. Oph-
thalmologist Carl Koller first demonstrated the ability 
of cocaine to induce local anesthesia in eyes [8]. Later, 

N

O

97  R = H
98  R = OCO-Ph

O

OH

O

O N

OHO

O

R

99  R = OCO-Ph
100  R = OCOCH3

101

103

N

O

O

OH

O

O

O

O

HO

N

O

O

O

O

O
O

O

O

O

O

105  R1 = OCO-Ph  R2 = OCH3
106  R1 = OCO-Ph  R2 = OH

N

OH

O

O
R1

O

R2

O

R

N

O

O

R O

107  R = OCOCH3

O

N

O

O

O

O

HO

O
O

O

O

HO

O

104

N

O

O

O

O

O

O

O

HO

102
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Table 6  Alkaloids isolated from Erythroxylum plants

No. Compounds name Plant source Refs.

97 pungencine E. pungens [52]

98 6β-benzoyloxy-3α[(4-hydroxy-3,5-
dimethoxybenzoyl) oxy] tropane

E. caatingae [53]

99 6β,7β-dibenzoyloxytropan-3α-ol E. subsessile [54]

100 7β-acetoxy-6β-benzoyloxy-3α-
hydroxytropane

E. macrocalyx [49]

101 erythrobezerrine A E. bezerrae [55]

102 erythrobezerrine B E. bezerrae [55]

103 erythrobezerrine C E. bezerrae [55]

104 erythrobezerrine D E. bezerrae [55]

105 erythrobezerrine E E. bezerrae [55]

106 erythrobezerrine F E. bezerrae [55]

107 7β-acetoxy-3β,6β-dibenzoyloxytropane E. rimosum [46]
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Table 7  Flavonoids isolated from Erythroxylum plants

No. Compounds name Plant source Refs.

108 ombuin E. nummularia [44]

109 ombuin-3-O-rutinoside E. alaternifolium, E. campestre, E. barbatum, E. argen-
tinum, E. tenue, E. daphnites, E. loefgrenii, E. engleri, E. 
cuneifolium, E. lucidum, E. pruinosum, E. pulchrum, E. 
squamatum, E. subracemosum, E. subrotundum, E. vac-
ciniifolium, E. novogranatense

[59, 66–71]

110 ombuin-3-O-rutinoside-5-O-glucoside E. argentinum, E. cuneifolium, E. pulchrum, E. macrocalyx [49, 67, 70, 71]

111 quercetin E. rimosum, E. lucidum, E. suberosum, E. ovalifolium [14, 46, 59]

112 quercetin-3-O-rutinoside E. argentinum, E. cambodianum,
E. alaternifolium, E. engleri,
E. loefgrenii, E. leal-costae, E. lucidum, E. pruinosum, E. 
coca, E. suberosum, E. subracemosum, E. ovalifolium, E. 
rufum, E. ulei

[4, 10, 14, 45, 59, 66–68, 72, 73]

113 quercetin-3-O-rhamnoside E. argentinum, E. cuneatum, E. ulei, E. rufum, E. subsessile, 
E. daphnites, E. loefgrenii, E. lucidum, E. leal-costae, E. 
pruinosum, E. pulchrum, E. suberosum, E. vacciniifolium, 
E. laurifolium, E. macrocarpum, E. hypericifolium

[14, 45, 59, 67, 68, 73–75]

114 quercetin-3-O-glucoside E. daphnites, E. loefgrenii, E. pruinosum, E. rimosum, E. 
rufum, E. squamatum, E. suberosum, E. subracemosum, 
E. ulei, E. coca, E. vacciniifolium, E. nummularia, E. laurifo-
lium, E. macrocarpum, E. hypericifolium

[4, 10, 44, 46, 59, 67, 73, 75]

115 quercetin-3-O-arabinoside E. campestre, E. cuspidifolium, E. pruinosum, E. rufum, E. 
rimosum, E. ulei, E. suberosum, E. vacciniifolium

[46, 59, 73]

116 quercetin-3-O-xyloside E. campestre, E. rufum, E. ulei, E. vacciniifolium [59, 73]

117 quercetin-3-O-galactoside E. rufum, E. rimosum, E. ulei, E. suberosum [46, 59, 73]

118 quercetin-3-O-glucosylxyloside E. campestre, E. squamatum, E. suberosum [59]

119 quercetin-3-O-glucosylarabinoside E. campestre, E. suberosum [59]

120 quercetin-3-O-glucosylglucoside E. vacciniifolium, E. ulei [59, 73]

121 quercetin-3-O-rhamnoside-7-O-glucoside E. vacciniifolium, E. australe [59, 65]

122 quercetin-3,7-O-dirhamnoside E. vacciniifolium [59]

123 quercetin-4′,3-di-O-rhamnoside E. coca var. ipadu [64]

124 quercetin-4′,7-di-O-rhamnoside E. ulei [63]

125 kaempferol E. rimosum [46]

126 kaempferol-3-O-glucoside E. barbatum, E. loefgrenii, E. rufum, E. squamatum, E. ulei, 
E. suberosum, E. subracemosum, E. tenue, E. vacciniifo-
lium

[59, 73]

127 kaempferol-3-O-arabinoside E. cuspidifolium, E. daphnites
E. suberosum, E. vacciniifolium, E. rufum, E. ulei, E. 
rimosum

[46, 59, 73]

128 kaempferol-3-O-rhamnoside E. loefgrenii, E. pruinosum, E. rufum, E. subsessile, E. tenue, 
E. ulei, E. vacciniifolium

[14, 54, 59, 73]

129 kaempferol-3-O-galactoside E. rufum, E. ulei, E. vacciniifolium [59, 73]

130 kaempferol-3-O-xyloside E. rufum, E. suberosum, E. ulei, E. vacciniifolium [59, 73]

131 kaempferol-3-O-glucosylxyloside E. barbatum, E. campestre [59]

132 kaempferol-3-O-rutinoside E. rufum, E. ulei, E. subracemosum, E. tenue [59, 73]

133 kaempferol-3-O-arabinofuranoside E. rimosum [46]

134 kaempferol-3-O-glucoside-7-O-rhamnoside E. cuneifolium, E. tenue, E. vacciniifolium [59, 71]

135 kaempferol-3-O-arabinoside-7-O-rhamnoside E. vacciniifolium [59]

136 kaempferol-3-O-rhamnoside-7-O-galactoside E. novogranatense. var. novogranatense [60]

137 kaempferol-3,7-O-dirhamnoside E. cuneifolium [71]

138 kaempferol-3-O-triacetylrhamnoside-7-O-triacetylga‑
lactoside

E. novogranatense. var. novogranatense [60]

139 kaempferol-4′-ethoxy-7-O-galactoside E. novogranatense. var. novogranatense [60]

140 kaempferol-4′-O-rhamnosylglucoside E. coca var. ipadu [64]

141 kaempferol-3,4′-di-O-rhamnoside E. coca var. ipadu [64]
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it was extended to dentistry, urology, laryngology and 
other fields as a local anaesthetic [80]. In addition, a 
review by Drake [51] highlighted that cocaine could act 
as a psychomotor stimulant and also showed toxicity in 
coabuse and overdoses. Cocaine acts on the mesolimbic 
dopamine system whose origins begins in the ventral 
tegmental area and projects to the nucleus accumbens, 

the amygdala, the hippocampus, and the prefrontal cor-
tex, resulting in a higher concentration of dopamine 
release into the nucleus accumbens and prefrontal cortex 
[81]. Previous study also showed that acute cocaine at a 
dose used by cocaine abusers for recreational purposes 
induced large increases in intracellular calcium in the 
cortex of the rat brain and the mechanism were related 

Table 7  (continued)

No. Compounds name Plant source Refs.

142 kaempferol-3-O-rutin-7-O-rhamnoside E. coca var. ipadu [64]

143 taxifolin E. ulei [73]

144 taxifolin-3,4′-di-O-rhamnoside E. coca var. ipadu [64]

145 taxifolin-3,7,4′-tri-O-rhamnoside E. coca var. ipadu [64]

146 eriodictyol-7-O-rhamnoside E. coca var. ipadu, E. australe [64, 65]

147 eriodictyol-3′-ethoxy-4′-O-rhamnoside E. coca var. ipadu [64]

148 eriodictyol-3′-ethoxy-4′-O-acetylrhamnoside E. coca var. coca [60]

149 eriodictyol-7-O-acetylrhamnoside E. coca var. coca [60]

150 eriodictyol-7-O-triacetylrhamnoside E. coca var. coca [60]

151 eriodictyol-3′-ethoxy-7-O-acetylrhamnoside E. coca var. coca [60]

152 eriodictyol-3′-ethoxy-7-O-triacetylrhamnoside E. coca var. coca [60]

153 eriodictyol-3′,4′-di-ethoxy-7-O-acetylrhamnoside E. coca var. coca [60]

154 luteolin-3′-ethoxy-4′-H-3-O-rhamnoside E. novogranatense. var. novogranatense [60]

155 luteolin-3′-OH-4′-H-3-O-triacetylrhamnoside E. novogranatense. var. novogranatense [60]

156 luteolin-8-O-rhamnoside E. leal-costae [45]

157 luteolin-6-O-rhamnoside E. leal-costae [45]

158 myricetin-3-O-glucoside E. ulei [73]

159 naringenin-7-O-glucoside E. ulei [73]

160 dihydro-orobol-4′-O-dirhamnoside E. australe [65]

161 dihydro-orobol-7-methoxy-5-O-rhamnoside E. australe [65]

162 dihydro-orobol-7-O-glucoside-3′-O-rhamnoside E. australe [65]

163 dihydro-orobol-5-dehydroxy-7,3′-di-O-glucoside E. australe [65]

164 dihydro-orobol-2-methyl-3′-O-rhamnoside E. australe [65]

165 orobol-2,5′-dihydroxy-7-O-dirhamnoside E. ulei [63]

166 orobol-3′-dehydroxy-4-O-glucoside-7-O-dirhamnoside E. ulei [63]

167 orobol-2-hydroxy-7-O-dirhamnoside E. ulei [63]

168 dihydro-orobol-2-methyl-4′-O-galactoside-7-O-
dirhamoside

E. ulei [63]

169 dihydro-orobol-2-methyl-4′-O-galactoside-7-O-
rhamoside

E. ulei [63]

170 derricin E. barbatum [76]

171 medicarpin E. barbatum [76]

172 lonchocarpin E. barbatum [76]

173 homopterocarpin E. barbatum [76]

174 ( +)-catechin E. cambodianum, E. cuneatum, E. rimosum, E. suberosum [10, 46, 72, 74]

175 (+)-catechin-3-O-α-rhamnopyranoside E. novogranatense [69]

176 (−)-epicatechin E. cambodianum, E. rimosum, E. suberosum, E. leal-costae [10, 45, 46, 72]

177 procyanidin B1 E. novogranatense [69]

178 procyanidin B3 E. novogranatense [69]

179 cinchonains la E. catuaba [11]

180 cinchonains lb E. catuaba [11]
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to the local anesthetic actions of cocaine and not its 
sympathomimetic effects [82]. The cardiovascular mito-
chondrial dysfunction induced by cocaine is involved 
in the mechanisms of oxidative stress [83]. Also, Ca2+/
calmodulin-dependent protein kinase II and inhibitory 
G-protein coupled receptor signaling are involved in the 
mechanism of the effect of cocaine- and amphetamine-
regulated transcript in cocaine reward [84]. There are a 
number of excellent reviews on the bioactivity, toxic-
ity, and biological mechanisms of cocaine [84–88], and 
therefore we will not repeat more details here. Addition-
ally, for cocaine-producing Erythroxylum plants, cocaine 
could function as a natural insecticide to protect the 
leaves [89].

Pervilleine A (reviewed in ref. [6]) from E. pervil-
lei demonstrated weak nonspecific anticholinergic and 
vascular antiadrenergic activities [90]. Catuabine B 
and 3α,6β-dibenzoyloxytropane from E. vaccinifolium 
[53] (reviewed in ref. [6]) showed antimicrobial activ-
ity on gram-positive bacteria and fungi [12]. It has also 
been demonstrated that the E. cuneatum leaf alkaloid 

extract possessed both antioxidative and anti-inflam-
matory properties [9]. Among the reported biological 
activities of TAs, cytotoxicity is also noticeable. Araújo 
Neto et  al. [91] summarized the cytotoxic activity of 21 
species of Erythroxylum against 45 different cell lines 
and found the species with presence of disubstituted 
TAs had the highest cytotoxic potentials. Recently, a 
newly identified tropane alkaloid (6β-benzoyloxy-3α[(4-
hydroxy-3,5-dimethoxybenzoyloxy] tropane) (98) was 
demonstrated to possess high antiproliferative activity on 
liver hepatocellular carcinoma cells (HepG2) with IC50 
value of 3.66  μg  mL−1. Meanwhile, it showed no cyto-
toxicity on human lymphoblast cell line [49]. In addition, 
erythrobezerrine C (103) showed moderate cytotoxicity 
activity on HCT-116 and NCI-H460, with IC50 values of 
3.38 and 5.43 μM, respectively [55]. TAs with antimicro-
bial [12] and diuretic [92, 93] activities have also been 
reported. In 1984, Novak [94] reported the bioactivities 
of TAs from E. coca and E. novogranatense contained 
stimulant activity, inhibiting effect on dopamine uptake, 
and cholinolytic action.
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Table 8  Other constituents isolated from Erythroxylum plants

No. Compounds name Plant source Refs.

181 apocynol B E. cuneatum [74]

182 (6S,9R)-roseoside E. cuneatum [74]

183 vomifoliol-9-O-arabinofuranosyl-glucopyranoside E. cuneatum [74]

184 inamoside E. cuneatum [74]

185 cuneatoside E. cuneatum [74]

186 citroside A E. cuneatum, E. cambodianum [72, 74]

187 (3S,5R,6R,7E,9S)-megastigman-7-ene-3,5,6,9-tetrol-3-O-β-
glucopyranoside

E. cambodianum [72]

188 erythroxylosides A E. cambodianum [72]

189 erythroxylosides B E. cambodianum [72]

190 neochlorogenic acid E. lucidum [68]

191 protocatechuic acid E. lucidum [68]

192 scoparon E. barbatum [76]

193 4-methyl ergosta-7,23-dien-3β-ol E. monogynum [77]

194 4-methyl ergosta-7,24(28)-dien-3β-ol E. monogynum [77]

195 steroids procesterol E. barbatum [76]

196 β-sitosterol E. barbatum, E. daphnites, E. rimosum, E. num-
mularia, E. passerinum

[44, 46–48, 76]

197 β-sitosterol-O-glucoside E. barbatum [35]

Table 9  Biological activities of crude extracts of Erythroxylum plants

Plant source Extract Source Crude extracts Pharmocological activities Refs.

E. monogynum Leaves Chloroform Antidiabetic [95]

Ethanolic Hepatoprotective effects; Nephroprotective effects [95, 101]

Aqueous Antimicrobial; Antioxidant [95]

Methanol Antiplasmodial; Cytotoxicity [95, 102]

E. delagoense Leaves and bark Acetonic; Methanol;
Aqueous

Antibacterial [96]

E. emarginatum leaves and stems Acetonic; Methanol;
Aqueous

Antibacterial [96]

E. pictum Leaves and stems Acetonic; Methanol; Aqueous Antibacterial [96]

E. pungens Roots Ethanolic Vasorelaxant [50]

E. caatingae Leaves Ethanolic Myorelaxing effect on smooth muscle tissue [97, 103]

Stems Methanol; Antimicrobial activity; [12, 53]

Low-polarity fractions Cytotoxicity

E. macrocarpum Leaves Acetone/water (70/30, v/v) Acetylcholinesterase inhibition [98]

E. areolatum Leaves Hydroalcoholic Antiherpetic activity [99]

E. confusum Leaves Hydroalcoholic Antiherpetic activity [99]

E. minutifolium Leaves n-Hexane Hepatoprotective effects [100]

E. confusum Leaves n-Hexane Hepatoprotective effects [100]

E. ovalifolium Stems Ethanolic Neutralize toxicity of snake venom [14]

E. subsessile Stems Ethanolic Neutralize toxicity of snake venom [14]

E. daphnites Leaves n-Hexane Anti-proliferative effects [48]
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3.3 � Bioactivities of crude extracts
In addition to research on single compound, many studies 
have been carried out on the biological activities of crude 
extracts of Erythroxylum plants (Table 9). E. monogynum 
is rich in alkaloids and diterpenes. In 2019, Dhanunjaya 
et al. [95] summarized that crude extracts of this species 
had multiple bioactivities, such as antioxidant, antihyper-
lipidemic, antidiabetic, antiplasmodial and hepatoprotec-
tive. Particularly, leaf and bark extracts of E. delagoense, 
E. emarginatum, or E. pictum, showed great antibacterial 
activities [96]. Ethanolic extract obtained from the roots 
of E. pungens could induce dose-dependent hypotension 
and tachycardia in conscious rats, as well as vasorelaxa-
tion in mesenteric artery ring preparations in vitro [50]. 
Ethanolic extract of E. caatingae has a relaxant effect on 
ovine cervical contractions [97]. Besides, low-polarity 
fractions of this species showed significantly high cyto-
toxicity activity against the NCI-H292, HEp-2 and K562 
cell lines [12]. Furthermore, acetone/water (70/30, v/v) 
extract of E. macrocarpum is a significant inhibitor of 
acetylcholinesterase [98]. Hydroalcoholic extracts of E. 
areolatum or E. confusum showed antiherpetic activity 
[99]. For the antitumor activity, when mice were treated 
with different doses of methanol extract of E. caatin-
gae, a significant reduction in their tumor weight was 
observed [53]. Moreover, extracts of E. minutifolium 

or E. confusum showed hepatoprotective effects [100]. 
Crude extracts, fractions, or isolated products of E. ovali-
folium or E. subsessile were demonstrated to inhibit toxic 
effects of the snake (Lachesis muta) venom, providing a 
new strategy for antivenom treatment [14].

4 � Conclusions and prospecting
Based on the current progress in phytochemistry of the 
Erythroxylum [6], there is no doubt that TAs are the larg-
est class of compounds found in this genus (197 of 383 
compounds). In the past years, their remarkable pharma-
cological activities have made this class of compounds 
receive more attention than others [49, 52, 104]. However, 
many other types of active compounds have been found 
in Erythroxylum along with the broadening and deepen-
ing of phytochemical research. A summary of the struc-
ture and distribution of these compounds is essential for 
in-depth understanding and utilization of plant resources 
of this genus. Based on the literature, a total of 383 com-
pounds from Erythroxylum have been reported, among 
which only 186 tropane alkaloids have been reviewed in 
2010. In this review, we summarized all remained 197 
compounds characterized from 53 Erythroxylum species 
from 1960 to 2021, including 11 skeleton-types of diter-
penes (1–77) isolated from 18 Erythroxylum species, 19 
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triterpenoids obtained from 8 Erythroxylum species, 11 
TAs found in 6 species after 2010, 73 flavonoids from 37 
Erythroxylum species, and 17 other constituents (nori-
soprenoids, phenolic derivatives and their glycosides, 
and steroids). Among these compounds, most diterpe-
nes were isolated from the timber or roots of the plants, 
triterpenes were identified from aerial organs, flavonoids 
were distributed in leaves or branches, while others had 
no obvious tissue- or organ-specific distributions. Signifi-
cant biological activities, including anaesthetic [8], anti-
oxidative [9, 10], anti-inflammatory [9], cytotoxic [11], 
anticancer [12], and insecticidal activities [13], as well as 
neutralization of snake venom [14], have been demon-
strated for isolated products or crude extracts from some 
species of Erythroxylum. However, potential activity of 
most compounds is still unknown. In-depth biological 
activity studies on compounds obtained will be the basis 
for exploring potential medicinal resources in this genus. 
Additionally, some of the diterpenes were suggested to 
serve as the defensive components to protect the Eryth-
roxylum plants from herbivores, pathogens, or other 
environmental challenges. Therefore, they could be used 
as potential bioinsecticides in agriculture in the future.

Elucidation of natural product biosynthetic pathways 
has been proved to be highly useful for natural products 
discovery, structure identification and subsequent heter-
ologous synthesis. In Erythroxylum plants, TAs and diter-
penes are representative phytoconstituents. Biochemists 
and molecular biologists have long sought to identify the 
biosynthetic pathways of TAs, especially cocaine, through 
isotope labeled precursor feeding studies and gene clon-
ing and characterization [105–110]. As a result, incom-
plete biosynthetic route of cocaine starting from arginine 
and ornithine and passing through putrescine, methyl-
ecgonone, and methylecgonine has been established [7, 
110] (Fig. 9), though further studies are still essential to 
elucidate the missing steps. Studies focusing on the bio-
synthesis pathway of diterpenes in Erythroxylum plants 
have not been reported till now. However, the kaurene-
type (Fig.  1i) diterpene synthase that is responsible for 
the formation of ent-kaurene, the universal biosynthetic 
intermediate of gibberellin, has been identified in many 
other plants [111–113]. Besides, ent-beyerene synthase, 
which is the key diterpene cyclase required for generat-
ing ent-beyerene type diterpenes (Fig. 1h), has been char-
acterized in monocotyledonous rice (Oryza sativa L.) 
[114]. Still, much more researches needed to be done for 
better understanding the biosynthetic mechanisms and 
diversity of diterpenes identified in Erythroxylum.
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