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Abstract 
Myrcauones A–D (1–4), four new phloroglucinol–terpene adducts were isolated from the leaves of Myrciaria cauliflora. 
Their structures with absolute configurations were elucidated by combination of spectroscopic analysis, single crystal X-ray 
diffraction, and electronic circular dichroism (ECD) calculations. Compound 1 was a rearranged isobutylphloroglucinol–
pinene adduct featuring an unusual 2,3,4,4a,10,11-hexahydro-1H-3,11a-methanodibenzo[b,f]oxepin backbone. Compound 
4 showed moderate antibacterial activity against Gram-positive bacteria including multiresistant strains.
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1  Introduction

The plant Myrciaria cauliflora is an evergreen shrub and 
widely distributed in southern and central Brazil [1]. This 
plant has been traditionally used as a folk medicine to 
treat asthma, diarrhea, and gastrointestinal diseases [2, 3]. 
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Previous phytochemical investigations on this plant only 
reported essential oils and flavonoids [4–6]. As a part of 
our efforts to search for structural unique and bioactive con-
stituents from Myrtaceae plants [7–10], four new phloroglu-
cinol–terpene adducts, myrcauones A–D (1–4), were iso-
lated from the leaves of M. cauliflora. Their structures and 
absolute configurations were determined by means of 1D 
and 2D NMR spectroscopy, X-ray diffraction analysis, and 
electronic circular dichroism (ECD) calculations. Compound 
1 is a rearranged isobutylphloroglucinol–pinene adduct 
featuring an unusual 2,3,4,4a,10,11-hexahydro-1H-3,11a-
methanodibenzo[b,f]oxepin backbone. All isolates were 
evaluated for their antibacterial activities. Herein, we 
describe the isolation, structural elucidation, and antibacte-
rial activities of these myrcauones A–D (1–4).

2 � Results and Discussion

2.1 � Structural Elucidation

Compound 1 was obtained as yellow gum. The molecular 
formula of 1 was established as C22H32O3 by its HRESIMS 
data (m/z 345.2423 [M+H]+, calcd for C22H33O3: 345.2424). 
The UV spectrum displayed absorption maximum at 
206 nm. The IR spectrum showed characteristic absorptions 
for hydroxyl group (3475 cm−1) and aromatic ring (1611 and 

1488 cm−1). The 1H NMR spectrum of 1 suggested the pres-
ence of an olefinic proton [δH 6.23 (1H, s, H-5′)], a hydroxyl 
group [δH 4.75 (1H, s, 2′-OH)], a methoxy group [δH 3.76 
(3H, s, H3-11′)], an isopropyl moiety [δH 1.97 (1H, m, H-8′), 
0.52 (3H, d, J = 6.8 Hz, H3-9′), and 1.03 (3H, d, J = 6.8 Hz, 
H3-10′)], and three tertiary methyls [δH 2.06 (3H, s, H3-12′), 
0.90 (3H, s, H3-9), and 0.79 (3H, s, H3-8)]. The 13C NMR 
and DEPT spectra of 1 exhibited 22 carbon signals including 
7 quaternary carbons (5 olefinic ones), 5 methines (an oxy-
genated and an olefinic ones), 4 methylenes, and 6 methyls 
(an oxygenated one). The aforementioned data implied that 
1 could be an isobutylphloroglucinol–monoterpene adduct 
(Fig. 1) [11].

A comparison of the NMR data of 1 with those of mela-
leucadine A [11] indicated the presence of an uncommon 
rearranged β-pinene unit (part 1a), which was further con-
firmed by the two spin systems (H-2 to H-6 and H-10 to 
H-9′/H-10′) in its 1H–1H COSY spectrum (Fig. 2) and the 
HMBC correlations between H3-8/H3-9 and C-1/C-4/C-7 
and between H2-10 and C-1/C-2/C-6/C-7. In addition, the 
HMBC correlations between H-5′ and C-1′/C-3′/C-4′/C-6′, 
between H3-12′ and C-2′/C-3′/C-4′, between H3-11′ and C-4′, 
and between H-7′ and C-1′/C-2′/C-6′, allowed the establish-
ment of an isobutylphloroglucinol moiety (part 1b). Further-
more, the HMBC correlations between H-7′ and C-1, and 
between H2-10 and C-1′ defined the connection of 1a and 1b 
via C-7′–C-10 bond. Finally, the leftover oxygen atom was 

Fig. 1   Chemical structures of 1–4 
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anticipated to connect C-2 (δC 88.6) with C-6′ (δC 159.4) to 
form an uncommon 2,3,4,5-tetrahydrooxepine ring on the 
basis of the HMBC correlation between H-2 and C-6′ as well 
as the molecular formula information.

The relative configuration of 1 was established by a 
NOESY experiment (Fig. 3). The NOE correlations between 
H-10β and H-2/Me-8/H-8′ indicated that H-2, Me-8, and 
the isopropyl group (C-9′/8′/10′) were β-oriented. Mean-
while, the correlations between H-10α and H-6a/H-7′ as 
well as between H-6a and Me-9 suggested that Me-9 and 
H-7′ were α-oriented. To determine the absolute configura-
tions of 1, a comparison of its experimental and calculated 
ECD data was performed. The experimental ECD spectrum 
of 1 exhibited negative Cotton effects at 211 (Δε + 6.2) and 
277 (Δε + 0.7) nm, and a negative one at 238 (Δε − 0.5) nm, 
which were similar with those in the calculated CD spectrum 
for 1R,2R,4S,7′S-isomer (Fig. 4). Thus, the absolute configu-
ration of 1 was determined as 1R, 2R, 4S, and 7′S. 

The molecular formula of compound 2 was determined 
as C22H32O4 by its HRESIMS data (m/z 361.2386 [M+H]+, 
calcd for C22H33O4: 361.2373). The IR spectrum showed 
absorptions of hydroxyl (3357  cm−1), carbonyl group 
(1656 cm−1), and double bonds (1605 and 1462 cm−1). 
The 1H NMR data (Table 1) for an olefinic proton [δH 5.33 

(1H, s, H-3′)], a methoxy group [δH 3.75 (3H, s, H3-11′)], 
an isopropyl moiety [δH 2.86 (1H, m, H-8′), 0.61 (3H, d, 
J = 6.8 Hz, H3-9′), and 0.93 (3H, d, J = 6.8 Hz, H3-10′)], and 
three tertiary methyls [δH 1.51 (3H, s, H3-12′), δH 1.23 (3H, 
s, H3-9), and 0.96 (3H, s, H3-10)] indicated that 2 could be 
an isobutylphloroglucinol–monoterpene adduct [12].

The 1H–1H COSY spectrum of 2 revealed the presence 
of two spin systems (H-2 to H-6 and H-7 to H-9′/H-10′) 
(Fig. 2). Accordingly, a β-pinene unit (part 2a) could be 
established by the HMBC correlations between H-2 and 
C-4/C-6/C-7, between H2-3/H2-5 and C-1/C-8, and between 
H3-9/H3-10 and C-2/C-4/C-8. Furthermore, comparison of 
its NMR data with those of the known compound baeckfru-
tone H indicated the existence of an isobutyrylphloroglu-
cinol moiety (part 2b), which was further confirmed by the 
HMBC correlations between H-3′ and C-1′/C-2′/C-4′/C-5′, 
between H3-12′ and C-4′/C-5′/C-6′, between H3-11′ and 
C-4′, and between H-7′ and C-1′/C-2′/C-6′ [12]. The clo-
sure mode of dihydropyran ring which connected the two 
fragments (2a and 2b) could be deduced on the basis of the 
molecular formula information and the downfield chemical 
shift at C-1 (δC 85.4).

In the NOESY spectrum, the correlations between H-3b 
and H-2/H-4/Me-9, between H-2 and H-7′, between H-7β 

Fig. 2   Key 1H–1H COSY and HMBC correlations of 1, 2, 4 
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and Me-10/H-7′, as well as between H-3a and Me-12′ indi-
cated that these protons were all β-oriented (Fig. 3). The 
absolute configuration of 2 was determined by ECD cal-
culation. The experimental ECD spectrum of 2 displayed 
positive cotton effects at 244 (+ 11.7) and 296 (+ 8.1) nm, 
and negative ones at 203 (− 19.8) and 337 (− 1.8) nm, 
which were similar to those in the calculated spectrum for 
1R,2R,4S,5′S,7′R-2 (Fig. 4). Thus, the absolute configuration 
of 2 was identified as 1R, 2R, 4S, 5′S, 7′R.

Compound 3 possessed the same molecular formula as 2 
on the basis of its HRESIMS data (m/z 361.2391 [M+H]+, 
calcd for C22H33O4, 361.2373). Analyses of the NMR data 
of 3 and comparison with those of 2 indicated that these two 
compounds had the same planar structure but differed in 
their relative configurations. The downfield chemical shifts 
of C-2 (from δC 45.2 to 53.0) and C-7 (from δC 32.7 to 33.7), 
as well as the upfield chemical shifts of C-6 (from δC 30.8 to 
27.4), C-7′ (from δC 33.6 to 32.2) revealed that 3 was a C-7′ 
epimer of 2. This deduction was confirmed by the NOE cor-
relations between H-3b and H-2/H-4/Me-9, between H-2 and 
H-7β, between H-7β and H-8′/Me-9′/Me-10, between H-3a 
and Me-12′, and between H-7α and H-7′ (Fig. 3). Finally, 
the agreement of the ECD curve of 3 with those of the cal-
culated 1R,2R,4S,5′S,7′S-3 (Fig. 4) allowed the assignment 
its absolute configuration.

Compound 4 was obtained as colorless blocks. Its 
molecular formula was determined to be C27H40O4 by 

its HRESIMS data at m/z 429.2996 [M+H]+ (calcd for 
C27H41O4: 429.2999). Comparison of the NMR data of 4 
with those of 3 suggested that they had the same isobu-
tyrylphloroglucinol moiety (part 4b) (Fig. 2). The remain-
ing NMR signals for 15 carbons implied the presence of a 
sesquiterpene moiety. The spin systems (from H-3 to H-10 
and from H-7 to H-9′/H-10′) established by the 1H–1H 
COSY spectrum as well as the HMBC correlations between 
H3-14/ H3-15 and C-1/C-10, between H2-13 and C-7/C-9, 
and between H3-12 and C-3/C-5 indicated the presence of 
a caryophyllene unit (part 4a) (Fig. 2), which was further 
confirmed by comparison of the NMR data of 4 with those 
of myrtucommulone K [10]. Furthermore, the HMBC cor-
relations between H-7′ and C-4/C-5/C-1′ indicated the con-
nection of parts 4a and 4b via a C-5 and C-7′ bond. Finally, 
the closure mode of dihydropyran ring which connected the 
two fragments (4a and 4b) could be deduced on the basis of 
the molecular formula information and the downfield chemi-
cal shift at C-4 (δC 85.8).

In the NOESY spectrum, the correlations between H-5 
and H-1/H-7′, between H-1 and Me-15, between H-9 and 
Me-14, as well as between Me-12 and H-8′/Me-12′ sug-
gested that the relative configurations of C-1, C-4, C-5, 
C-9, and C-7′ were identical to those of myrtucommulone 
K (Fig. 3). Additionally, the structure and absolute configu-
ration of 4 was unambiguously determined by X-ray crys-
tallographic analysis using Cu Kα radiation with the Flack 

Fig. 3   Key NOESY correlations of 1–4 
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parameter [0.08 (13)] (Fig. 5). Hence, the absolute configu-
ration of 4 was defined as 1R, 4R, 5S, 9S, 5′S and 7′R.

2.2 � Bioactivity Evaluation

The antibacterial activities of compounds 1–4 against 
Gram-positive strains Staphylococcus aureus ATCC 43300 
(MRSA), S. aureus ATCC 700699 (VISA), S. aureus ATCC 
25923 and Enterococcus faecalis ATCC 29212 and Gram-
negative strains Pseudomonas aeruginosa ATCC 27853, 
Escherichia coli ATCC 25922 and Klebsiella pneumo-
niae ATCC 700603 were measured by broth microdilution 
method. As a result, compound 4 exhibited moderate anti-
bacterial activity against all Gram-positive strains with MIC 
value of 32 μg/mL (Table 2).

3 � Experimental

3.1 � General Methods

Melting points were obtained on a Buchi melting point 
B-545 apparatus (Buchi Instrument, Switzerland) and are 
uncorrected. Optical rotations were measured on a JASCO 
P-2000 digital polarimeter (Jasco Co., Ltd., Tokyo, Japan) at 
room temperature. IR spectra were determined on a JASCO 
FT/IR-4600 plus Fourier transform infrared spectrometer 
(Jasco Co., Ltd., Tokyo, Japan) using KBr pellets. UV spec-
tra were recorded on a JASCO V-550 UV/Vis spectropho-
tometer (Jasco Co., Ltd., Tokyo, Japan). CD spectra were 
obtained on a ChirascanqCD (Applied Photophysics Ltd., 
Surrey, UK). HRESIMS spectra were acquired on an Agilent 
6210 LC/MSD TOF mass spectrometer (Agilent Technolo-
gies, CA, USA). NMR spectra were measured on Bruker 
AV-500 or AV-400 spectrometers (Bruker, Switzerland) with 
TMS as internal standard, and chemical shifts were denoted 
in δ values (ppm). X-ray crystallographic analyses were car-
ried out on an Agilent Gemini S Ultra CCD diffractometer 
with Cu Kα radiation (λ = 1.54178 Å). Silica gel (200–300 

Fig. 4   Calculated and experimental ECD spectra of 1–3 
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mesh; Qingdao Marine Chemical, Inc., Qingdao, People’s 
Republic of China), Sephadex LH-20 (Pharmacia Biotech 
AB, Uppsala, Sweden), and reversed-phase C18 silica gel 
(YMC, Kyoto, Japan) were used for column chromatogra-
phy (CC). Preparative HPLC was carried out on an Agilent 
1260 Chromatograph equipped with a G1311C pump and 
a G1315D photodiode array detector (Agilent Technolo-
gies, CA, USA) with a semi-preparative C18 reversed-phase 
column (Cosmosil, 10 mm × 250 mm, 5 μm). All solvents 
used in CC and HPLC were of analytical grade (Shanghai 

Chemical Plant, Shanghai, People’s Republic of China) 
and chromatographic grade (Fisher Scientific, New Jersey, 
USA), respectively.

3.2 � Plant Material

The leaves of M. cauliflora were collected from Nanning 
city, Guangxi Province of People’s Republic of China, in 
July of 2018. A voucher specimen (No. 2018070607) identi-
fied by Professor Guang-Xiong Zhou (Jinan University) was 

Table 1   1H and 13C NMR data of 1–4 in CDCl3 (δ in ppm, J in Hz)

Overlapped signals were reported without designating multiplicity
a Recorded at 500 (1H) and 125 (13C) MHz
b Recorded at 400 (1H) and 100 (13C) MHz

Nos. 1a 2b 3b 4a

δH δC δH δC δH δC δH δC

1 – 52.5 – 85.4 – 84.7 1.53 58.1
2 3.85 (ddd 10.8, 4.8, 2.4) 88.6 2.22 (t, 5.2) 45.2 2.10 (t, 5.2) 53.0 1.56 23.6
3 α 1.21 (dd 13.6, 4.4) 35.7 a 1.53 26.4 a 1.67 (brd, 10.2) 26.5 α 1.48 46.0

β 2.28 m b 2.12 b 2.33 β 2.06
4 1.62 44.3 1.96 40.8 1.98 40.6 – 85.8
5 a 1.34 (td 10.6, 3.2) 29.1 a 1.99 24.7 1.87 25.2 1.74 39.9

b 1.76 m b 1.89
6 a 2.39 m 25.6 a 2.23 30.8 a 2.33 27.4 α 1.74 23.9

b 1.64 b 1.89 b 1.87 β 1.69
7 - 49.0 α 1.66 (dd, 14.0, 12.4) 32.7 α 1.90 (dd, 13.6, 6.8) 33.7 α 2.36 35.6

β 2.07 (dd, 14.0, 6.4) β 1.38 (dd, 13.6, 12.0) β 2.18
8 0.79 (s) 19.0 – 38.4 – 38.4 – 151.1
9 0.90 (s) 20.5 1.23 (s) 27.7 1.31 (s) 27.7 2.43 41.3
10 α 1.94 (dd 14.4, 3.6) 28.1 0.96 (s) 23.2 0.99 (s) 23.6 α 1.71 (t 10.4) 36.5

β 1.44 (dd 14.4, 4.4) β 1.57
11 – 34.7
12 1.36 (s) 22.8
13 a 4.88 (s) 111.2

b 4.90 (s)
14 0.96 (s) 21.8
15 0.93 (s) 29.8
1′ – 115.9 – 111.1 – 112.4 – 113.0
2′ – 153.7 – 186.7 – 186.6 – 186.2
3′ – 105.4 5.33 (s) 100.0 5.35 (s) 100.2 5.37 (s) 99.7
4′ – 156.0 – 170.9 – 170.8 – 170.7
5′ 6.23 (s) 97.2 – 70.0 – 69.8 – 69.3
6′ – 159.4 – 164.9 – 163.9 – 164.3
7′ 3.09 (dt 11.2, 4.0) 42.3 2.59 (ddd, 12.0, 6.4, 4.4) 33.6 2.73 (ddd, 11.2, 6.8, 4.0) 32.2 2.66 dd (4.0, 3.2) 34.1
8′ 1.97 (m) 32.0 2.86 (m) 26.3 2.92 (m) 26.2 2.07 (m) 26.0
9′ 0.52 d (6.8) 21.8 0.61 (d, 6.8) 15.8 0.59 (d, 6.8) 15.6 0.65 d (6.8) 19.9
10′ 1.03 (d 6.8) 22.8 0.93 (d, 6.8) 20.7 0.92 (d, 6.8) 20.6 1.13 d (6.8) 26.4
11′ 3.76 (s) 55.6 3.75 (s) 56.2 3.76 (s) 56.2 3.76 (s) 56.2
12′ 2.06 (s) 8.4 1.51 (s) 27.3 1.57 (s) 26.7 1.60 (s) 26.8
2′-OH 4.75 (s)
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deposited in the Institute of Traditional Chinese Medicine 
and Natural Products, Jinan University, Guangzhou, People’s 
Republic of China.

3.3 � Extraction and isolation

The air-dried leaves of M. cauliflora (15 kg) were pow-
dered and extracted with 95% EtOH (v/v, 50 L) at room 
temperature. The extract (2.2 kg) was suspended in H2O 
and extracted with petroleum ether (PE, b.p. 60–90 °C). The 
PE extract (673.2 g) was subjected to a silica gel column 
chromatography using cyclohexane–EtOAc (100:0 → 0:100, 
v/v) as eluent to afford 10 fractions (Frs. A–J). Fr. G (48.3 g) 
was further separated by silica gel column using a gradient 
cyclohexane–EtOAc (100:0 → 0:100, v/v) to give 8 subfrac-
tions (Frs. G1–G8). Subfraction G5 (10.7 g) was chroma-
tographed on Sephadex LH-20 (CH2Cl2/MeOH, 1:1, v/v) 
to obtain three subfractions (Frs. G5A–G5C). Subfraction 
G5B (7.3 g) was subjected to ODS column using MeOH/
H2O (50:50 → 100:0, v/v) and further purified by semi-
preparative reversed-phase HPLC (MeOH/H2O, 70:30, v/v, 

3 mL/min) to afford 1 (12.5 mg, tR 41.8 min), 3 (11.3 mg, 
tR 33.7 min) and 4 (15.7 mg, tR 49.3 min). Subfraction G6 
(5.3 g) was separated on Sephadex LH-20 (CH2Cl2/MeOH, 
1:1, v/v) to obtain 2 (7.3 mg).

Compound 1 yellow gum (CH3OH); [α]D
25 =  + 119 

(c = 0.50, MeOH); UV (MeOH) λmax (log ε) 206 (3.73) nm; 
IR (KBr) νmax 3475, 2977, 2954, 2876, 1611, 1584, 1488, 
1445, 1415, 1385, 1307, 1236, 1199, 1132, 1084, 1035, 
1014, 982, 904, 831 cm−1; 1H NMR (CDCl3, 500 MHz) and 
13C NMR (CDCl3, 125 MHz), see Table 1; HRESIMS m/z 
345.2423 [M+H]+ (calcd for C22H33O3: 345.2424); ECD 
(MeCN, Δε) 211 (+ 6.2), 238 (− 0.5), 277 (+ 0.7) nm.

Compound 2 yellow oil (CH3OH); [α]D
25 =  + 59 (c = 0.50, 

MeOH); UV (MeOH) λmax (log ε) 202 (3.85), 245 (3.92), 
296 (3.50) nm; IR (KBr) νmax 3357, 2957, 2933, 2871, 
1656, 1605, 1462, 1385, 1353, 1236, 1137, 1092, 998, 983, 
893, 843 cm−1; 1H NMR (CDCl3, 400 MHz) and 13C NMR 
(CDCl3, 100 MHz), see Table 1; HRESIMS m/z 361.2386 
[M+H]+ (calcd for C22H33O4: 361.2373); ECD (MeCN, Δε) 
203 (− 19.8), 244 (+ 11.7), 296 (+ 8.1), 337 (− 1.8) nm.

Compound 3 yellow oil (CH3OH); [α]D
25 =  − 63 (c = 0.50, 

MeOH); UV (MeOH) λmax (log ε) 202 (3.71), 245 (3.77), 
297 (3.32) nm; IR (KBr) νmax 3359, 2958, 2924, 2871, 1656, 
1603, 1463, 1388, 1372, 1259, 1232, 1136, 1089, 989, 899, 
842  cm−1; 1H NMR (CDCl3, 400  MHz) and 13C NMR 
(CDCl3, 100 MHz), see Table 1; HRESIMS m/z 361.2391 
[M+H]+ (calcd for C22H33O4: 361.2373); ECD (MeCN, Δε) 
203 (+ 18.0), 245 (− 20.5), 293 (− 9.6), 333 (+ 2.5) nm.

Compound 4 colorless blocks (CH3OH); m.p. 162–163 
℃; [α]D

25 =  − 42 (c = 0.50, MeOH); UV (MeOH) λmax (log 
ε) 205 (3.86), 247 (3.87), 310 (3.44) nm; IR (KBr) νmax 
3336, 2957, 2870, 1663, 1615, 1462, 1386, 1364, 1284, 
1259, 1233, 1176, 1140, 999, 941, 886, 844 cm−1; 1H NMR 
(CDCl3, 500  MHz) and 13C NMR (CDCl3, 125  MHz), 
see Table 1; HRESIMS m/z 429.2996 [M + H]+ (calcd for 
C27H41O4: 429.2999).

Fig. 5   X-ray ORTEP drawing of 4 

Table 2   Antibacterial activities 
of compounds 1–4 (MIC, μg/
mL)

a As positive controls
b NA

Microorganism 1 2 3 4 Ciprofloxacina Vancomycina

S. aureus ATCC 43300 (MRSA)  > 128  > 128  > 128 32 –b 1
S. aureus ATCC 700699 (VISA)  > 128  > 128  > 128 32 – 8
S. aureus ATCC 25923  > 128  > 128  > 128 32 – 1
E. faecalis ATCC 29212  > 128  > 128  > 128 32 – 2
P. aeruginosa ATCC 27853  > 128  > 128  > 128  > 512 0.25 –
E. coli ATCC 25922  > 128  > 128  > 128  > 128  < 0.0625 –
K. pneumoniae ATCC 700603  > 128  > 128  > 128  > 128 0.5 –
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3.4 � X‑Ray Analysis

Crystal data for 4 C27H40O4, monoclinic, space group P21, 
a = 10.2148 (3) Å, b = 24.2552 (4) Å, c = 20.4139 (5) Å, 
α = 90°, β = 97.254 (2)°, γ = 90°, V = 5017.3 (2) Å3, T = 293 
(2) K, Z = 2, Dcalcd = 1.135 g cm−3, F(000) = 1872, 20761 
reflections measured (2.18° ≤ θ ≤ 73.86°), 13408 unique 
(Rint = 0.0389, Rsigma = 0.0574) which were used in all 
calculations. The final R1 was 0.0916 [I > 2σ(I)] and wR2 
was 0.2884 (all data). CCDC-1998470 contains the sup-
plementary crystallographic data for this paper. These data 
can be obtained free of charge from The Cambridge Crys-
tallographic Data Centre via http://www.ccdc.cam.ac.uk/
data_reque​st/cif.

3.5 � Antibacterial Activity Assay

Staphylococcus aureus ATCC 43300 (methicillin-resistant 
S. aureus, MRSA), S. aureus ATCC 700699 (vancomycin-
intermediate S. aureus, VISA), S. aureus ATCC 25923, E. 
faecalis ATCC 29212, P. aeruginosa ATCC 27853, E. coli 
ATCC 25922 and K. pneumoniae ATCC 700603 were stand-
ard isolates from ATCC (Manassas, VA, USA). The MIC 
values were measured using a previously reported method 
[7]. Ciprofloxacin and vancomycin were used as positive 
controls.
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