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The process by which a visualized scene is analyzed

comprises specific steps that lead the user to either an

enhanced image or data that can be used for further inter-

pretation. A decision is required at each step to be able to

achieve the next step, as shown in Fig. 1. In addition, many

different algorithms can be used at each step to achieve

desired effects and/or measurements.

To illustrate the decision-making process, consider the

following hypothetical situation. Visualize a polished sec-

tion of nodular gray cast iron (which, decidedly, is best

acquired by reflected bright-field illumination). After dig-

itizing, the image is enhanced to delineate the edges more

clearly. Then the threshold (gray-level range) of the

graphite in the metal matrix is set, and the image is

transformed into binary form. Next, some binary image

processing is performed to eliminate the graphite flakes so

the graphite nodules can be segmented as the features of

interest. Finally, image analysis software measures area

fraction and size distribution of nodules, providing data

that can be used to compare against the specifications of the

material being analyzed.

This article discusses the practice of image processing

for analysis and explores issues and concerns of which the

user should be aware.

Image Considerations

An image in its simplest form is a three-dimensional array

of numbers representing the spatial coordinates (x and y, or

horizontal and vertical) and intensity of a visualized object

(Fig. 2). The number array is the fundamental form by

which mathematical calculations are performed to enhance

an image or to make quantitative measurements of features

contained in an image. In the digital world, the image is

composed of small, usually square (to avoid directional

bias) picture elements called pixels. The gray level, or

intensity, of each pixel relates to the number of light

photons striking the detector within a camera. Images

typically range in size from arrays of 256 9 256 pixels to

those as large as 4096 9 4096 pixels using specialized

imaging devices. There are a myriad number of cameras

having wide-ranging resolutions and sensitivities available

today. In the mid to late 1980s, 512 9 512 pixel arrays

were the standard. Older systems typically had 64 (26) gray

levels, whereas at the time of this publication, all com-

mercial systems offer at least 256 (28) gray levels, although

there are systems having 4096 (212) and 65,536 (216) gray

levels. These are often referred to 6, 8, 12, and 16 bit

cameras, respectively.

The process of converting an analog signal to a digital

one has some limitations that must be considered during

image quantification. For example, pixels that straddle the

edge of a feature of interest can affect the accuracy and

precision of each measurement because an image is com-

posed of square pixels having discrete intensity levels.

Whether a pixel resides inside or outside a feature edge can

be quite arbitrary and dependent on positioning of the

feature within the pixel array. In addition, the pixels along

the feature edge effectively contain an intermediate inten-

sity value that results from averaging adjacent pixels. Such
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considerations suggest a desire to minimize pixel size and

increase the number of gray levels in a system—particu-

larly, if features of interest are very small relative to the

entire image—at the most reasonable equipment cost.

Resolution Versus Magnification

Two of the more confusing aspects of a digital image are

the concepts of resolution and magnification. Resolution

can be defined as the smallest feature that can be resolved.

For example, the theoretical limit at which it is no longer

possible to distinguish two distinct adjacent lines using

light as the imaging method is at a separation distance of

about 0.3 lm. Magnification, on the other hand, is the ratio

of an object dimension in an image to the actual size of the

object. Determining that ratio sometimes can be problem-

atic, especially when the actual dimension is not known.

The displayed dimension of pixels is determined by the

true magnification of the imaging setup. However, the

displayed pixel dimension can vary considerably with

display media, such as on a monitor or hard-copy (paper)

print out. This is because a typical screen resolution is 72

dots per inch (dpi), and unless the digitized image pixel

resolution is exactly the same, the displayed image might

be smaller or larger than the observed size due to the

scaling of the visualizing software. For example, if an

image is digitized into a computer having a 1024 9 1024

pixel array, the dpi could be virtually any number,

depending on the imaging program used. If that same

1024 9 1024 image is converted to 150 dpi and viewed on

a standard monitor, it would appear to be twice as large as

expected due to the 72 dpi monitor resolution limit.

The necessary printer resolution for a given image

depends on the number of gray levels desired, the resolu-

tion of the image, and the specific print engine used.

Typically, printers require a 4 9 4 dot array for each pixel

if 16 shades of gray are needed. An improvement in output

dpi by a factor of 1.5–2 is possible with many printers by

optimizing the raster, which is a scanning pattern of par-

allel lines that form the display of an image projected on a

printing head of some design. For example, a 300 dpi

image having 64 gray levels requires a 600 dpi printer for

correct reproduction. While these effects are consistent and

can be accounted for, they still are issues that require

careful attention because accurate depiction of size and

shape can be dramatically affected due to incorrect inter-

pretation of the size of the pixel array used.

It is possible to get around these effects by including a

scale marker or resolution (e.g., lm/pixel) on all images.

Then, accurate depiction of the true size of features in the

image is achieved both on monitor display and on paper

printout regardless of the enlargement. The actual size of a

stored image is nearly meaningless unless the dimensional

Fig. 2 Actual image area with corresponding magnified view. The individual pixels are arranged in x, y coordinate space with gray level, or

intensity, associated with each one

Fig. 1 Image analysis process steps. Each step has a decision point

before the next step can be achieved
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pixel size (or image size) is known because the final

magnification is strictly dependent on the image resolution

and output device used.

Measurement Issues

Another issue with pixel arrays is determining what is

adequate for a given application. The decision influences

the sampling necessary to achieve adequate statistical rel-

evance and the necessary resolving power to obtain accu-

rate measurements. For example, if it is possible to resolve

the features of interest using the same microscope setup

and two cameras having differing resolutions, the camera

having the lowest resolution should be used because it will

cover a much greater area of the sample.

To illustrate this, consider that in a system using a 169

objective and a 1024 9 1024 resolution camera, each pixel

is 0.3 lm2. Measuring 10 fields to provide sufficient sam-

pling statistics provides a total area of 0.94 mm2

(0.001 in.2). Using the same objective but switching to a

760 9 574 pixel camera, the pixel size is 0.66 lm2. To

measure the same total area of 0.94 mm2, it would only

require the measurement of five fields. This could save

substantial time if the analysis is complicated and slow, or

if there are hundreds or thousands of samples to measure.

However, this example assumes that it is possible to suf-

ficiently resolve features of interest using either camera or

the same optical setup, which often is not the case. One of

the key points to consider is whether or not the features of

interest can be sufficiently resolved.

Using a microscope, it is possible to envision a situation

where camera resolution is not a concern because, if there

are small features, magnification can easily be increased to

accurately quantify, for instance, feature size and shape.

However, while this logic is accurate, in reality there is

much to be gained by maximizing the resolution of a given

system, considering hardware and financial constraints.

In general, the more pixels you can ‘‘pack’’ into a fea-

ture, the more precise is the boundary detection when

measuring the feature (Fig. 3). As mentioned previously,

the tradeoff of increasing magnification to resolve small

features is a greater sampling requirement. Due to the

misalignment of square pixels with the actual edge of a

feature, significant inaccuracies can occur when trying to

quantify the shape of a feature with only a small number

of pixels (Fig. 4). If the user is doing more than just

determining whether or not a feature exists, the relative

accuracy of a system is the limiting factor in making

any physical property measurements or correlating a

microstructure.

When small features exist within an array of larger

features, increasing the magnification to improve resolving

power forces the user to systematically account for edge

effects and significantly increases the need for a larger

number of fields to cover the same area that a lower

magnification can cover. Again, the tradeoff has to be

balanced with the accuracy needed, the system cost, and

the speed desired for the application. If a high level of

shape characterization is needed, a greater number of

pixels may be needed to resolve subtle shape variations.

One way to determine the acceptable magnification is to

begin with a much higher magnification and perform the

measurements needed, then repeat the same measurement

using successively lower magnifications. An analysis rou-

tine can be set up after determining the lowest acceptable

magnification for the camera resolution used.

Fig. 3 Small features magnified over 25 times showing the differ-

ences in the size and number density of pixels within features when

comparing a 760 9 560 pixel camera and a 1024 9 1024 pixel

camera

Fig. 4 Three scenarios of the

effects of a minute change in

position of a circular feature

within the pixel array and the

inherent errors in size that can

result
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Image Storage and Compression

Many systems store images onto a permanent medium

(e.g., floppy, hard, and optical disks) using proprietary

algorithms, which usually compress images to some

degree. There also are standardized compression algo-

rithms, for example, that of the joint photography experts

group (JPEG) and the tagged image file format (TIFF). The

proliferation of proprietary algorithms makes it cumber-

some for users of imaging systems to share images, but

many systems offer the option to export images into stan-

dard formats. Care must be exercised when storing images

in standard formats because considerable loss of informa-

tion can occur during the image compression process.

For instance, JPEG images are compressed by combining

contiguous segments of like gray/color levels in an image.

A 512 9 512 9 24 bit image having average color detail

compresses to 30 kb when saved using a mid-range level of

compression, but shrinks to 10 kb when the same image

without any features is compressed. The same image

occupies 770 kb when stored in bitmap or TIFF form

without any compression. In addition, repeated JPEG

compression of an image by opening and saving an image

results in increasing information loss, even with identical

settings. Therefore, it is generally recommended that very

limited compression (no less than half the original size) be

used for images that are for analysis as opposed to images

that are for archival and visualization purposes only. The

errors associated with compression depend on the type of

image being compressed and the size and gray-level range

of the features to be quantified. If compression is necessary,

it is recommended that image measurements are compared

before and after compression to determine the inaccuracies

introduced (if any) for a particular application. In general,

avoid compression when measuring a large array of small

features in an image. Compression is much less of an issue

when measuring large features (e.g., coatings or layers on a

substrate) that contain thousands of pixels.

Image Acquisition

Image acquisition devices include light microscopes, elec-

tron microscopes (e.g., scanning electron, transmission

electron, and Auger), laser scanning, and other systems that

translate a visualized scene into an analog or digital form.

The critical factor when determining whether useful infor-

mation can be gleaned from an image is whether there is

sufficient contrast between the features of interest and the

background. The acquisition device presents its own set of

constraints, which must be considered during the image

processing phase of analysis. For instance, images produced

using a transmission electron microscope (TEM) typically

are difficult to analyze because the contrast mechanism uses

transition of feature gray levels as the raster scans the sample.

However, back-scattered electrons can be used to improve

contrast due to the different atomic numbers from different

phases contained in a sample examined on a flat surface with

no topographic features. Alternatively, elemental signal

information might also be used to distinguish features of

interest in an appropriately equipped scanning electron

microscope (SEM) based on chemical composition of fea-

tures. When using a light microscope to image samples,

dark-field illumination sometimes is used to illuminate fea-

tures that do not ordinarily reflect most of the light to the

objective—as usually occurs under bright-field illumination.

Images are electronically converted from an analog

signal to a digital array by various means and transferred

into computer random access memory (RAM) for further

processing. Earlier imaging sensors were mainly of the

vacuum tube type, designed for specific applications, such

as low-light sensitivity and stability. The main limitations

of these sensors were nonlinear light response and geo-

metric distortion. The bulk of today’s sensors are solid-

state devices, which have nearly zero geometric distortion

and linear light response and are very stable over time.

Frame-acquisition electronics (often referred to as a

frame grabber), the complimentary part to the imaging

sensor, converts the signal from the camera into a digital

array. The frame grabber selected must match the camera

being used. Clock speed, signal voltage, input signals, and

computer interface must be considered when matching the

frame grabber to the camera. Some cameras have the

digitizing hardware built in and only require the appro-

priate cable to transfer the data to the computer.

An optical scanner is another imaging device that can

produce low-cost, very high-resolution images with mini-

mal distortion. The device, however, requires an interme-

diate imaging step to produce a print or negative that

subsequently can be scanned into a computer.

Illumination uniformity and inherent fluctuations that

can occur with a camera are critical during the acquisition

process. Setting up camera gain, offset, and other variables

can be critical in attaining consistent results [1]. Any sys-

tem requires that two basic questions be answered:

• Do the size and shape of features change with position

within the camera?

• Is the feature gray-level range the same over time?

Users generally turn to the use of dc power supplies,

which isolate power from house current to minimize subtle

voltage irregularities. Also, some systems contain feedback

loops that continuously monitor the amount of light ema-

nating from the light source and adjust the voltage to

compensate for intensity fluctuations. Another way of

achieving consistent intensities is to create a sample that
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can be used as a standard when setting up the system. This

can be done by measuring either the actual intensity or

feature size of a specified area on the sample.

Image Processing

Under ideal conditions, a digitized image can be directly

binarized (converted to black and white) and measured to

obtain desired features. However, insufficient contrast,

artifacts, and/or distortions very often prevent straightfor-

ward feature analysis. Image processing can be used in this

situation to compensate for the plethora of image defi-

ciencies, enabling fast and accurate analysis of features of

interest.

Gray-level image processing often is used to enhance

features in an image either for visualization purposes or for

subsequent quantification. The rapid increase of algorithms

over the years offers many ways to enhance images, and

many of these algorithms can be used in real time with the

advent of low-cost/high-performance computers.

Shading Correction

Image defects that are caused by uneven illumination or

artifacts in the imaging path must be taken into account

during image processing. Shading correction is used when

a large portion of an image is darker or lighter than the rest

of the image due to, for example, bulb misalignment or by

the use of poor optics in the system. The relative differ-

ences between features of interest and the background are

usually the same, but features in one area of the image have

a different gray-level range than the same type of feature in

another portion of the image. The main methods of shading

correction use a background reference image, either actual

or artificial, and polynomial fitting of nearest-neighbor

pixels.

A featureless reference image requires the acquisition of

an image using the same lighting conditions but without the

features of interest. The reference image is then subtracted

or divided (depending on light response) from the shaded

image to level the background. If a reference image cannot

be obtained, it is sometimes possible to create a pseu-

doreference image using rank-order processing (which is

discussed later) to diminish the features and blend them

into the background (Fig. 5). Polynomial fitting also can be

used to create a pseudobackground image, but it is difficult

to generate if the features are neither distinct nor somewhat

evenly distributed.

Each shading correction methodology has its own

advantages and limitations, which usually depend on the

type of image and illumination used. Commercial systems

Fig. 5 Rank-order processing

used to create a pseudoreference

image. a Image without any

features in the light path

showing dust particles and

shading of dark regions to light

regions going from the upper

left to the lower right. b Same

image after shading correction.

c Image of particles without

shading correction. d Same

image after shading correction

showing uniform illumination

across the entire image
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usually use one shading correction method, which is opti-

mized for that particular system, but also may depend on

how easily a reference image can be obtained or the degree

of the variation in the image.

Pixel Point Operations

Pixel point operations are a class of image enhancements

that do not alter the relationship of pixels to their neigh-

bors. This class of algorithms uses a type of transfer

function to translate original gray levels into new gray

levels, usually called a look-up table (LUT). For instance, a

pseudocolor LUT enhancement simply correlates a color

with a gray value and assigns a range of colors to the entire

gray-level range in an image. This technique can be very

useful to delineate subtle features. For example, it is nearly

impossible to distinguish features having a difference of,

say, five gray levels. However, it is possible to delineate

subtle features by assigning different colors to different

gray-level ranges because the human eye can distinguish

different hues much better than it can different gray levels.

Another useful enhancement effect uses a transfer

function that changes the relationship between the input

gray level and the output or displayed gray level from a

linear one to another that enhances the desired image

features (Fig. 6). This often is referred to as the gamma

curve for the displayed image and has many useful effects,

especially when viewing very bright objects with very dark

features, such as thermal barrier coatings.

An image can be displayed as a histogram by summing up

all the pixels in uniform ranges of gray levels and plotting

the number of pixels versus gray level (Fig. 7). An algo-

rithm is used to transform the histogram, uniformly dis-

tributing intermediate brightness values evenly throughout

the full gray-level range (usually 0–255), a technique called

histogram equalization. The effect is that an individual pixel

has the same relative brightness but has a shifted gray level

from its original value. The shift in gray-level gradients

often provides improved contrast of previously subtle fea-

tures, as shown in Fig. 8.

Neighborhood-Kernel Processing

Neighborhood-kernel processing is a class of operations

that translates individual pixels based on surrounding

Fig. 6 Reflected bright-field

image of an oxide coating

before and after use of a gamma

curve transformation that

translates pixels with lower

intensities to higher intensities

while keeping the original

lighter pixels near the same

levels
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pixels. The concept of using a kernel or two-dimensional

array of numeric operators provides a wide range of image

enhancements including:

• Sharpening an image

• Eliminating noise

• Smoothing edges

• Finding edges

• Accentuating subtle features.

These algorithms should be used carefully because the

effect on an individual pixel depends on its neighbors. The

output image after processing can vary considerably from

image to image when making quantitative measurements.

Numerous mathematical formulas, derivatives, and least-

square curve fitting also can be used to provide various

enhancements.

Neighborhood-kernel processing includes rank-order,

Gaussian, Laplacian, and averaging filters. An example of a

rank-order filter is the Median filter, which determines the

median, or 50%, value of a set of gray values in the selected

kernel and replaces the central value with the median value.

An algorithm translates the selected kernel over to the next

pixel and applies the same process (Fig. 9). A variety of

operators with the resulting image transformation are

illustrated in Fig. 10. Russ [2] describes many kernel filters

in much greater detail together with example images.

Arithmetic Processing of Images

Image processing that uses more than one image and combines

them in some mathematical way is useful to accentuate subtle

differences between images and to observe spatial dependen-

cies. For example, adding images is used to increase the

brightness in an image, averaging images is used to reduce

noise, and subtracting images is used to correct for background

shading (see the section ‘‘Shading correction’’) and to high-

light subtle and not so subtle differences. There are other math

manipulations that are used occasionally, but effectiveness can

vary widely due to the extreme values that can result when

multiplying or dividing gray values from two images.

Frequency Domain Transformation

Frequency domain transformation is another image

enhancement, which is particularly useful to distinguishFig. 7 Example of a gray-level histogram generated from an image

Fig. 8 Reflected-light image of

an aluminum–silicon alloy

before and after gray-level

histogram equalization, which

significantly improves contrast

of the subtle smaller silicon

particles by uniformly

distributing intensities
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patterns, remove very fine texture, and determine repeating

periodic structures. The most popular transform is Fourier

transform, which uses the fast Fourier transform (FFT)

algorithm to quickly calculate the power spectrum and

complex values in frequency space. Usually, the power

spectrum display is used to determine periodic features or

preferred orientations, which assists determining the

alignment in an electron microscope and identifying fine

periodic structures (Fig. 11). A more extensive description

of transform can be found in Ref [2].

Feature Discrimination

Thresholding

As previously described, an image that has 256 gray values

needs to be processed in such a way as to allow quantifi-

cation by reducing the available gray values in an image to

only the features of interest. The process in which 256 gray

values are reduced to two gray values (black and white, or

0 and 1) is called thresholding. It is accomplished by

selecting the gray-level range of the features of interest.

Pixels within the selected gray-level range are assigned as

foreground, or detected features, and everything else as

background, or undetected features. In other terms, thres-

holding simply converts the image to a series of 0 and 1 s,

which represent undetected and detected features, respec-

tively. Whether white features represent foreground or vice

a versa varies with image analysis systems, but it does not

affect the analysis in any way and usually is a matter of the

programmer’s preference.

Fig. 9 Schematic showing how kernel processing works by moving

kernel arrays of various sizes over an image and using a formula to

transform the central pixel accordingly. In the example shown, a

median filter is used

Fig. 10 Examples of neighborhood-kernel processing using various processes. a Original reflected-light image of a titanium alloy. Image using

b gradient filter, c median filter, d Sobel operator, e top-hat processing, f gray-level opening
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The segmentation process usually yields three types of

images depending on the system: a black and white image,

a bit-plane image, and a feature-boundary representation

(Fig. 12). The difference between the methods is analogous

to a drawing program versus a painting program. A

drawing program creates images using lines and/or poly-

gons to represent features and uses much less space. It also

can quickly redraw, scale, and change an image comprising

multiple features. By comparison, a painting program

processes images one pixel at a time and allows the user to

change the color of individual pixels because each image

comprises various pixel arrangements.

The replicated black and white image is more memory

intensive because, generally, it creates another image of the

same size and gray-level depth after processing and

thresholding, and requires the same amount of computer

Fig. 11 Defect shown with different image enhancements. a High-

resolution image from a transition electron microscope of silicon

carbide defect in silicon showing the alignment of atoms. b Power

spectrum after application of FFT showing dark peaks that result from

the higher-frequency periodic silicon structure. c Defect after masking

the periodic peaks and performing an inverse FFT

Fig. 12 Images showing the

three main transformations from

a gray-level image to a

thresholded image. a Original

gray-level image. b Black and

white image. c Binary image

using a colored bit plane.

d Detected feature boundaries
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storage as the original image. A bit-plane image is a binary

image, usually having a color that represents the features of

interest. It is often easier to track binary image processing

steps during image processing development using the bit-

plane method. Feature-boundary representation is more

efficient when determining feature perimeter and shape.

There is no inherent advantage to any methodology

because the final measurements are similar and the range of

processing algorithms and possible feature measurements

remain competitive.

Segmentation

Basically, there are three ways that a user indicates to an

image analysis system the appropriate threshold for seg-

mentation using gray level:

• Enter the gray-level values that represent the desired

range.

• Select both width (gray-level range) and location (gray-

level values) by moving a slider along a gray-level

spectrum bar (Fig. 13). This is known as the interactive

method. Interactive selection usually affects the size of

a colored overlay bit plane that is superimposed on the

gray-level image, which allows setting the gray-level

range to agree with the user’s assessment of the correct

feature boundaries.

• Determine if there are any peaks that correspond to

many pixels within a specific gray-level range using a

gray-level histogram (Fig. 14).

Interactive selection and histogram characteristic-peaks

thresholding methods are used frequently, sometimes

together, depending on the particular type of image being

viewed. Automatic thresholding often uses the histogram

peaks method to determine where to set the gray-level

ranges for image segmentation. However, when using

automatic thresholding, the user must be careful because

changing overall brightness or artifacts, or varying amounts

of foreground features, can change the location and the

relative size of the peaks. Some advanced algorithms can

overcome these variations.

There are more issues to consider when thresholding

color images for features of interest. Most systems use red,

green, and blue (RGB) channels to establish a color for

each pixel in an image. It is difficult to determine the

appropriate combination of red, green, and blue signals to

distinguish features. Some systems allow the user to point

at a series of points in a color image and automatically

calculate the RGB values, which are used to threshold the

entire image. A better methodology than RGB color space

for many applications is to view a color image in hue,

intensity, and saturation (HIS) space. The advantage of this

method is that color information (hue and saturation) is

separated from brightness (intensity). Hue essentially is the

color a user observes, while the saturation is the relative

strength of the color. For example, translating ‘‘dark

green’’ to an HIS perspective would use dark as the level of

saturation (generally ranges as a value between 0 and

100%) and green as the hue observed. While saturation

describes the relative strength of color, intensity is asso-

ciated with the brightness of the color. Intensity is analo-

gous to thresholding of gray values in black and white

space. Hugh, intensity, and saturation space also is
Fig. 13 Interactive method of selecting gray levels with graphic

slider

Fig. 14 Thresholding gray

levels in an image by selecting

the gray-level peaks that are

characteristic of the features of

interest
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described as hue, lightness, and saturation (HLS) space,

where L quantifies the dark-light aspect of colored light.

Nonuniform Segmentation

Selecting the threshold range of gray levels to segment

foreground features sometimes results in overdetecting

some features and underdetecting others. This is not only

due to varying brightness across an image but also is often

due to the gradual change of gray levels while scanning

across a feature. Delineation enhancement is a useful gray-

level enhancement tool in this situation (Fig. 15). This

algorithm processes the pixels that surround features by

transforming their gradual change in gray level to a much

steeper curve. In this way, as features initially fall within

the selected gray-level range, the apparent size of the

feature will not change much as a wider band of gray levels

is selected to segment all features.

There are other gray-level image processing tools that

can be used to delineate edges prior to segmentation and to

improve contrast in certain regions of an image, and their

applicability to a specific application can be determined by

experimenting with them.

Watershed Segmentation

Watershed transformations are iterative processes per-

formed on images that have space-filling features, such as

grains. The enhancement usually starts with the basic

eroded point or the last point that exists in a feature during

successive erosions, often referred to as the ultimate eroded

point. Erosion/dilation is the removal and/or addition of

pixels to the boundary of features based on neighborhood

relationships. The basic eroded point is dilated until the

edge of the dilating feature touches another dilating fea-

ture, leaving a line of separation (watershed line) between

touching features.

Another much faster approach is to create a Euclidean

distance map (EDM), which assigns successively brighter

gray levels to each dilation iteration in a binary image [2].

The advantage of this approach is that the periphery of each

feature grows until impeded by the growth front of another

feature. Although watershed segmentation is a powerful

tool, it is fraught with application subtleties when applied

to a wide range of images. The reader is encouraged to

refer to Refs [2] and [3] to gain a better understanding of

the proper use and optimization of this algorithm and for a

detailed discussion on the use of watershed segmentation in

different applications.

Texture Segmentation

Many images contain texture, such as lamellar structures,

and features of widely varying size, which may or may not

be the features of interest. There are several gray-level

algorithms that are particularly well suited to images

containing texture because of the inherent frequency or

spatial relationships between structures. These operators

usually transform gradually varying features (low fre-

quency) or highly varying features (high frequency) into an

image with significantly less texture.

Algorithms such as Laplacian, Variance, Roberts, Hurst,

and Frei and Chen operators often are used either alone or

in combination with other processing algorithms to delin-

eate structures based on differing textures. Methodology to

characterize banding and orientation microstructures of

metals and alloys is covered in ASTM E 1268 [4].

Pattern-Matching Algorithms

Pattern-matching algorithms are powerful processing tools

used to discriminate features of interest in an image.

Usually, they require prior knowledge of the general shape

of the features contained in the image. For instance, if there

are cylindrical fibers orientated in various ways within a

two-dimensional section of a composite, a set of bound-

aries can be generated that correspond to the angles at

which a cylinder might occur in three-dimensional space.

Fig. 15 Delineation filter

enhances feature edges by

sharpening the transition of gray

values considerably, providing

more leeway when thresholding.

a Magnified original gray-level

image of particles showing

gradual transition of gray levels

along the feature edges. b The

same image after using a

delineation filter
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The resulting boundaries are matched to the actual fibers

that exist in the section, and the resulting angles are cal-

culated based on the matched patterns (Fig. 16). In general,

pattern-matching algorithms are used when required mea-

surements cannot be directly made or calculated from the

shape of a binary feature of interest.

Binary Image Processing

Boolean Logic

Binary representation of images allows simple analysis of

features of interest while disregarding background infor-

mation. There are many algorithms that operate on binary

images to correct for imperfect segmentation. The use of

Boolean logic is a powerful tool that compares two images

on a pixel-by-pixel basis and then generates an output

image containing the result of the Boolean combination.

Four basic Boolean operations are:

• AND

• OR

• Exclusive OR (XOR)

• NOT

These basic four often are combined in various ways to

obtain a desired result, as illustrated in Fig. 17.

A simple way to represent Boolean logic is using a

truth table, which shows the criteria that must be fulfilled

to be included in the output image. When comparing two

Fig. 16 Pattern matching used

for reconstructing glass fibers in

a composite. a Bright-field

image of a glass fiber composite

with several broken fibers.

b Computer-generated image

after pattern matching, which

reconstructs the fibers enabling

the quantification of the degree

of fiber breakage after

processing

Fig. 17 Examples of Boolean

operators using two images
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images, the AND Boolean operation requires that the

corresponding pixels from both images be ON (1 = ON,

0 = OFF). Such a truth table would look like:

AND

Image A Image B Output

1 1 1

1 0 0

0 1 0

0 0 0

If a pixel is ON in one image and OFF in another, the

resulting pixel will be OFF after the AND Boolean oper-

ator is applied. The OR operator requires only that one or

the other corresponding pixel from either image be ON to

yield a pixel which is ON. The XOR operator produces an

ON pixel as long as the corresponding pixels are different;

i.e., one is ON and one is OFF. If both the pixels are ON or

OFF, then the resulting output will be an OFF value. The

NOT operator is simply the inverse of an image, but when

used in combination with other Boolean operators can yield

interesting and useful results.

Some other truth tables are shown below:

OR

Image A Image B Output

1 1 1

1 0 1

0 1 1

0 0 0

XOR

Image A Image B Output

1 1 0

1 0 1

0 1 1

0 0 0

An important use of Boolean operations is combining

multiple criteria, including spatial relationships, multiphase

relationships with various materials, brightness differences,

and size or morphology within a set of images. It is

important that the order and grouping of the particular

operation be maintained when designating a particular

sequence of Boolean operations.

Feature-based Boolean logic is an extension of pixel-

based Boolean logic in that individual features, rather than

individual pixels, are compared between images (Fig. 18).

The resultant image contains the entire feature instead of

just the parts of a feature that are affected by the Boolean

comparison. Feature-based logic uses artificial features,

such as geometric shapes, and real features, such as grain

boundaries, to ascertain information about features of

interest.

There are a plethora of uses for Boolean operators on

binary images and also in combination with gray-scale

images. Examples include coating thickness measurements,

stereological measurements, contiguity of phases, and

location detection of features.

Morphological Binary Processing

Beyond combining images in unique ways to achieve a

useful result, there also are algorithms that alter individual

pixels of features within binary images. There are hundreds

of specialized algorithms that might help particular appli-

cations and merit further experimentation [2, 3]. Several of

the most popular algorithms are mentioned below.

Hole Filling

Hole filling is a common tool that removes internal ‘‘holes’’

within features. For example, one technique completely

fills enclosed regions of features (Fig. 19a, b) using feature

labeling. This identifies only those features that do not

touch the image edge, and these are combined with the

original image using the Boolean OR operator to recon-

struct the original inverted binary image with the holes

filled in. There is no limit on how large or tortuous a shape

Fig. 18 Feature-based Boolean logic operates on entire features

when determining whether a feature is ON or OFF. This example

shows the result when using the AND Boolean operator with images

A and B from Fig. 17. An image B outline is shown for illustrative

purposes
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is. The only requirement for hole filling is that the hole is

completely contained within a feature.

A variation of this is morphological-based hole filling.

In this technique, the holes are treated as features in the

inverted image and processed in the desired way before

inverting the image back. For example, if only holes of a

certain size are to be filled, the image is simply inverted,

features below the desired size are eliminated, and then the

image is inverted back (Fig. 19a, c, d). It also is possible to

fill holes based on other shape criteria.

Erosion and Dilation

Common operations that use neighborhood relationships

between pixels include erosion and dilation. These operations

simply remove or add pixels to the periphery (both externally

and internally, if it exists) of a feature based on the shape and

location of neighborhood pixels. Erosion often is used to

remove extraneous pixels, which may result when overde-

tection during thresholding occurs, because some noise has

the same gray-level range as the features of interest. When

used in combination with dilation (referred to as ‘‘opening’’),

it is possible to separate touching particles. Dilation often is

used to connect features by first dilating the features followed

by erosion to return the features to their approximate original

size and shape (referred to as ‘‘closing’’).

Fig. 19 Effects of different

hole-filling methods.

a Transmitted-light image

containing an array of glass

particles with some interstitial

clear regions within the

particles. b Same image after

the application of the hole-

filling algorithm with dark gray

regions showing the filled

regions. Identified areas 1, 2,

and 3 show erroneously filled

regions due to the arrangement

of particles. c Inverted or

negative of the first image,

which treats the original

interstitial holes as individual

features. d Image after

removing features below a

certain size and inverting the

image to its original binary

order with only interstitial holes

filled

Fig. 20 Examples of the effects of erosion on a feature using kernels

of various shapes and the associated shape of a single pixel after

dilation using the same kernel

240 Metallogr. Microstruct. Anal. (2012) 1:227–243

123



Most image analysis systems allow the option of using

several neighborhood-kernel patterns (Fig. 20) and also

allow selection of the number of iterations used. However,

great care must be exercised when using these algorithms

because the feature shape (especially for small features)

can be significantly different from the original feature

shape. Parameter selection can dramatically affect features

in the resulting image because if too many iterations are

used relative to the size of the feature, it can take on the

shape of the neighborhood pattern used (Fig. 21). How-

ever, some very useful results can be achieved when using

the right erosion/dilation kernel shape. For instance, using

a vertical shape closing in a binary image of a surface can

remove edges that fold over themselves (Fig. 22), which

allows determination of the roughness of an interface.

Skeletonization, Skeleton by Influence Zones (SKIZ),

Pruning, and Convex Hull

A specialized use of erosion that prevents the separation of

features while eroding away pixels is called skeletoniza-

tion, or thinning. This operation is useful when thinning

thick, uneven feature boundaries. Caution is advised when

using this algorithm on very thick boundaries because the

Fig. 21 Particle with elongated features showing the effect of using a

number of octagonal-opening (erosion followed by a dilation)

iterations

Fig. 22 Use of a vertical shape closing in a binary image.

a Reflected-light image of a coating having a tortuous interface.

b Binary image of coating. c Binary image after hole filling and

removal of small unconnected features. d Equally spaced vertical
lines overlaid on the binary image. e Result after a Boolean AND of

the lines and the binary image. f Image after vertical closing of 35

cycles, which closes off overlapping features of the interface for

measuring roughness. g Binary image showing the lines before (dark
gray) and the line segments filled in after closing (black). h Vertical
lines overlaid on the original lightened gray-level image
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Fig. 23 Effects of the SKIZ process. a SEM image of a superalloy.

b Binary image of gamma prime particles overlaid on the original

gray-level image with light gray particles touching the image

boundary. c After application of SKIZ showing zones of influence.

d Zones with original binary particles overlaid

Fig. 24 Images showing the use of various binary operations on a

grain structure. a Original bright-field image of grain structure.

b Binary image after removal of small disconnected features. c Binary

image after skeletonization with many short arms extending from

grain boundaries. d Binary image after pruning. e Binary image after

pruning and after three iterations of convex hull to smooth boundaries.

f Image showing grain structure after skeletonization of the convex-

hulled image
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resulting skeleton can change dramatically depending on

the existence of just a few pixels on an edge or within a

feature.

SKIZ, a variation of skeletonization, operates by

simultaneously growing all features in an image (or erod-

ing the background) to the extent possible given the zones

of influence of growing features (Fig. 23). This is analo-

gous to nearest-neighbor determinations because drawing a

line segment from the edge of one feature to the edge of an

adjacent feature results in a midpoint, which is the zone of

influence. The result of a SKIZ operation often replicates

what an arrangement of grain boundaries looks like.

Additionally, it is possible to measure the resulting zone

size to quantify spatial clustering or statistics on the overall

separation between features.

Occasionally, unconnected boundaries remain after the

skeletonization operation and can be removed using a

pruning algorithm that eliminates features having end-

points. The convex-hull operation can be used to fill con-

cavities and smooth very jagged skeletons or feature

peripheries. Basically, a convex-hull operation selectively

dilates concave feature edges until they become convex

(Fig. 24).

Further Considerations

The binary operations described in this article are only a

partial list of the most frequently used operations and can

be combined in useful ways to produce an image that lends

itself to straightforward quantification of features of inter-

est. Today, image analysis systems incorporate many pro-

cessing tools to perform automated, or at least fast-feature,

analysis. Creativity is the final tool that must be used to

take full advantage of the power of image analysis. The

user must determine if the time spent in developing a set of

processing steps to achieve computerized analysis is jus-

tified for the application. For example, if you have a

complicated image that has minimal contrast but somewhat

obvious features to the human eye and only a couple of

images to quantify, then manual measurements or tracing

of the features might be adequate. However, the benefit of

automated image analysis is that sometimes-subtle feature

characterizations can yield answers that the user might

never have guessed based on cursory inspections of the

microstructure.
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