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Abstract
Key message A set of models of bark thickness at breast height and bark volume are now available for six species in
France. A common model suitable for predicting bark volume was proposed for all species. A small but significant
altitude effect on bark thickness at breast height was detected for three species.

Context The growing demand for wood energy and bio-molecules requires a thorough evaluation of forest biomass,
particularly bark.

Aims The objective of this study is to have statistical models of bark volumes for the six main forest species present in
North-Eastern France and to be able to estimate regional bark biomasses and quantities of chemical extractives at regional
scale.

Methods A large databank gathering bark thickness measured at different heights in France was used for selecting literature
or new alternative models of tree bark volume. These models were applied to the available forest inventory data from North-
Eastern France to estimate the regional bark volume. Secondly, by multiplying these volumes by basic density data and
extractive content recently obtained, bark biomasses and extractives quantities were deduced.
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Results The first results consist in a set of species-specific models of bark thickness at breast height with R2 around 0.70
and a relative RMSE around 30% which is an improvement of 0.1 for R2 and of 1–2% for relative RMSE depending on
the species compared to the best models from the literature. The second results consist in a set of species-specific models of
tree bark volumes with R2 of 0.90 and a relative RMSE which varies between 22% when bark thickness at breast height is
included and 40% when it is predicted. A significant relationship between bark thickness at breast height and altitude was
also observed. The bark resources of Grand Est and Bourgogne-Franche-Comté regions were estimated at 558 000 m3/year

and 611 000 m3/year respectively representing between 5.5% and 15% of the stem volume depending on the species. The
propagation of the measurement error of bark gauge was estimated at 5% for model of bark thickness at breast height and
24% for bark volume model.

Conclusion These results constitute an important contribution for a better knowledge of the bark resource at a regional scale
and may help to optimise bark valuation by the forest-wood sector.

Keywords Bark thickness, Bark gauge, Altitude, Bark biomass, Softwood, Hardwood

1 Introduction

Bark is a multifunctional structure absolutely necessary for
the tree life (Rosell 2019). It protects living tissues, i.e.,
sapwood, phloem, dormant buds (Charles-Dominique et al.
2015), from high temperatures (Pausas 2015; Rosell 2016)
or very low ones (De Antonio et al. 2020), superficial
injuries due to rock falls, harvesting, herbivores and insects
(Theander 1985; Harun and Labosky 1985), or pathogenic
micro-organisms (Franceschi et al. 2005). The bark also has
less known functions such as storage of water (Levia and
Herwitz 2005) or mineral reserves (Schowalter and Morrell
2002), and is involved in tree biomechanics (Clair et al.
2019). Consequently, bark participates through its multiple
functions to the adaptation of trees to different ecosystems
(Rosell et al. 2014).

To fulfil these different functions, bark can be described
by different variables: Its thickness at different heights
(Gordon 1983), its total volume in a tree (Wehenkel et al.
2012; Rosell et al. 2017), its proportion of the volume
of the stem (Cellini et al. 2012), its density (Miles and
Smith 2009), its structure, particularly different in young or
old bark (Dedrie et al. 2015), its yields and quantities of
different chemical compounds (Jyske et al. 2014; Trivelato
et al. 2016; Feng et al. 2013; Brennan et al. 2020), especially
carbon (Jones and O’Hara 2018; Castaño-Santamarı́a and
Bravo 2012) and minerals (Buamscha et al. 2007). All
these variables not only participate in relating structures and
functions in living trees but also are critical in determining
the value of harvested timber.

To fulfil these different functions, bark can be described
by different variables: Its thickness at different heights,
its total volume in a tree, its proportion of the volume of
the stem, its density, its structure, particularly different in
young or old bark, its yields and quantities of different
chemical compounds, especially carbon and minerals. All
these variables not only participate in relating structures and

functions in living trees but also are critical in determining
the value of harvested timber.

To fulfil these different functions, bark can be described
by different variables: Its thickness at different heights,
its total volume in a tree, its proportion of the volume of
the stem, its density, its structure, particularly different in
young or old bark, its yields and quantities of different
chemical compounds, especially carbon and minerals. All
these variables not only participate in relating structures and
functions in living trees but also are critical in determining
the value of harvested timber.

The bark is thus a rich and very accessible raw material
and human has exploited it for a very long time (Pasztory
et al. 2016; Harkin and Rowe 1971) to produce for
instance medicines (Turner and Hebda 1990; Anderson
1955; Rastogi et al. 2015), perfume (e.g., cinnamon), latex
corks (Thomas et al. 1995) or insulating material (Gil 2014).
In the current economy of the forest-wood sectors, bark is a
by-product of the primary wood processing industries which
contributes very little to their total turnover. Its economic
value, mostly coming as a horticultural substrate or as a fuel
(Lu et al. 2006), may reach 15% for all by-products pooled
together (Chalayer 2015).

Not all softwood bark is suitable for use as horticultural
substrate and, compared to wood, bark is a second choice
fuel due to its high humidity and high mineral composition
(Adler 2007) despite its high extractive content which
improves its calorific value (Telmo and Lousada 2011;
Tenorio and Moya 2013; Fuwape 1989). Only boilers
specifically designed to burn biomass with a high content of
water, impurities (soil, gravel, etc.), and mineral matter (and
therefore ash) can burn it efficiently (Martin 2015).

It turns out that society is increasingly demanding
biomolecules that are considered less harmful to health
than petro-sourced products and are produced in a more
environmentally friendly manner. Industries want to take
advantage of this trend. They need consequently to answer
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questions about the volume of the different markets, the
availability of raw materials rich in these biomolecules and
the industrial processing of the raw material.

To estimate the available raw material, it is possible to
make advantage of data and information already available.
Bouvet and Deleuze (2013) have provided values of
bark percentage to calculate stem bark volume from
stem volume. There are also data on basic density to
convert fresh wood volumes into dry biomasses (Billard
et al. 2020). Moreover, the rate of extractable chemical
compounds (Brennan et al. 2020) expressed in grams of
extractives/gram of dry matter can be used to obtain the
mass of extractives.

Depending on the intended purpose, bark quantity has
been estimated either from bark thickness (Stängle et al.
2017; Muhairwe 2000; Laasasenaho et al. 2005), bark area
(or proportion in bark area) or from whole stem bark
biomass (e.g., Zianis et al. 2005). There are numerous
studies that have developed bark thickness models (e.g.,
Gordon 1983; Muhairwe 2000; Hannrup 2004; Van Laar
2007). However, few studies have provided models to
directly predict the volume of bark from tree variables
such as diameter at breast height, tree height, and bark
thickness at breast height when it is available (e.g., Kozak
and Yang (1981)). Often cited, Meyer (1946) computed
the bark volume of a tree on the basis of a constant
proportionality between over-bark and under-bark stem
diameters, generally measured at breast height. More
recently, Wehenkel et al. (2012) and Liepiņš et al. (2015)
have modelled the proportion of bark volume.

Modelling bark volume (Bv) and bark thickness at breast
height (BT BH ) for France is the central objective of this
article. On the one hand, when models exist but are not
adapted to the French resource they must be readjusted as
advised by Jenkins et al. (2003) and Stängle et al. (2017).
On the other hand, if the models do not exist, new ones
must be developed. In addition, models of BT BH will
also be designed since BT BH can be used as an input
variable in bark volume models, yet they are not always
measured in the field. Numerous bark data have been col-
lected by French research and development organisations:
INRAE (Institut National de Recherche pour l’Agriculture,
l’Alimentation et l’Environnement), FCBA (institut tech-
nologique Forêt Cellulose Bois-construction, Ameublement),
ONF (Office National des Forêts), IGN (Institut National de
l’Information Géographique et Forestière). This database is
managed by the FCBA (Bouvet and Deleuze 2013).

As a secondary objective, we applied the best models
to forest inventory data to provide an initial estimate
of the available resource, e.g. for the chemical industry.
The resource must be assessed in terms of bark volume,
bark biomass, and quantity of extractives. We provide this

estimate at the scale of two French regions: Grand-Est and
Bourgogne Franche-Comté. For the sake of clarity, we will
consider only the total content of extractives and not the
content of specific chemical families.

This study concerns six temperate tree species that are
present and industrially processed in Eastern France: silver
fir (Abies alba Mill.), Norway spruce (Picea abies L.),
Douglas fir (Pseudotsuga menziesii Mirb.), European beech
(Fagus sylvatica L.), sessile oak (Quercus petraea Matt.),
and pedunculate oak (Quercus robur L.).

2Materials andmethods

BT BH models were developed from the data recorded
during several campaigns of the IGN. Since 2008, these
measurements are no longer carried out as the database
has been considered complete. Models for total bark
volume (Bv) were developed from a “research” dataset
called EMERGE. Both datasets are described in detail in
Section 2.1.

Table 1 summarises the abbreviations used in this paper.

2.1 Datasets

In this work, three different databases were used namely
EMERGE, IGN, and French NFI.

2.1.1 EMERGE dataset

EMERGE was a project led by the French National
Forest Office (ONF) and supported by the French National
Research Agency (ANR) (Deleuze et al. 2013). Its purpose
was to estimate the available biomass in French forests.
Eight French research and development organisations
worked together on this project. The EMERGE dataset
combined several subsets of data collected by the various
partners. This dataset contained bark thickness (Bt )
measurements performed in several French regions (Fig. 1),
statistically representative of the French resource. The
measurements were made using a Swedish bark gauge at
several heights along the stem but often not at breast height.
In the latter case, a linear interpolation between the two
values collected from closest values to 1.3 m allowed for an
estimation at this height.

Usual tree variables (total tree height, Htot and diameter
at breast height, DBH ) were measured and additional infor-
mation about the corresponding plots such as geographic
coordinates and altitude were recorded. The tree DBH

distribution is given in Appendix Fig. 5.
The composition of EMERGE database is given in

Table 2.
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Table 1 List of abbreviations

Abbreviation Meaning Unit

Aob, Aub Stem area over and under bark m2

AIC Akaike Information Criterion

alt Altitude m (above see level)

Bp Bark proportion on stem over bark volume %

Bp-test Result of a Breusch-Pagan test

Bt Bark thickness at a given height m

Bv Total bark volume m3

BT BH Bark thickness at breast height (height of 1.30 m) m

Dob, Dub Stem diameter over and under bark m

D0ob, D0ub Stem diameter at ground level over and under bark m

DBH Stem diameter at breast height (over bark) m

Htot Total tree height m

PME Propagation of measurement error

RMSErel Relative root mean square error %

Vob, Vub Stem volume over and under bark m3

2.1.2 IGN dataset

The second dataset, called IGN is a “resource” dataset.
BT BH was measured on a large number of trees
everywhere in France. This dataset includes only one

measurement at breast height made with a Swedish bark
gauge as well as DBH , Htot and location of the trees
(latitude, longitude and altitude). Table 3 shows the
composition of the IGN dataset.

Fig. 1 Location of the sites
where the EMERGE data were
recorded

silver fir
Norway spruce
Douglas fir
sessile oak
pedunculate oak
European beech
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Table 2 Composition of EMERGE dataset

Species Number of Number of

measures trees

silver fir 15 222 658

Norway spruce 16 541 692

Douglas fir 4 618 313

sessile oak 30 193 1 445

pedunculate oak 9 628 481

European beech 26 946 1 246

2.1.3 French NFI data in grand Est and
Bourgogne-Franche-Comté

The National Forest Inventory (NFI) is a continuous
statistical survey of French metropolitan forests, undertaken
by the IGN. The NFI is carried out in public and private
forests, regardless of whether they are available for wood
supply. The NFI design features a systematic sampling grid
with squared cells of 1 km side (Colin et al. 2017; Hervé
2016). Each year, 10% of the cells are sampled according
to two phases. In the first phase, approximately 80 000
photo plots are interpreted to assess land cover and land
use. In the second phase, approximately 7 000 temporary
ground plots are established at a sub-sample of first phase
photo plot locations that have forest land use. On each plot,
every tree with a DBH of at least 7.5 cm is measured.
Measurements include DBH and Htot . Typically, five
annual NFI samples are combined to calculate statistics for
the forest resource. Moreover, since 2010, the French NFI
provides direct measurements of logging based on a re-
inventory of temporary plots placed in the inventory 5 years
earlier. For example, in 2014, the NFI returned data on plots
for the inventory in 2009, which can serve as an objective
for giving an estimate of the mean annual harvest between
2009 and 2014.

French NFI visits approximately 1 650 new inventory
plots each year in the Grand Est and Bourgogne-Franche-
Comté regions (870 plots and 780 plots, respectively). In

Table 3 Composition of IGN dataset

Species Number of Number of

measures trees

silver fir 25 258 25 258

Norway spruce 41 950 41 950

Douglas fir 17 537 17 537

sessile oak 46 540 46 540

pedunculate oak 41 291 41 291

European beech 42 740 42 740

this paper, we used the observations performed on cut
trees during the 2014–2018 periods to infer the amount
of bark volumes harvested each year in the two regions
between 2009 and 2018. For that, the best BT BH models
developed for each species were applied on all felling trees
recorded by the NFI to estimate BT BH from tree DBH

and altitude whenever significant. Then, the best Bv models
were applied to estimate stem bark volume of felling trees
based on estimated BT BH , tree DBH and tree Htot .
Finally, the five annual NFI samples (2014–2018) were
combined to estimate the volume of bark harvested each
year, between 2009 and 2018, from the forest resource in
the two regions.

2.2 Calculating the bark volume

First, all Bt measurements from the EMERGE dataset
were used to compute over- and under-bark cross-sectional
areas at different heights. Over- and under-bark stem area,
respectively Aob and Aub at a given height were calculated
with Eqs. 1 and 2.

Aob = D2
ob

4
· π (1)

Aub = (Dob − 2Bt)
2

4
· π (2)

where Dob is the over-bark stem diameter and Bt the bark
thickness.

To calculate the bark volume of each tree, over- or under-
trunk portions were considered as a stack of truncated cones
with a volume given by Eq. 3 with the tree top portion
considered as a cone (thus with A2 = 0) and the stump
portion calculated by extrapolation from the areas calculated
from the two lowest measures:

Vtruncated cone = Hc

3
· (A1 + √

A1 · A2 + A2) (3)

where Hc is the truncated cone height and A1 and A2 the
area of, respectively, its lower section and upper sections.

The sum of over- and under-bark volumes of all truncated
cones gives the total over- and under-bark stem volumes for
the tree (Fig. 2a). And as a consequence, their difference
gives the bark volume.

2.3 BTBH modelling

We first adjusted literature models on the FCBA database
and then design alternative models. Finally, we selected
the most relevant models based on the lowest Akaike
Information Criterion (AIC) and relative root mean square
error (RMSErel).
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Fig. 2 a Sequence of truncated cones modelling a stem. b Simplified geometric calculation of bark volume. BT BH : Bark thickness at breast
height; DBH : Diameter at breast height; D0ob and D0ub: Diameters at ground level over and under bark; Htot : total tree height

2.3.1 BTBH models from the literature

We selected three models from Wilhelmsson et al. (2002)
for Norway spruce and (Pinus sylvestris L.) (Eq. 4); Cao and
Pepper (1986) for North-American species (Pinus echinata
Mill., Pinus taeda L. and Pinus palustris Mill.) (Eq. 5) and
Gordon (1983) for Pinus radiata D. Don in New-Zealand
(Eq. 6).

BT BH = exp(a + b · DBH + c · ln(DBH)) (4)

BT BH = DBH

(

a+b · 1.3

Htot

+ c ·
(

1.3

Htot

)2

+ d · Htot

)

(5)

BT BH = a + b · DBH + c · DBH 2 + d · DBH 3 (6)

2.3.2 Alternative BTBH models

After carefully analysing several equations we selected
Eq. 7 as a base for our modelling, reflecting the strong
relationship with DBH .

BT BH = a · DBHb (7)

The addition of an intercept to Eq. 7 was studied but
we preferred to remove it, even if this parameter was
significant, because we considered that a tree with DBH =
0 should logically have BT BH = 0.

For assessing whether a relation between altitude and
BT BH could be introduced, quantitative altitude values
were transformed into ten increasing altitude classes and
their mean was assigned to each tree belonging to their
corresponding class. To make sure the classes were
approximatively of comparable size, we merged classes
representing less than 5% of our data with their closest
class. The parameters a and b in Eq. 7 were then adjusted
according to altitude class. We thus obtained around ten
values of a and b, for each species, that were analysed in
relation with the mean altitude of trees from each class.
Sometimes and only on a, we observed a significant altitude
effect. In this case Eq. 7 becomes Eq. 8.

BT BH = (c · alt + d) · DBHb (8)

with alt as the altitude

2.4 Bark volumemodels

2.4.1 Bark volumemodels from the literature

Meyer (1946) proposed a method to calculate Bv using the
a coefficient according to Eq. 9.

a =
∑

DBH − 2 ∗ ∑
BT BH

∑
DBH

(9)

where the sum is calculated on data from a pool of trees of
the same species.
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Bark volume for individual tree may therefore be
computed using Eq. 10.

Bv = Vob · (1 − a2) (10)

We determined the a coefficient from the IGN dataset for
each species. We then calculated the bark volume of the
trees from the EMERGE dataset using the a coefficient
for this species and Eq. 10. This method was developed
by Meyer (1946) for Cinchona but he also proposed an
application for other species such as Tsuga canadensis,
Pinus strobus, Quercus alba and Acer rubrum.

Kozak and Yang (1981) proposed a model of bark volume
following Eq. 11. This model was applied on 32 species
including both hardwood species and softwood species.

Bv = a · DBHc · BT BHd · He
tot (11)

2.4.2 Alternative model of bark volume

We built a new model of Bv by considering the difference
between two cones Vob and Vub which are the over-bark and
under-bark stem volumes assuming the trunk is cone-shaped
(Eq. 12 and Fig. 2 b).

Bv = Vob − Vub = π

12
· Htot · (D02

ob − D02
ub) (12)

where D0ob and D0ub are the over bark and under bark
diameters at the ground level.

D0ob and D0ub can be calculated from DBH and
BT BH with Eqs. 13 and 14, respectively, on the basis of
the Thales’ theorem.

D0ob = DBH · Htot

Htot − 1.3
(13)

D0ub = (DBH − 2BT BH) · Htot

Htot − 1.3
(14)

We obtained the theoretical Eq. 15.

Bv = π

3
· H 3

tot

(Htot − 1.3)2
· BT BH · [DBH − BT BH ] (15)

For mature trees, by assuming that Htot � 1.3 m and
DBH � BT BH , Eq. 15 can be simplified to give Eq. 16.

Bv = π

3
· Htot · BT BH · DBH (16)

Models following Eqs. 17 and 18 were designed from
Eqs. 15 and 16, respectively.

Nevertheless, Eqs. 15 and 16 are only exact for a
perfectly cone shaped stem, both over bark and under bark.
To account for the geometric difference with a real stem the

two models following Eqs. 17 and 18, in which parameters
a and b can be adjusted statistically, were designed.

Bv = a· H 3
tot

(Htot − 1.3)2
·BT BH ·[DBH − BT BH ]+b (17)

Bv = a · Htot · BT BH · DBH + b (18)

Finally, we obtained the model following Eq. 19 by
replacing BT BH by its prediction ̂BT BH .

Bv = a · Htot · ̂BT BH · DBH + b (19)

̂BT BH is the predicted value obtained with the best BT BH

models depending on the species.

2.5 Statistical methods

2.5.1 Modelling

All the regressions were carried out using the R software
(R Core Team 2018). Two methods have been applied,
depending on the modelled variable.

For BT BH , the R function nls was used to fit the
model. A total of 13 outliers were removed from the
datapool (0 observation for silver fir and for Norway spruce,
7 for Douglas fir, 2 for European beech, 2 for sessile
oak, and 2 for pedunculate oak). These observations were
removed based on graphical analysis.

For Bv , bark volume measurements showed strong
heteroscedasticity with variance increasing with tree size.
For handling heteroscedasticity in the non linear regression
analyses, we used the gnls function, provided by the nlme
package (Pinheiro et al. 2019) with a variance structure
described by the function varPower (Eq. 20):

V ar(ε) = σ 2 · (DBH 2 · Htot )
2θ (20)

The Breusch-Pagan test (BP-test) was used to verify
the efficiency of this formulation by analysing the
heteroscedasticity of the model residuals.

The model has been considered without heteroscedastic-
ity if the obtained p-value is above 0.1.

In order to assess if species-specific models were
required especially for distinguishing the two oak species,
the R function nlsList provided by the nlme package
(Pinheiro et al. 2019) was used.

This function partitions the data according to the levels of
a grouping factor, in our case, the species, and gives specific
fits for each data partition, using same models for different
factors.

2.5.2 Cross-validation

All models, either from the literature or alternative ones,
were validated through a cross-validation method as
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follows: The data were separated according to their plot
of origin. Then these parts were merged randomly to form
ten groups of approximatively the same size. Each group
was used as validation set, the remaining observations being
used as training set. A fitted value was thus obtained
from a validation set for each measure made. These two
datasets were used to calculate RMSE and relative RMSE

(RMSErel) in%, as recommended by Mayer and Butler
(1993), using Eqs. 21 and 22, respectively.

RMSE =
√∑

(y − ŷ)2

n
(21)

RMSErel = RMSE

ȳ
· 100 (22)

where y is the measured value, ŷ the fitted value, ȳ the mean
of observed values and n the number of observations.

The R2 value of the model was obtained by fitting
a linear regression between observed and fitted value, as
recommended by Piñeiro et al. (2008). This R2 was taken to
characterize the quality of this modelling.

Then our data were split again, calibration and validation
performed twice more. Three values of the indicators
RMSE, RMSErel, and R2 were thus obtained. Finally,
these three values were used to calculate their mean value,
which are presented in Section 3. However, the parameter
values are issued from the model adjustment made on all
datasets.

We also calculated the AIC (Akaike 1973) for each
model. We used for this a model adjusted on all data,
without cross-validation.

2.6 Propagation of measurement error (PME)
for Norway spruce

According to the analysis done by Stängle et al. (2016),
measuring Bt using a Swedish bark gauge is subject to an
error. This measurement error was identified for Norway
spruce species in the same analysis as an overestimation
of the Bt by 13.6% ± 28.4% (mean ± standard deviation)
relative to its true value. The relevance of this systematic
error calls for considering it within the fitted model. To this
end, we use a “toy” Monte Carlo method based approach. Its
design is based on the rationale found in different references
(Rocha and Nogueira 2012; Clarkson 2014; Mahmoud and
Hegazy 2017). The method can be summarized in four steps.

The first step is to define a bound for each measurement
we have of the Bt , based on the identified measurement
error. The second step is to take random values of errors
(according to a Gaussian generation) at each measurement
we have of Bt within the defined bounds. The third step is
to fit the model according to these random values. Then,

we repeat for a sufficient number of times (> 1000),
where at each simulation we get different values for the
regression parameters, and eventually determine their mean
and standard error. Finally, the fourth step is to use the
formula (Eq. 23) of error propagation (Ku 1966) to calculate
the propagation from each regression parameter onto the
model.

Ef =
√(

∂f

∂x

)2

s2
x +

(
∂f

∂y

)2

s2
y +

(
∂f

∂z

)2

s2
z + · · · (23)

where f is a function, which in our case, is the model we
are interested in.

2.7 Consistency of our model predictions
with proportions of bark on over-bark trunk volume

In order to check the relevance of our modelling results, we
translated results from the IGN dataset into bark proportions
(Bp, calculated with Eq. 24) using bark volume estimated by
our selected models and over-bark stem volume estimated
following (Tran-Ha et al. 2007) (Eq. 25). We translated the
results from Emerge dataset into Bp using either the bark
volume and over-bark trunk volume calculated according to
the procedure found in Section 2.2 and Fig. 2 (Method 1),
or the bark volume estimated by our selected models with
BT BH measured and over-bark stem volume calculated
as previously (Method 2). We then compared the results
obtained according to these procedures with the results
published in (FCBA 2019) and adapted them to our dataset
(Emerge or IGN) according to the repartition of tree’s DBH

and obtained by Meyer (1946) where, according to Eq. 10,
Bp corresponds to (1 − a2). To calculate the Bp, (FCBA
2019) used the Emerge dataset to build a relation between
the ratio of bark thickness to log radius at 1.3 m and Bp on
the tree, then applied it to the IGN dataset. These relations
were built for different DBH classes for each species.

Bp = Bv

Vob

(24)

Vob = a · DBH + b · π

(
DBH

2

)2

· Htot (25)

The a and b coefficients were estimated by Tran-Ha
et al. (2007) for several species including our six targeted
species.

For all these comparisons, we used Eq. 26 in order to
calculate a mean Bp of all our trees.

Bp =
∑ Bv

Vob

n
(26)

where n is the number of observations.
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3 Results

3.1 BTBH modelling

The detailed plots showing data, trend lines and models for
each species are given in Appendix Figs. 6 and 7.

3.1.1 Fit of literature models

Table 4 summarises the results obtained for models
following Eqs. 4, 5, 6, 7 and 8.

With regard to the model proposed by Cao and Pepper
(1986) for the sessile oak species, d parameter was found
insignificant. The model was thus recalibrated without this
parameter. This new model is the one presented here. In
terms of R2, RMSErel and AIC, all models presented in

Table 4 are quite similar. It can be observed that except for
pedunculate oak and Norway spruce, the model proposed
by Cao and Pepper (1986) is slightly better than others.
For pedunculate oak, the three models are really equivalent.
The PME calculation, which is possible in the case of the
Norway spruce species, showed a 5.12%, 4.49%, and 5.67%
error propagation in the case of Cao and Pepper (1986),
Wilhelmsson et al. (2002), and Gordon (1983), respectively.
For models following Eqs. 7 and 8, PME were 0.84% and
0.19%.

Models following Eq. 7 appeared to be rather good,
with R2 of 0.65 for European beech, 0.67 for sessile oak,
0.68 for pedunculate oak, 0.69 for Norway spruce, 0.71 for
silver fir, and 0.77 for Douglas fir. However, the RMSErel

around 30% (up to 37.3% for European beech) shows that
the natural variation of Bt cannot be perfectly described

Table 4 Attributes of the different models of bark thickness at breast
height (BT BH ). Model following Eq. 8 is shown when altitude effect
is significant. The statistical significance is indicated by: NS: p ≥ 0.1;
*:p < 0.05; **: p < 0.01; ***: p < 0.001. R2 is the coefficient of
determination. RMSErel is the relative Root Mean Square Error. AIC

is the Akaike Information Criterion. PME is the propagation of mea-
surement error for Norway spruce only. The models in bold correspond
to the model finally retained in this study. It must be remembered that
the different parameters a to d are model-dependent. Standard errors
are given in Appendix Table 9

Species Model a b c d R2 RMSErel (%) AIC PME

silver fir Eq. 4 -2.691 *** -0.4013 *** 1.057 **** / 0.71 30.3 -228055 /

Eq. 5 0.04036 *** -0.1022 *** 0.4081 *** -0.0003595 *** 0.72 30 -228593 /

Eq. 6 0.000844 *** 0.02087 *** 0.01906 *** -0.02074 *** 0.72 30.3 -228170 /

Eq. 7 0.02473 *** 0.9021 *** / / 0.71 30.4 -227940 /

Eq. 8 / 0.892 *** 5.838 · 10−06 *** 0.0199 *** 0.73 29.5 -229444 /

Norway spruce Eq. 4 -3.227 *** 0.2666 *** 0.7861 *** / 0.69 32.3 -391076 4.49

Eq. 5 0.02452 *** 0.08554 *** -0.04756 NS −8.34 · 10−05 NS 0.71 31.5 -393323 5.12

Eq. 6 0.00187 *** 0.01356 *** 0.03483 *** -0.03145 *** 0.7 32.2 -391443 5.67

Eq. 7 0.02408 *** 0.8723 *** / / 0.69 32.4 -391007 0.84

Eq. 8 / 0.8178 *** 5.218 · 10−06*** 0.01859 *** 0.72 30.7 -395525 0.19

Douglas fir Eq. 4 -2.996 *** 0.8389 *** 0.8468 *** / 0.76 32 -152100 /

Eq. 5 0.01911 *** 0.1259 *** -0.1548 NS 0.0005875 *** 0.76 32.3 -151799 /

Eq. 6 0.001364 *** 0.02312 *** 0.03851 *** -0.009671 * 0.76 32 -152133 /

Eq. 7 0.04552 *** 1.1180 *** / / 0.77 30.5 -153769 /

sessile oak Eq. 4 -2.878 *** -0.0314 NS 0.6863 *** / 0.66 27.9 -401069 /

Eq. 5 0.01264 *** 0.4552 *** -0.9218 *** / 0.68 27.5 -402398 /

Eq. 6 0.002125 *** 0.03915 *** -0.02089*** 0.006342 *** 0.66 27.9 -401006 /

Eq. 7 0.02748 *** 0.6759 *** / / 0.67 27.9 -401172 /

pedunculate oak Eq. 4 -2.777 *** -0.1084 *** 0.7357 *** / 0.68 27 -351586 /

Eq. 5 0.02695 *** 0.2846 *** -0.5018 *** -0.0002738 *** 0.69 27 -351588 /

Eq. 6 0.00166 *** 0.04279 *** -0.02609*** 0.009523 *** 0.68 27 -351552 /

Eq. 7 0.02858 *** 0.6958 *** / / 0.68 26.8 -351992 /

European beech Eq. 4 -3.775 *** 0.00143 NS 0.8498 *** / 0.64 38.7 -431527 /

Eq. 5 0.01327 *** 0.05339 *** -0.1006 ** -0.0001094 *** 0.66 37.6 -434014 /

Eq. 6 0.0004547*** 0.01204 *** 0.0008586 NS -0.002298 *** 0.64 38.7 -431563 /

Eq. 7 0.01149 *** 0.8516 *** / / 0.65 37.3 -434761 /

Eq. 8 / 0.8844 *** 3.134 · 10−06 *** 0.01023 *** 0.68 36 -437788 /
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by a simple model. For all species, the model according
to Eq. 7 was thus not better than the best models found in
the literature except for Douglas fir, pedunculate oak and
European beech. The new models had an accuracy close
to that of the literature models but had the advantage of
having only two parameters and better results in terms of
propagation of measurement error for the Norway spruce
species.

After adjusting the model on altitude classes, we
observed a significant relation between a and altitude only
for silver fir, Norway spruce and European beech. This
relations are given in Appendix Fig. 8. Furthermore, it can
be seen that models following Eq. 8 are better than models
of the literature. At the end we selected the model following
Eq. 8 for silver fir, Norway spruce, and European beech,
models following Eq. 7 for Douglas fir and pedunculate oak,
and model following Eq. 5 for sessile oak (Table 4). Figure 3
shows the form of the selected models predicting BT BH

for each species.

3.2 Models of Bv

Table 5 shows the modelling results for all species.
First, by considering Breusch-Pagan test (BP-test)

results, we observed that weights argument of gnls
function handled correctly heteroscedasticity for all species
except for the European beech models.

It can be observed that there is only a small difference
between model following Eq. 17 and model following
Eq. 18, in terms of AIC, RMSErel and R2. Consequently,

the approximation we made by assuming, DBH >>

BT BH and Htot >> 1.3 seems to be proper.
It can also be observed that results obtained with Eq. 18

are much better than the ones obtained by Meyers’ method
(Eq. 10). RMSErel is decreased by 13% for silver fir, 12%
for Norway spruce, over 9% for Douglas fir, 5% for sessile
oak, 1.5% for pedunculate oak and 15% for European
beech.

By comparing models following Eqs. 18 and 11 (Kozak
and Yang 1981), it can be observed that, even if in terms
of R2 both models seem rather good, in terms of relative
RMSE and AIC, the model proposed by Kozak and Yang
(1981) is significantly better. We select this model even if
the one following Eq. 18 is simpler.

The PME is, in the case of Norway spruce, approxi-
mately 24.5% for model following Eq. 18, while 65.73%
in the case of Kozak and Yang (1981). As Meyer’s is not a
model, PME can not be calculated.

Table 6 presents the results obtained with models
following Eqs. 19 and 11 with parameters summarised
in Table 5 and BT BH estimated with selected models
presented in Table 4.

By comparing models following Eq. 19, in Tables 6
and 5, several differences can be observed. For silver
fir, Douglas fir, and European beech, a large increase of
RMSErel can be detected when instead of using the model
with BT BH (Eq. 18) we use the model with ̂BT BH . For
Norway spruce, pedunculate oak, and sessile oak, a small
increase of RMSErel can also be observed between the two
models respectively of 6%, 4%, and 6%.
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Table 6 Models predicting bark volume (Bv) with an estimate of bark
thickness at breast height ( ̂BT BH ) provided by the models in bold
of Table 4. Coefficient estimates are provided in Tables 4 and 5. The
models in bold correspond to the models finally retained in this study

Species Model R2 RMSErel (%)

Silver fir Eq. 19 0.87 47.6

Eq. 11* 0.87 45.2

Norway spruce Eq. 19 0.91 31.9

Eq. 11 0.92 31.1

Douglas fir Eq. 19 0.87 35.3

Eq. 11 0.89 29.5

Sessile oak Eq. 19 0.88 28.5

Eq. 11 0.87 29.6

Pedonculate oak Eq. 19 0.88 36

Eq. 11 0.88 36.1

European beech Eq. 19 0.85 51.8

Eq. 11 0.85 47.7

*For silver fir both models presented here were not as good as the
model of Eq. 10 (Meyer 1946) in Table 5. Thus we finally retained
Meyer’s model

The same accuracy loss can be observed for the model
proposed by Kozak and Yang (1981). It can be nevertheless
pointed out that for sessile oak, model following Eq. 19
became better than models proposed by Kozak and Yang
(1981).

3.3 Bark proportion

In Table 7, column Emerge Method 1 represents the
measured Bp and column Emerge Method 2 the Bp

predicted with the bark volume model of Eq. 11 (Kozak
and Yang 1981, best fit model see Table 5). Column (FCBA
2019) adapted for IGN, (FCBA 2019) adapted for Emerge
and Meyers’Coefficient, (1 − a2) are added to simplified

the comparison with the results and will be discuss in the
discussion section.

Between methods 1 and 2, the only change is the
prediction of bark volume. The prediction over-estimates
the bark proportion for all species.

3.4 Application of BTBH and Bv models to NFI data
to estimate bark resources at regional scale

Applying the best BT BH and Bv models to NFI data, as
well as specific bark densities (Billard et al. 2020) and
extractive content (Brennan et al. 2020), we were able
to provide estimates of the volume, biomass and amount
of extractives in the bark of all trees cut annually in
Grand Est and Bourgogne-Franche-Comté regions. We will
consider the whole stem, stump and tree top included.
In total for the two regions, about 1.2 million m3 of
bark were cut each year between 2009 and 2018. This
represents a total bark biomass of 600 000 t/year and
about 160 000 t/year of bark extractives. For each metric
(volume, biomass, amount of extractives), the annual cutting
was slightly higher in Bourgogne-Franche-Comté than in
Grand Est (52% vs 48% of the total for the two regions,
respectively). In addition, they were slight differences in
harvest profiles in terms of species composition between
the two regions. In Bourgogne-Franche-Comté, the annual
cutting was dominated by pedunculate oak (22% of the
regional bark volume cut each year) followed by Norway
spruce (21%), Douglas fir and silver fir (18% each). By
contrast in Grand Est, the annual cutting was dominated by
Norway spruce (27% of the regional bark volume cut each
year) followed by silver fir (20%), pedunculate oak (18%)
and European beech (15%).

Table 8 and Fig. 4 show the ressources calculated for the
six species in the two regions, Grand-Est and Bourgogne-
Franche-Comté.

Table 7 Bark proportions expressed in percent calculated for IGN and Emerge datasets with methods 1 and 2 (see Section 2.7), published in
(FCBA 2019) and quantified by the Meyer’s coefficient (1 − a2)

Species IGN FCBA (2019) Emerge Emerge FCBA (2019) Meyers’ Coefficient,

adapted for IGN Method 1 Method 2 adapted for Emerge (1 − a2)

Silver fir 11.2% 11.1% 11.6% 13.4% 11.2% 11.9%

Norway spruce 11.9% 11 % 10.2% 11.6% 11% 10.4%

Douglas fir 15% 14.5% 15.3% 18.3% 14.5% 19.8%

Sessile oak 17.9% 15.6% 12.9% 15.1% 15.24% 14.0%

Pedunculate oak 16.5% 15.5% 12% 13.9% 15.29% 13.1%

European beech 5.8% 5.5% 7.3% 8.1% 5.5% 7.1%
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Table 8 Summary of bark resources calculated for each species in Bourgogne-Franche-Comté (BFC) and Grand-Est (GE) regions. Values
correspond to ±95% confidence interval around mean

Region Species Volume Biomass Extractives

(1000 · m3/year) (1000 · t/year) (1000 · t/year)

Bourgogne-Franche-Comté Silver fir 108 ± 25 55 ± 13 12 ± 3

Bourgogne-Franche-Comté Norway spruce 127 ± 34 58 ± 16 12 ± 3

Bourgogne-Franche-Comté Douglas fir 109 ± 41 48 ± 18 11 ± 4

Bourgogne-Franche-Comté Sessile oak 75 ± 17 43 ± 10 14 ± 3

Bourgogne-Franche-Comté Pedunculate oak 137 ± 22 78 ± 13 25 ± 4

Bourgogne-Franche-Comté European beech 55 ± 10 37 ± 7 10 ± 2

Bourgogne-Franche-Comté Total 611 ± 57 318 ± 28 84 ± 7

Grand-Est Silver fir 109 ± 21 56 ± 11 12 ± 2

Grand-Est Norway spruce 151 ± 39 69 ± 18 15 ± 4

Grand-Est Douglas fir 32 ± 16 14 ± 7 3 ± 2

Grand-Est Sessile oak 82 ± 16 47 ± 9 15 ± 3

Grand-Est Pedunculate oak 98 ± 19 56 ± 11 18 ± 4

Grand-Est European beech 86 ± 11 57 ± 7 15 ± 2

Grand-Est Total 558 ± 46 298 ± 23 78 ± 6

Grand Est

Bourgogne-
France-Comté

Bourgogne−Franche−Comté Grand Est

Volum
e

(m
3/year)

Biom
ass

(t/year)
Extractives

(t/year)

Si
lv

er
 fi

r

N
or

w
ay

 s
pr

uc
e

D
ou

gl
as

 fi
r

Se
ss

ile
 o

ak

Pe
du

nc
ul

at
e 

oa
k

Eu
ro

pe
an

 b
ee

ch

Si
lv

er
 fi

r

N
or

w
ay

 s
pr

uc
e

D
ou

gl
as

 fi
r

Se
ss

ile
 o

ak

Pe
du

nc
ul

at
e 

oa
k

Eu
ro

pe
an

 b
ee

ch

0

50000

100000

150000

0

25000

50000

75000

0

10000

20000

30000
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4 Discussion

4.1 Accuracy of measurements

Since a Swedish bark gauge has a high degree of inaccuracy
(Stängle et al. 2016; Althen 1964), it is noteworthy to
identify the different sources of errors that are propagated to
the target models. To achieve this, we have used a method
based on a Monte Carlo technique (see Section 2.6). At
this stage, it is appropriate to mention that the amount of
error propagated onto the model does not speak for the
goodness of the model, but rather determines its accuracy
and prediction power. Determining whether the model
is good or not would require an instrumental variable
method in the case of non-linear models (Pearl 2009),
or a dedicated Monte Carlo simulations with pseudo-data
and a detailed study of the bias and variance that could
be generated on model parameters; this is outside the
scope of this paper. In this article, we have applied this
method on two kinds of selected models, BT BH and
Bv .

For the BT BH model, we have seen that the error
propagation (when altitude is unknown) for Eq. 5 is fairly
small (5.12%). However, when altitude is known (Eq. 8)
the error propagation is relatively smaller (0.19%). For
the Bv models, Kozak and Yang’s 1981 model incurred
a 64.8% error propagation. This can only be explained
by the number of Bt measurements that are used to cal-
culate Bv in the first place (several truncated cones with
different Bt measurements), each measurement possess-
ing an error on its own, eventually affecting its propaga-
tion within the model. It is expected that a better mea-
surement technique could induce a higher inherent model
accuracy.

4.2 Model application

In this work we applied models found in the literature to our
targeted species. The Bv models following Eqs. 9 and 11
were initially designed for softwood and hardwood species.
The differences in stem shape between both types of species
were not taken into account. However, the models seem
generic enough to fit both types of species in an equivalent
way.

It can nevertheless be pointed out that for hardwood
species, total bark volume may have been seriously
underestimated as we do not consider the bark of branches.
Ver Planck and MacFarlane (2014) estimated that, on
average, branches of hardwoods account for 41% of the total
wood volume in a tree.

4.3 Comparison of BTBH models

In spite of their variable forms, none of the tested models
in this study provided RMSErel lower than 20%. This
may be due to the natural variability of the bark, the
measurement error described above, and/or the fact that no
independant variables complementary to DBH and altitude
were identified. Nevertheless, an effect of altitude was
evidenced. The models that we recommend to use are shown
in bold in Table 4.

4.4 Altitude effect

An effect of altitude was observed for three species (silver
fir, Norway spruce, European beech). This effect is positive:
the higher the altitude, the larger the parameter a and the
more Bt increases with DBH . One of the reasons could be
a different allocation of biomass between bark and the other
parts of the tree, with the increasing altitude. No effect was
observed for the other species (Douglas fir, sessile oak and
pedunculate oak).

The difference between species can be first explained
by a statistical reason: For some species data are available
over a wide range of altitudes, while for others this range is
more restricted. The altitude effect can be tested only in the
first case. This hypothesis is confirmed because it turns out
that for species for which the altitude effect is significant,
i.e. silver fir, Norway spruce and European beech, the
altitude ranges are respectively 0–1800 m, 0–2000 m and 0–
1600 m. On the other hand, the range of altitudes is much
more restricted for the other three species, respectively 0–
1400 m, 0–1100 m and 0–1000 m for Douglas fir, sessile
oak and pedunculate oak. To be exact it should be verified
if in all cases, and particularly for Douglas fir, sessile
oak, and pedunculate oak, this altitude range reflects the
real distribution of trees elevation or represents only a part
of it.

With regard to the effect of environmental factors, many
studies have showed relationships between Bt and fire
(Pausas 2015; Schafer et al. 2015; Bauer et al. 2010).
Although fire is not a common issue for these species
in France, bark thermal insulation properties are worth
considering. Indeed, De Antonio et al. (2020) showed that
bark properties, especially low bark density, protected buds
against frost while Molina et al. (2016) showed a link
between resistance to frost and Bt . They have worked on
species of Brazilian savannah and in Patagonia. It can be
assumed that this protection strategy also applied to our
species. Further investigations may be required to analyse
the actual effect of frost on increasing Bt . Moreover, it
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is questionable whether the protection strategy of Douglas
fir, sessile oak, and pedunculate oak against frost may be
based more on decreasing bark density than on increasing
Bt .

Another factor influencing relative bark thickness is
growth rate (Stängle et al. 2017; Stängle and Dormann
2018; Laasasenaho et al. 2005). Growth rate has a negative
influence on relative bark thickness, meaning that the
slower a tree grows, the bigger Bt will be compared to
DBH . The fact that trees grow slower at higher altitudes,
given the more difficult environmental conditions, may
explain the observed relationship. However, we are not
able to separate the influence of growth rate and the
influence of altitude since the age of the trees was not
recorded.

Rosell et al. (2014) showed that bark also has a function
of water storage. Water storage mainly increases with Bt .
As studied by Antoni et al. (2011), French mountains have
a smaller usable reserve of water than lowland areas which
could influence Bt . However, usable reserve is not only
dependent on altitude, and thus further research is needed to
validate this hypothesis.

If one of these reasons can be validated, it is reasonable to
think that using these values (temperature or usable reserve
of water) will enable a better model to be built, that would
be better able to represent the actual effect that is linked to
the variation of Bt .

Other variables such as latitude, longitude, and type of
forest (coppice or high forest), and Htot were tested but no
significant influence was found.

4.5 Comparison of Bv models

In the Results section, we have selected the model following
Eq. 11 taking into account RMSErel and R2 values.
However, it can be reasonably argued that the model
following Eq. 18 is preferable since it has fewer parameters
and thus is more robust and simpler to use. Moreover,
the error associated to the parameters is smaller for the
model following Eq. 18 than for the one following Eq. 11
(Appendix Table 10). Thus the model following Eq. 18,
although slightly less accurate than model following Eq. 11,
could be a good alternative.

Comparing Tables 5 and 6 it appears that, for silver fir,
Douglas fir, and European beech, the accuracy losses by
replacing BT BH by ̂BT BH are respectively of 23%, 14%,
and 25%. Although BT BH measurements are found to be
helpful when predicting Bv for these species, the models
predicting BT BH for these species are not enough accurate
to predict correctly Bv .

4.6 Comparison of Bp values predicted
by themodels

As shown by Table 7, compared to Emerge Method 1, the
values predicted using the Meyer’s coefficients all over-
estimated Bp except for European beech.

The difference with FCBA (2019) may be due to the
method applied to the provided data. Indeed, FCBA (2019)
provided Bp for different ranges of DBH starting from
25 cm. However, for computing the mean proportion we
averaged these values weighed by the number of trees in
each class and we applied the value of the lower class
(25–30 cm) to all trees smaller than 25 cm.

The IGN dataset (column IGN) is closer to (FCBA
2019) (column (FCBA 2019) adapted for IGN) except for
sessile oak, pedunculate oak, and Norway spruce. The high
proportion of trees with a DBH smaller than 20cm can
explain this difference, especially for Norway spruce. One
may wonder if, for pedunculate oak and sessile oak, there is
an important variation of Bp with respect to DBH for small
trees. It can also be observed that the assumption made by
Meyer (1946) of a constant Bp along the stem is rightful
for silver fir, Norway spruce, and European beech. Indeed,
the Meyers’ coefficient is close to the bark ratio measured
for our trees except for Douglas fir and the two oak
species.

5 Conclusion

To assess regional bark availability in terms of volume,
biomass and quantities of extractive, we built several
models to predict bark thickness at breast height and tree
bark volume, from usual tree measurements such as total
height and diameter at breast height and a site variable,
altitude. This modelling was achieved for six temperate
species: Silver fir, Norway spruce, Douglas fir, sessile
oak, pedunculate oak, and European beech. We observed a
statistical influence of altitude on bark thickness at breast
height for three species, silver fir, Norway spruce, and
European beech which opens the door to more ecological
studies on bark. These models have been fitted on a pool
of data collected in France. Considering the number of
trees studied, the diversity of measurements made, and the
number of bark thickness measurements made, these data
are particularly rich and unique. The model set includes
models developed elsewhere for other species or new ones
created in this study. In this paper we have been able to
valorise national forest inventory data, newly collected basic
density and extractive rate data.
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Fig. 5 Diameter at breast height (DBH ) distribution of the trees from Emerge and IGN datasets, for silver fir, Norway spruce, Douglas fir,
pedunculate oak, sessile oak and European beech
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Fig. 6 Relationshipbetween standardized residuals and fitted values for silver fir, Norway spruce, Douglas fir, pedunculate oak, sessile oak and
European beech for the models selected in Table 4. The red lines correspond to the horizontal axes, the green lines give the trend of the residuals
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Fig. 7 Relationship between standardized residuals and fitted values for silver fir, Norway spruce, Douglas fir, pedunculate oak, sessile oak and
European beech for the models selected in Table 5. The red lines correspond to the horizontal axes, the green lines give the trend of the residuals

Fig. 8 Relationship between altitude and the value of a parameter in model following Eq. 7 for silver fir, Norway spruce and European beech.
Red line corresponds to the regression done
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Table 9 Standard error associated to the parameters estimated for the models of bark thickness at breast height (BT BH ). The model following
Eq. 8 is shown when altitude effect is significant. The parameter values are given in Table 4

Species Model a b c d

Silver fir Eq. 4 2.96 · 10−2 3.74 · 10−2 1.50 · 10−2

Eq. 5 137 · 10−3 1.66 · 10−3 5.57 · 10−2 2.57 · 10−5

Eq. 6 9.96 · 10−5 9.39 · 10−4 2.49 · 10−3 1.90 · 10−3

Eq. 7 9.92 · 10−5 4.30 · 10−3

Eq. 8 1.48 · 10−7 1.46 · 10−4 4.15 · 10−3

Norway spruce Eq. 4 2.30 · 10−2 3.15 · 10−2 1.05 · 10−2

Eq. 5 8.57 · 10−4 9.52 · 10−2 3.00 · 10−2 1.74 · 10−5

Eq. 6 7.17 · 10−5 7.71 · 10−2 2.31 · 10−3 2.03 · 10−3

Eq. 7 8.40 · 10−5 3.03 · 10−3

Eq. 8 7.30 · 10−8 9.93 · 10−5 2.96 · 10−3

Douglas fir Eq. 4 3.47 · 10−2 4.56 · 10−2 1.67 · 10−2

Eq. 5 2.42 · 10−3 3.02 · 10−2 1.07 · 10−1 4.41 · 10−5

Eq. 6 1.65 · 10−4 1.75 · 10−3 5.26 · 10−3 4.61 · 10−3

Eq. 7 2.46 · 10−4 4.93 · 10−3

Sessile oak Eq. 4 1.75 · 10−2 2.31 · 10−2 8.17 · 10−3

Eq. 5 1.51 · 10−3 1.74 · 10−2 5.76 · 10−2 3.05 · 10−5

Eq. 6 8.25 · 10−5 7.82 · 10−4 2.03 · 10−3 1.54 · 10−3

Eq. 7 7.38 · 10−5 2.48 · 10−3

Pedunculate oak Eq. 4 1.76 · 10−2 2.24 · 10−2 8.63 · 10−3

Eq. 5 1.90 · 10−3 2.12 · 10−2 6.92 · 10−2 3.96 · 10−5

Eq. 6 9.01 · 10−5 7.87 · 10−2 1.90 · 10−2 1.33 · 10−3

Eq. 7 7.69 · 10−5 2.71 · 10−3

European beech Eq. 4 2.29 · 10−2 2.90 · 10−2 1.13 · 10−2

Eq. 5 6.96 · 10−4 8.92 · 10−3 3.28 · 10−2 1.25 · 10−5

Eq. 6 3.70 · 10−5 3.51 · 10−4 8.94 · 10−4 6.56 · 10−4

Eq. 7 7.69 · 10−5 2.71 · 10−3

Eq. 8 9.51 · 10−7 4.02 · 10−4
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Table 10 Standard error associated to the parameters estimated for the model of bark volume (Bv). The parameter values are given in Table 5

Species Model a b c d e

Silver fir Eq. 17 9.64 · 10−3 1.39 · 10−4

Eq. 18 1.06 · 10−2 1.27 · 10−4

Eq. 10

Eq. 11 0.226 3.28 · 10−2 1.88 · 10−2 3.22 · 10−2

Norway spruce Eq. 17 8.37 · 10−3

Eq. 18 1.08 · 10−2 1.46 · 10−4

Eq. 10

Eq. 11 0.120 3.30 · 10−2 2.37 · 10−2 3.63 · 10−2

Douglas fir Eq. 17 1.09 · 10−2 4.57 · 10−4

Eq. 18 1.26 · 10−2 5.37 · 10−4

Eq. 10

Eq. 11 5.24 · 10−2 3.91 · 10−2 2.87 · 10−2 4.14 · 10−2

Sessile oak Eq. 17 6.79 · 10−3 1.45 · 10−4

Eq. 18 7.53 · 10−3 1.40 · 10−4

Eq. 10

Eq. 11 3.45 · 10−2 1.93 · 10−2 1.87 · 10−2 2.18 · 10−2

Pedunculate oak Eq. 17 1.01 · 10−2

Eq. 18 1.20 · 10−2

Eq. 10

Eq. 11 0.165 2.93 · 10−2 2.99 · 10−2 4.78 · 10−2

European beech Eq. 17 5.90 · 10−3

Eq. 18 8.10 · 10−3 8.34 · 10−5

Eq. 10

Eq. 11 4.30 · 10−2 1.44 · 10−2 1.30 · 10−2 2.10 · 10−2
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