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Abstract
• Key message  We designed a novel method allowing to automatically detect and measure defects on the surface of 
trunks including branches, branch scars, and epicormics from terrestrial LiDAR data by using only high-density 
3D information. We could automatically detect and measure the defects with a diameter as small as 0.5 cm on either 
oak (Quercus petraea (Matt.) Liebl.) or beech (Fagus sylvatica L.) trees that display either rough or smooth bark.
• Context  Ground-based light detection and ranging (LiDAR) technology describes standing trees with a high level of detail. 
This provides an opportunity to assess standing tree quality and to use this information in forest inventory. Assuming the 
availability of a very high level of detail, we could extract information about the surface defects, mainly inherited from past 
ramification and having a strong impact on wood quality.
• Aims  Within the general framework of the development of a computing method able to detect, identify, and quantify the 
defects on the trunk surface described from 3D data produced by a terrestrial LiDAR, this study focuses on the relevance of 
the whole process for two tree species with contrasted bark roughness (Quercus petraea (Matt.) Liebl. and Fagus sylvatica 
L.) in terms of detection, identification of the defects, and comparison with measurements performed manually on the bark 
surface.
• Methods  First, a segmentation algorithm detected singularities on the trunk surface. Next, a Random Forests machine 
learning algorithm identified the most probable defect type and allowed the elimination of false detections. Finally, we 
estimated the position, horizontal, and vertical dimensions of each defect from 3D data, and we compared them to those 
observed directly on the trunk by an operator.
• Results  The defects were detected and classified with a high accuracy with an average F

1
 score (harmonic mean of preci-

sion and recall) of 0.74. There were differences in computed and observed defect areas, but a much closer agreement for the 
number of defects.
• Conclusion  The information about the defects present on the trunk surface measured from terrestrial LiDAR data can be 
used in an automated procedure for grading standing trees or roundwoods.

Keywords  Tree quality · Roundwood quality · Forest inventory · Wood grading · Machine learning · Bark

1  Introduction

Grading standing trees is an essential task in forest inventory 
and pre-harvest assessment (Fonseca 2005). Besides global 
attributes such as volume and curvature, local defects are 
among the most critical factors influencing quality and val-
orization of wood. These defects can degrade the mechanical 
performance for structural use or the aesthetics for interior or 
furniture uses. In both cases, they depreciate the economic 
value. One method used in research for evaluating standing 
tree quality is to climb on the tree using a ladder and record all 
the defects and their attributes such as position, dimension, and 
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type (Colin et al. 2010b), but for inventory purposes, a visual 
inspection from the ground is generally achieved (Jourez et al. 
2010). For grading roundwood, X-ray tomography can be used 
to measure the knots and other defects inside a log. Although 
this approach provides the best performance, its main draw-
backs are the requirement for felling the tree and high invest-
ment costs (Thomas et al. 2006).

LiDAR (light detection and ranging) can measure an 
object in 3D dimensions using a technique emitting a laser 
beam and receiving the reflected light by a sensor. The data 
provided by LiDAR is a point cloud, which contains the 
three spatial coordinates of the intercepted points and addi-
tional characteristics such as reflectance or RGB values.

In forestry, Terrestrial LiDAR Scanning (TLS) can provide 
unprecedented detail information of trees or forest plots. In 
recent decades, several applications have been developed to 
take advantage of the TLS for replacing conventional meth-
ods for measuring forest inventory attributes. The first step is, 
however, the isolation of every tree or stem in the point cloud. 
The attributes of each tree are then estimated such as DBH 
(Simonse et al. 2003; Henning and Radtke 2006; You et al. 
2016; Pitkänen et al. 2019), tree height (Popescu et al. 2002; 
Srinivasan et al. 2015) or both DBH and height (Hopkinson 
et al. 2004; Maas et al. 2008; Huang et al. 2011; Moskal and 
Zheng 2012; Olofsson et al. 2014), wood volume or biomass 
(Holopainen et al. 2011; Dassot et al. 2012; Yu et al. 2013; 
Bienert et al. 2014), and the attributes of stem quality such as 
curvature (Liang et al. 2014; Noyer et al. 2019), taper (Thies 
et al. 2004; Norzahari et al. 2012), and ovality (Pfeifer and 
Winterhalder 2004). Plot attributes can be calculated from 
the TLS such as wood volume (García et al. 2011; Kwak 
et al. 2014), stem density (Watt and Donoghue 2005; Brolly 
and Kiraly 2009), canopy measurements (Zande et al. 2008; 
Seidel et al. 2015; Cifuentes et al. 2017), and leaf area index 
or leaf area density (Moorthy et al. 2008; Béland et al. 2011; 
Bailey and Mahaffee 2017; Taheriazad et al. 2019).

TLS has been increasingly used for characterizing individ-
ual standing trees, thanks to the high density of 3-dimensional 
point data. In particular, TLS allows an accurate reconstruc-
tion of the tree bark surface. Several studies have recently 
investigated the grading of standing trees or roundwood using 
TLS data by detecting defects on the reconstruction of bark. 
Most approaches used the difference between the surface of 
the trunk and a reference surface resulting from a primitive 
shape fitting, such as circle (Thomas et al. 2006, 2010) or 
cylinder (Schütt et al. 2004; Kretschmer et al. 2013; Stängle 
et al. 2013). However, because the cross-sections of a log are 
often not perfectly round, the primitive shapes hardly fit the 
real log surface. The methods based on primitive shape fitting 
result thus in detecting only large defects with a diameter above 
12.7 cm and protruding more than 2.5 cm from the log surface 
(Thomas et al. 2006). Depending on species and tree age, the 
bark may have different structures (smooth or furrowed) that 

can interfere with the detection of defects. Therefore, an auto-
mated process is challenging to design, especially for small 
defects.

The earlier methods of estimation of tree quality using 
TLS were mostly semi-automatic (Schütt et  al. 2004; 
Kretschmer et al. 2013; Stängle et al. 2013) and limited 
to large branch scar defects. Schütt et al. (2004) presented 
a semi-automatic approach to detect and classify wood 
defects using both range and intensity information of TLS 
data. The potential defects were firstly segmented by the 
region-based segmentation of the greyscale image derived 
from the distance between 3D point cloud of the log and the 
fitted cylinders. A manual adjustment can be done to make 
the final decision about these potential defects after clas-
sification by a neural network. Thomas et al. (2006, 2010) 
proposed a method to automatically detect severe defects 
on red oak and yellow poplar using a multi-scale analysis of 
contours from 2D images derived from the distance between 
3D points describing the log and the fitted circles. More 
recently, Kretschmer et al. (2013) used a 3D approach based 
on a distance map of the difference between the trunk sur-
face and the reference surface obtained by fitting cylinders. 
The pseudo coloring of the distance map was a visual aid 
to detect and measure the branch scars on European beech 
within a diameter range from 4 to 18.2 cm. Stängle et al. 
(2013) used a similar method to estimate the knotty core 
size in European beech. The comparison with the X-Ray 
scanning results led to an agreement of 62.5% between both 
grading methods.

While branch scars constitute indisputably one of the 
most common defects on trunks with a strong impact on the 
wood quality, other defects, such as burl and picot (Colin 
et al. 2010a), cannot be neglected as mentioned in the stand-
ards (Carpenter and Jones 1989; AFNOR 1997; Jourez et al. 
2010). For example, epicormics consisting of burl, picot, and 
bud cluster may degrade the quality of oak by at least one 
class (Meadows and Burkhardt 2001).

During earlier research, we successfully developed algo-
rithms to detect surface defects with dimensions as small as 
0.5 cm (Nguyen et al. 2016a) and then classified them by 
using a machine learning approach (Nguyen et al. 2020a). 
The features used by Random Forests included species, 3D 
Hu moment invariants (Hu 1962), 3D dimensions, eigenval-
ues, and mean of the roughness of the defect point cloud. 
The results obtained on trunks of several tree species includ-
ing oak, beech, wild cherry, pine, fir, and spruce were rather 
promising with an average F1 score (the harmonic mean of 
precision and recall) of 0.86. The results showed robustness 
to the tree species features, such as furrowed bark, age, trunk 
diameter, and shape. These promising results allow us to go 
to a step further to estimate defect attributes.

Indeed, besides type, dimensions of the defects have 
an important impact on wood quality. Thus, an accurate 
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measurement of defects is important to estimate their 
impact. Moreover, dimensions of branch scars provide a 
prediction of the knot trace inside the wood (Wernsdörfer 
et al. 2005).

In the context of tree quality assessment, the first objec-
tive of this paper was to propose a method for automati-
cally measuring the dimensions of the defects after detec-
tion (Nguyen et al. 2016a) and identification (Nguyen et al. 
2020a). The second objective was to verify the efficiency 
of the whole data processing. For this, we compared the 
defect attributes automatically estimated with field meas-
urements achieved by a forest expert. The third and last 
objective was to assess the computing time in relation to 
the main algorithm parameters.

2 � Material and methods

2.1 � Method overview

We developed an automated method consisting in three 
steps. The first step “Detection” aims to quickly find the 
smallest possible candidate defects on the mesh of the 
trunk. A threshold-based segmentation algorithm was 
developed to detect the occurrence of a defect based 
on the difference between the reference distance and 
the distance of 3D points to the trunk centerline. The 
reference distance to the centerline here represents the 
distance from the point to the centerline of an idealized 
trunk which would have no defects and obtained from the 
distribution of its neighboring points belonging to the 
elongated patch along the trunk axis. This first step was 
tested on different tree species (Nguyen et al. 2016a). The 
second step “Identification” has two main objectives: (1) 
to remove the false positives coming from the first step 
and (2) to classify the candidate defects into different 
types by their biological nature such as branch, branch 
scar, burl, and small defect (Nguyen et al. 2020a). The 
last step consists of estimating the position and dimen-
sions of the identified defects, and this last part of the 
processing chain is thoroughly discussed in this paper.

2.2 � Data collection and preprocessing

The assessment of the proposed approach required the 
availability of 3D point clouds datasets describing the 
intricate details of the trunks’ surface as well as manual 
measurements superimposed over the 3D point cloud 
coordinate system.

2.2.1 � Manual measurement of defects on standing trees

The objective of the manual measurement was to create a 
reference value of each defect attribute: type, position, and 
dimension(s). A measurement protocol was defined to facili-
tate the identification of the defects on the reconstructed 
surface of the trunk. The defects with a diameter greater 
or equal to 0.5 cm were described prior to carrying out the 
scans in terms of dimension, type, and position. The posi-
tion was taken in an (O,l,z) coordinate system where h is 
the height and l is the arc length from a reference line to 
the defect. A measuring tape carefully adjusted over the 
trunk surface that best fit the visual projection of the trunk’s 
centerline approximated the central axis of the trunk. The 
measuring tape divided the scanned portion of the trunk into 
two equal parts. It also allowed measurements of z coordi-
nate. Two small markers (ping-pong balls or small pieces of 
paper) at 1-m height, the origin of the coordinate system (O), 
and 5-m height were in the scans and used as markers of the 
reference line to compute coordinates of the automatically 
detected defect. The area under evaluation was from 1 to 5 m 
in trunk length and a half of tree circumference.

After each defect type identification, the position of the 
defect was measured in the (O,l,z) coordinate system (Fig. 1a). 
The z coordinate was the position along the reference line. 
The l coordinate was the horizontal arc length between the 
tape and the defect. The measurement was carried out on both 
sides of the tape between − 1

4
 circumference (to the left hand) 

and 1
4
 circumference (to the right hand) at breast height and 

with the height z ranging from 1 to 5 m from the ground.
The measurements of defect dimensions depend on defect 

type. For burl and small defects, the measurements were 
the defect width w and height h (Fig. 1b). The width w was 
measured by the arc length between the leftmost and right-
most points, assessed visually, of the intersection between 
the defect and the bark (see Fig. 1b). The height h was meas-
ured by the difference between the maximum and minimum 
z coordinates of the intersection between the defect and the 
bark. For branch scars, in addition to width w and height h 
of the scar, the Chinese mustache width ( wk ) and height ( hk ) 
were also measured by the same method used to measure 
w and h, respectively (Fig. 1c). For branch type, including 
sequential and epicormic branches, the branch diameter was 
measured at a short distance from the trunk after the junction 
between the branch and the trunk (Fig. 1d).

The validation of the automatic measurement of defects 
involved six trees including three oak trees and three beech 
trees. We used 401 defects on 17 other trees (Table 1) includ-
ing seven sessile oaks (Quercus petraea (Matt.) Liebl.), five 
European beeches (Fagus sylvatica L.), two wild cherries 
(Prunus avium (L.) L.), one Scots pine (Pinus Sylvestris L.), 
and two silver fir (Abies alba Mill.) to train the classifier.
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2.2.2 � TLS data collection and preprocessing

A Faro Focus 3D X130 scanned the sampled trees in the 
Champenoux forest close to Nancy, France (48° 43′ 30.1″ 
N, 6° 20′ 52.1″ E). The database consists of point clouds of 
trees of two species: sessile oak (Quercus petraea (Matt.) 
Liebl.) and European beech (Fagus sylvatica L.). In order 
to detect the small defects, we used a high-resolution setting 
and the distance from the scanner to the trunk was approxi-
mately 3–4 m. The angular resolution was 0.018° on both 
horizontal and vertical directions. Each tree was scanned 
from two points of view towards the target side to describe 
half of the trunk circumference. Scans of each tree were co-
registered in FARO SCENE software (Faro Technologies 
Inc., Lake Mary, FL) and exported to a unique file to recover 
the 3D view of one side of the trunk.

The point cloud was preprocessed to enhance the outcome 
of the process. The noise was reduced by using an algorithm 
based on Euclidian distance clustering (Nguyen et al. 2020a). 

Then the point cloud with its reduced noise was processed in 
the Graphite software (https://​gforge.​inria.​fr/​frs/?​group_​id=​
1465) including the following steps: (1) smoothing of the 
point cloud, (2) meshing of the point cloud, and (3) smooth-
ing the resulting mesh. Additional details regarding the 
process were presented in Nguyen et al. (2020a)). The data 
that support the findings of this study are openly available in 
(Nguyen et al. 2020b).

2.3 � Detection

The detection of the defects is based on an enhanced version 
(Nguyen et al. 2020a) of an initial segmentation algorithm 
(Nguyen et al. 2016a). The outer part of a defect is typically 
a more protruded region compared with the surface of the 
local area surrounding it.

First, we computed the centerline of the trunk using an 
adaptation of the method proposed in Kerautret et al. (2016) 
based on the detections of voxels (a division of point cloud 

Fig. 1   Manual measurement 
of defect width and height for 
different defect types
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Table 1   Synthesis by species of the number and DBH range of the trees used to train Random Forest classifier (with the number of the measured 
defects) and to validate the method

Species Number of trees used to validate the 
measurement (defects number)

Number of trees used to train the 
classifier (defects number)

Diameter at 
breast height 
(cm)

Oak (Quercus petraea (Matt.) Liebl.) 3 (57) 7 (232) 35–76
Beech (Fagus sylvatica L.) 3 (84) 5 (131) 30–57
Wild cherry(Prunus avium (L.) L.) 2 (20) 20–26
Pine (Pinus Sylvestris L.) 1 (4) 34
Fir (Abies alba Mill.) 2 (48) 23–42
Total 6 (141) 17 (401)
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into regular size cubes) where directions of interior normals 
to the surface converge.

Second, based on the computed centerline, we segmented 
the branches by dividing the point cloud volume into equal 
angular cylindrical sectors (pie slices) with the centerline 
is the axis of cylinders. Each angular cylindrical sector had 
height equals to L, and angle equals to L

R
  where R is the 

radius of the trunk. The branch segmentation algorithm then 
divided the point cloud into two disjoint sets: the trunk set 
T and the branch set B. By choosing an appropriate value of 
L (L was set between 50 and 100 mm in our experiment), 
we could ensure that in each cylindrical sector, there was at 
least one trunk point, which was assumed to be the closest 
point to the centerline. We added these points to the set T; 
other points were added to the set B. Points in the set B with 
a distance below  

√
2L to at least one point in the set T were 

moved from set B to set T. At the end of the algorithm, we 
obtained the set T containing all trunk points and a small 
number of branch points which would be segmented in the 
next step and the set B containing only branch points.

Third, the detection of smaller protruding defects in the 
trunk set T was performed as follows: for each point P in the 
set T, a narrow longitudinal patch consisting of neighbors 
of P was defined. The reference distance to the centerline of 
a point P was computed from a least-squares linear regres-
sion linking the radius variation to longitudinal positions 
of all points belonging to the patch (Nguyen et al. 2016a). 
We then computed for each point the difference (denoted 
as δ) between the distance of the point to the centerline and 
the corresponding reference distance to the centerline. An 
automatic thresholding method (Rosin 2001) processed the 
histogram of this δ for the whole set of trunk points to obtain 
the points of potential defects corresponding to the δ greater 
than the threshold. The potential defects were obtained by 
using the Euclidean clustering method (Rusu and Cousins 
2011) on the union of these potential points of defects and 
the points of branches. The minimum distance used for the 
clustering method was set to 10 mm.

2.4 � Identification

The identification (or classification) of defects is a critical 
step because the impact on wood quality depends on the 
defect type. Furthermore, the relevant characteristics of the 
defect are type-dependent. For example, the branch diam-
eter was measured by the distance to the branch centerline, 
while the burl dimension was measured by the arc length 
between the leftmost and rightmost points. In a previous 
research (Nguyen et al. 2020a), we described in detail a clas-
sification method based on the supervised machine learn-
ing Random Forests (Breiman 2001) using a feature vector 
including the following elements: (1) species of the tree, 
(2) ratio between the number of points of the defect and 

the volume of its bounding box, (3) the seven Hu moment 
invariants (Hu 1962), (4) defect width, (5) ratio between 
defects width and height, (6) ratio between defects width and 
thickness, (7) mean of the difference between the distance 
and the reference distance to the centerline of all points of 
the defect, (8) standard deviation of the difference between 
the distance and the reference distance to the centerline of all 
points of the defect, (9) ratio between the eigenvalue of the 
radial vector and the eigenvalue of the longitudinal vector, 
(10) ratio between the eigenvalue of the tangential vector 
and the eigenvalue of the longitudinal vector, and (11) angle 
between the radial vector and the principal axis of the tree.

Random Forests was trained by 401 defects on 17 trees 
(Table 1). In addition to defect type, a bark class was intro-
duced in Random Forests. The bark class represents bark 
zones with a roughness above the local average which are 
not associated with a defect. Indeed, no size criterion was 
introduced for detecting a defect in the previous segmenta-
tion algorithm for exhaustivity purpose. The consequence 
was the detection of putative defects corresponding to a 
bark portion and the existence of such a class allowed the 
rejection of such false positives in the most refined analysis 
performed during the classification step. Finally, the differ-
ent classes are as follows: (1) branch including sequential 
and epicormic branches; (2) branch scar; (3) burl; (4) small 
defects including picot, sphaeroblast, bud and bud cluster 
with less than 6 buds; and (5) bark.

After training, Random Forests classified the detected 
defects. For each candidate defect, its feature vector was 
computed and then passed to the Random Forests. Random 
Forests consists of a set of Classification and Regression 
Trees (Breiman et al. 1984). Each tree makes a classification, 
or in other words, gives a vote for a class. Random Forests 
chooses the class which is voted by the majority of trees.

2.5 � Automatic estimation of dimensions

We tried to mimic as accurately as possible the approach 
applied when we manually measured the defects on the 
standing tree. Consequently, the measurement method 
depended on the defect type. We needed to represent the 
defect on an (O,l,z) coordinate system similar to what we 
used on the field. For the computational purpose, defect cor-
responded to a set of points D = {P(r, �, z)} in a cylindri-
cal coordinate system (O,r, �, z) that can be converted to 
(O,l,z) coordinate system where l is the arclength and is the 
product of � and r, respectively, expressed in radians and 
metrics unit. Figure 2 describes the conversion of a defect 
point P from Cartesian to a cylindrical coordinate system. 
The detail of the conversion is as follows. The intersection 
of the centerline of the trunk and the plane containing the 
marker point M (marked by the small ball on the bark) and 
this perpendicular to the centerline defines the origin O. The 
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radial distance r is the distance from P to the centerline. The 
azimuth θ is the angle between the radial vector   �����⃗P

′
P and 

������⃗OM with P′ on the centerline, and P′P being perpendicular 
to the centerline. The height z is the distance between P′ and 
O along the centerline.

2.5.1 � Measurement of the position of the defect 
and the dimensions of burls, small defects, 
and branch scars

In the cylindrical coordinate system, the following procedure 
allowed measuring the width w and height h of burls and 
small defects and the Chinese mustache width wk and height 
wk of the branch scar.

•	 Compute the minimum distance to the centerline rmin of 
all the defect points.

•	 Initialize the set I as empty: This set is used to store the 
closest points of the defect to the bark surface to avoid 
the positive error measurement due to shoots and leaves.

•	 For each point P of the defect points: Add P to set I if 
rP − rmin < rt , withrt = 10mm ; The threshold rt allows 
simulating the junction between the defect and the bark 
as we do it manually on the field. In other words, we 
measured only the closest points of the defect to the bark 
surface.

•	 Find the bounding box of the set I, represented by two 
points P1 and P2.

•	 Compute the center of the bounding box of I: PC =
P1+P2

2

•	 Compute the radius of the trunk at the defect position 
rtrunk by using the mode of the distance to the centerline 
of all the points in a trunk segment of 5 cm length with 
PC as the center of the segment.

•	 The coordinate z of the defect is the coordinate z of PC.
•	 The coordinate l of the defect is l = �PC

∗ rtrunk
•	 Compute the width of the defect w (or wk)

� =
|
|
|
�P2

− �P1

|
|
|

w = � ∗ rtrunk

•	 Compute the height of the defect h (or hk)

h =
||
|
zP2

− zP1

||
|

2.5.2 � Measurement of branch scar dimension w and h

A branch scar results in different shapes such as ellipse or 
Chinese mustache. Since the above-mentioned algorithm 
was expected to infer the dimensions of the internal knot 
from the externally visible branch scar, the dimension of the 
scar that was critical for estimating the knot diameter was 
more difficult to measure when it has a Chinese mustache 
shape. We proposed a simple method based on the variation 
of the height occupied by a given defect along the periphery 
of the trunk to detect and measure the branch scar. The prin-
ciple is that a Chinese mustache has a significantly smaller 
height to the scar. Thus, on a profile of height along the arc 
length, the boundaries between the Chinese mustache and 
the scar can be detected by significant small local minima. 
The algorithm works with both ellipse and Chinese mus-
tache shapes. The algorithm is illustrated in Fig. 3 and is 
described as follows. First, the defect points were converted 
from a cylindrical coordinate system into (O,l,z) coordinate 
system with l = � ∗ rtrunk . Then, in the (O,l,z) coordinate 
system, the height profile  (h(l)) of the defect was com-
puted as the difference between the maximum and minimum 
z values of the defect as a function of the arc length 
l ∶ h(l) = zmax(l) − zmin(l) . Next, the profile was smoothed by 
an average of neighbors with a window of size 7 mm. Then, 
the profile is clipped at the first left ( M1 ) and right local 
minima ( M2 ) which have a height of less than 40% (empiri-
cally chosen) of the maxima (d). Finally, the scar width was 
computed by the difference between the arclength of M1 and 

Centerline

O

z

M

P'
θ

r

P(r,θ,z)

Fig. 2   Description of the conversion of an arbitrary point P on the 
point cloud from the Cartesian to the cylindrical coordinate system. 
This is a simplification because the centerline computed by our algo-
rithm can be a polyline
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M2 ( w = lM2
− l

M1

 ) and scar height was the defect height at 
the maxima M ( h = hM).

2.5.3 � Estimation of branch diameter

The estimation of branch diameter occurred when the clas-
sification step returned a branch as defect type. A branch 
is different from the other defect types because the diam-
eter is not measured at the junction of the branch and the 
trunk. We considered that branches have a tubular shape, 
and two measurement methods were developed because of 
the unsatisfactory results obtained by the first one. The first 
method was to fit a cylinder to a portion of the detected 
branch, and from our experience, the frequent flexuosity of 
the branch impedes the fitting of a cylinder, the frequent 
noise in 3D data at the branch junction has also an impact, 

and a plausible initial diameter value is a priori required 
to ensure the success of the fitting procedure. The second 
method was to compute the centerline of the branch and 
compute the mode of the distance to the centerline of points 
in a portion of the branch close to the trunk. This second 
method was more robust and insensitive to the flexuosity and 
did not require initialization by a diameter value.

The following procedure describes the method based on 
the centerline. First, a portion of the branch correspond-
ing to a distance between 3 and 8 cm from the trunk was 
extracted. Second, the computation of the centerline for the 
portion resulted from the same method as for the centerline 
of the trunk. Third, the distances of all points in the portion 
to the centerline were computed. And finally, the diameter 
of the branch was taken as twice the mode of the distance 
to the centerline.

Fig. 3   Illustration of the dimen-
sions of the branch scar using 
height profile by arc length. The 
scar dimensions were deter-
mined by the first left (M1) and 
right (M2) minima which had a 
height of less than 40% of the 
maxima of the profile
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2.6 � Implementation of the software

The input of the software is a mesh derived from TLS data 
of the trunk (the preprocess and creation of the mesh were 
presented in the section “Preprocessing” or in Nguyen et al. 
(2020a). The program was implemented in C++ language 
using several libraries: DGtal (DGtal) to represent 3D volu-
mic data and for the computation of the trunk centerline, 
OpenCV (Bradski 2000) for the machine learning, GNU 
GSL (Gough 2009) for the linear regression, and PCL (Rusu 
and Cousins 2011) for normal computation and clustering. 
The final objective of the project was to provide a graphical 
tool for grading trunks or logs. The graphic environment was 
provided by the platform Computree (http://​compu​tree.​onf.​
fr), an open-source software dedicated to processing LiDAR 
data in forestry. The graphical interface is currently avail-
able as a plugin of Computree and tested in a Linux opera-
tion system. A faster alternative, command-line mode, is 
also available for batch processing of multiple meshes. The 
source code of the command-line mode and sample data are 
available at the following GitHub repository: https://​github.​
com/​vanth​onguy​en/​trunk​defec​tclas​sific​ation.

3 � Results

3.1 � Defect detection and identification

Table 2 shows a comparison of the detection results of the 
segmentation and classification algorithms with the refer-
ence data. The segmentation algorithm could detect most 
defects on the oak and beech barks, even small defects 
such as picots and sphaeroblasts, the smallest diameter of 
detected defects being 0.5 cm. Overall, the segmentation 
algorithm detected 134 out of 141 defects in the meshes 
of six trunks. For each trunk, the missed defects (false 
negative) were at most 3. As expected, the result of the 
segmentation algorithm contained many false positives 
(false identification) resulting from miss-identified bark 
portions. The number of false positives was 270, which 
was reduced to 69 after the treatment by the classification 

algorithm. The classification, however, removed also 19 
correct detected defects.

Visually, the type of defects resulting from the classifica-
tion corresponded well to the protrusion on meshes of trunk 
(Fig. 4). The evaluation criteria were the precision, recall, F1 
score, and the average F�1 (see Appendix for the definition of 
these criteria). These scores were calculated for each defect 
type (Fig. 5). The average F�1 was 0.74. There were obvious 
differences in the F1 score between the different defect types: 
the branch type with an F1 score of 1.0, following by the burl 
type with an F1 score of 0.75. The algorithm performed less 
well than for the Branch scar and Small defect with F1 scores 
of 0.53 and 0.56, respectively.

3.2 � Defect measurement

The measurement results were compared with the reference 
value (manual measurement) using the absolute difference 
between the results and reference values (Fig. 6). Overall, 
the algorithm achieved a good result with the median of the 
difference close to zero both for defect width (10.1 mm) 
and height (5.9 mm). The overall coefficient of variation for 
the absolute difference between the automatic measurement 
and the manual measurement of the defect width ( cvw ) and 
height ( cvh ) was 145% and 144% respectively.

3.2.1 � Branch scar

The Branch scar type had a relatively compact height differ-
ence and a small median of 2.9 mm. The difference of the 
Branch scars width was, however, more disperse and with a 
larger median of 16.5 mm. The distributions of the plots were 
slightly skewed on the positive side, but there is a considerable 
part of the plots with values below zero. The difference between 
the automatic and manual measurements of the Chinese mus-
tache width had a considerable dispersion due to the weak relief 
of these parts in the defects making them very challenging to 
quantify. The coefficient of variation cvw and cvh were 134% 
and 139%, respectively. The coefficients of variation of the 
Chinese mustache’s width and height were 101% and 122%, 
respectively.

Table 2   Summary of the results 
of the segmentation (Seg.) and 
classification (Cla.) steps for 
three oak and three beech trunks 
compared with the observed 
defects

Tree name Observed True positive False positive False negative

Seg Cla Seg Cla Seg Cla

Oak 334 8 8 8 9 0 0 0
Oak 411 25 22 17 19 4 3 8
Oak 569 24 23 21 70 6 1 3
Beech 101 31 30 24 53 16 1 7
Beech 102 29 29 25 66 19 0 4
Beech 104 24 22 20 53 24 2 4
Total 141 134 115 270 69 7 26
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3.2.2 � Burl

Burls were affected by the largest differences between the 
estimated and the observed value of width and height with 
medians of 24.4 mm and 25.1 mm, respectively. The distribu-
tions were relatively compact but situated mostly over zero. 
The coefficient of variation cvw and cvh were both 95%.

3.2.3 � Small defect

The small defect type exhibited the most compact plots and 
had the smallest median width and height of 5.2 mm and 
3.9 mm, respectively. The distributions of the width differ-
ence and height difference were similar. The positive median 
and the large part of the plots of small defects were above 

Fig. 4   Visualization of the classification results on the meshes of an 
oak (left) and a beech (right). The defects are highlighted according 
to their type.      is Branch type including both sequential and epicor-

mic branches.      is Branch scar,       is Burl, and       is Small defect 
including bud cluster, sphaeroblast, and picot

Fig. 5   Precision, recall and F1 
score of the different defect 
types with the bark type cor-
responding to almost normal 
bark singularities (see Appendix 
for definitions of precision and 
recall)
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zero suggesting that the algorithm overestimated mostly the 
diameter of the small defects. The coefficient of variation cvw 
and cvh were 127% and 135%, respectively.

The absolute error is smallest for small defects and 
largest for branch scars. The coefficient of variation 
for small defects was, however, the largest due to its 
small mean (width mean of 18 mm and height mean of 
13 mm).

3.2.4 � Branch diameter measurement

Our test database mainly focused on naturally pruned parts of 
the trunks, where only two branches were measured: one in an 
oak tree and another on a beech tree. The estimated diameters 
of the branches were 8.3 mm (oak) and 20.3 mm (beech) com-
pared with field measures of 8 mm and 20 mm, respectively. 
The reconstruction of the two branches is illustrated in Fig. 7.

Fig. 6   Violin plots of the dif-
ferences between the estimated 
and the manual measurement of 
the defect dimensions for differ-
ent defect types. For each plot, 
the dash lines show the quartiles 
and median with the latter 
accompanied by the number

 Beech 102  Oak 411

a) b)

Fig. 7   Illustration of branch measurement by computing its center-
line. The reconstruction of the branch from the centerline and esti-
mated diameter is shown in purple. The defects are highlighted 
according to their type:      is Branch type including both sequential 

and epicormic branches.      is Branch scar,      is Burl, and      is 
 Small defect including bud cluster, sphaeroblast, and picot
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3.2.5 � Overall species effect

The distribution of the differences was also different between 
the two species (Fig. 8). The violin plot of the width of 
defects on oak was comparatively shorter which suggests 
that there was a good agreement between estimated and 
observed widths. The lower quartile was above 0 meaning 
that the algorithm overestimated the defect width for the 
oak trees. The violin plot of width on the beech trees was 
much taller which suggests that the agreement between esti-
mated and observed widths was not as good as for oaks. The 
algorithm tended to underestimate large defects. The violin 
plots of the difference between the estimated and observed 
heights were shorter than the one of widths both on oak and 
beech. The coefficient of variation of the absolute difference 
between the estimated and the observed defect dimensions 

was smaller on oak than on beech trees: the cvw and cvh of 
oaks were respectively 104% and 105% compared with the 
cvw and cvh of beeches were respectively 147% and 165%. 
The absolute error of the measurement of defect height was 
smaller than that of defect width. The coefficient of variation 
of the height measurement was however smaller because 
most defects displayed smaller heights than widths.

3.2.6 � Missing and false identifications

The classification algorithm missed 26 out of 141 defects in 
total. The algorithm missed only small defects (Fig. 9). The 
largest missing defects had a width of 40 mm and 73% of the 
missing defects had a width equal to or less than 20 mm. All 
missing defects had a height smaller than or equal to 30 mm 
(showed in the histogram as from 30 to 40 mm).

Fig. 8   Difference between the 
estimated and manual measure-
ment of overall defect dimen-
sions on oak and beech
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Fig. 9   Number of defects by width and height that were not detected by the workflow
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The classification resulted in 69 false identifications (false 
positives). Most false positives were relatively small; 80% 
had a width that was less than 60 mm and a height that was 
less than 30 mm (Fig. 10).

3.3 � Processing time

The running time was recorded by the “time” program 
provided in the GNU Linux operation system. The experi-
ments were carried out on a laptop running GNU Linux 
with a 4th generation 2.7 GHz Intel Core i7 processor, 
32 GB of RAM, and a Quadro K610M graphics card.

Figure 11 shows the running time of the program for 6 
trunks and different settings of the main parameters, which 

impact the running time of the different algorithmic steps. 
They are the number of points (vertices) in the meshes, the 
voxel size in the centerline computation, and the patch size 
in segmentation. If other parameters were fixed, the general 
trend is that the execution time increased when the number 
of points increased (Fig. 11a). However, the factors that had 
the strongest impact on execution time were the voxel size 
and the patch size of the segmentation algorithm. That was 
because the request for neighbors for the computation of 
reference points was done using a KD Tree (Friedman et al. 
1977) with a complexity of O(n2∕3 + k) with n is the number 
of points in the point cloud and k is the number of returned 
points. And this request was done for each non-empty voxel; 
thus, the algorithm is bounded by complexity of 
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Fig. 10   Number of non-defects by width and height that were incorrectly detected by the workflow

(a) Execution times and the number of the 
mesh vertices

(b) Execution times with several parameter values
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 where m is the number of non-empty voxels. 

The execution time is almost inversely proportional to the 
square of the voxel size (Fig.  11b). As the voxel size 
increased from 1 to 3 mm, the execution time decreased 
from 6 to 10 times. The last main factor that had an impact 
on the execution time was the patch size. In our experiments, 
the execution time was proportional to the patch size. When 
we doubled both width and height, the execution time was 
almost doubled. In our experiments, the voxel size of 3 mm 
gave results that were as good as of the 1 mm voxel size but 
reduced the running time between 6 and 10 times (Fig. 11b). 
The choice of other parameters such as patch size and den-
sity depends on the characteristics of the tree and the defects 
on the trunk. In general, the patch size must be large enough 
to ensure the assessment of the local reference distance and 
thus be greater than the general defect height, a furrowed 
bark requires longer patches. The influence of these param-
eters on the performance of the segmentation was discussed 
in detail in Nguyen et al. (2016b).

4 � Discussion

4.1 � Defect detection and identification

The automatic detection of defects on the surface of the 
trunk using TLS data is still a real challenge. Despite having 
at disposal an efficient method, many factors could impact 
the results such as species and age of the tree, global shape 
of the trunk, resolution, and quality of the scan. The species 
and age of the tree have a direct impact on the structure of 
the bark passing from smooth to furrowed as the tree ages 
or as we move from the upper to the bottom part of the 
trunk. Good quality and high-resolution data are required 
for the detection of small defects. In our experiment, for 
detecting defects with a diameter of 0.5 cm a resolution of 
at least 20 points per cm2 was required. From the results, we 
can say that our algorithms had an excellent performance in 
detecting even small defects. The detection outcomes of the 
segmentation algorithm were very good with only 7 missed 
defects out of 141 in total. Two reasons enabled the good 
detection rate. The first is that we have a very good and 
robust estimation of the trunk centerline. The second reason 
comes from our patch-based approach to estimate the local 
reference distance to the centerline for each individual point 
in the mesh of the trunk. The efficiency of estimation allows 
detecting even slight modifications of bark roughness. The 
smallest diameter of defects detected by our algorithm was 
0.5 cm outperforming all previous studies with size ranging 
from 7.5 cm (Thomas et al. 2006) to 2 cm (Kretschmer et al. 
2013). Moreover, our method takes all types of branching 

defects into account whereas the previous works focused 
only on branch scars.

The detection results, however, contained 270 false 
negatives for 141 manually detected defects. The classi-
fication algorithm allowed removing 201 of these false 
negatives. The most critical challenge in the classifica-
tion of the defects would be to reduce the number of false 
positives. For example, the precision of the classification 
of branch scars and small defects was low because of the 
false positives, in turn, due to the miss-classification of 
bark portions as branch scars (Fig. 5). They indeed directly 
affect the result of the assessment method. As discussed in 
Nguyen et al. (2020a), the performance of the classifica-
tion might be improved by adding in the learning data set 
more defects having a large variability in shape, but also 
by defining several classes for a same biological defect 
taking size range into consideration for a better analysis 
of the performance.

4.2 � Quantification

Since the defect size was estimated depending on the defect 
type, we will discuss first the performance of the defect size 
estimation by type. Second, we will discuss the robustness 
of our algorithms to species. Third, we will discuss the 
potential utilization of our results in grading standing trees 
and roundwoods. Finally, we will discuss some limits of our 
approach and the TLS technology.

4.2.1 � Comparison between defect types

Branch scar   Due to the particularity of branch scar shape, 
for inferring the knot size, we need the information about 
the scar seal width and height, and the Chinese mustache 
width and height. The scar width and height were esti-
mated with a median of 16.5 mm and 2.9 mm respectively. 
Compared with the burl, the branch scar had a better dis-
tribution of the differences between the automatic and 
manual measurements. Nevertheless, two or more branch 
scars were rather frequently connected on a beech trunk. 
They were recognized by our program as one branch scar. 
This phenomenon denoted as under-segmentation led to 
a large error in the estimation of the scar dimension that 
appeared in the violin plots with a difference greater than 
300 mm in scar width. This kind of under-segmentation 
could be detected by a more detailed analysis of the shape 
of the detected defect and future developments could be 
imagined solving this particularity. The performance of our 
algorithm on the measurement of scar height was similar 
to the result of Kretschmer et al. (2013) with 56% and 58% 
of measured scar height having a difference of less than 
1 cm respectively.
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Burl   In our experiments, burls were only present on oak 
trunks. Our algorithm often overestimated their diameters. 
The algorithm overestimated 95% of both width and height 
with medians of the error equal to 24.4 mm and 25.1 mm 
respectively. Our sample oak trees had a furrowed bark 
resulting in small bark portions included in the detected 
defects (Fig. 12). This difference between the human and 
machine visions of the relief resulted in detected defects 
were often larger than the defects observed on the field.

Small defect   The dimensions of small defects were also 
often overestimated with a rate of 73% for width and 76% 
for height. Because these defects have small dimensions, the 
relative measurement error was usually high. For example, 
the coefficient of variation of the absolute error between the 
manual and automatic measurement for width and height 
were 127% and 135%, respectively. However, from a wood 
quality point of view, the impact of these small defects is 
mainly related to their number independently of their actual 
size. For example, the standard NF EN 1316-1 (AFNOR 
1997), treats a picot as a defect of diameter 5 mm.

Branch diameter   The estimation of branch diameter was 
accurate, even though the result depends on the quality of 
the scan. The measurement of branch diameter was based 
on a reconstruction of the branch by a computation of the 
branch’s centerline. The reconstruction was very robust 
(Fig. 7). The branch on the Beech 102 (Fig. 7a) was highly 
curved, and there was noise at the junction between the 
branch and the trunk. The reconstruction of the branch 
was close to the real surface and shape of the branch. The 
scan of the branch on the Oak 411 (Fig. 7b) was very noisy. 
The branch looked thus much larger and flatter than the 
real branch due to noisy contour. The algorithm estimated, 

however, a very good diameter of 8.3 mm compared with 
8 mm from the manual measurement. Besides accuracy, the 
approach based on the branch’s centerline had the advan-
tage of having fixed parameters: the accumulation radius 
(see Nguyen et al. (2016a) for the details of this parameter), 
the skipped distance from the trunk bark, and the length to 
estimate the diameter.

It is also possible to estimate the insertion angle, i.e., the 
angle between the principal axis of the branch and the axis 
of the trunk, with the branch reconstruction approach using 
the centerline. This information could be used to distinguish 
between a sequential branch and an epicormic branch since 
the former is more fastigiated. This angle could be also used 
to predict the knot diameter and direction inside the trunk 
wood.

4.2.2 � Comparison between oak and beech

Our results showed that the method can work on both oak 
and beech which are the most common broadleaved species 
in Europe. There were, however, differences between the 
two species (Fig. 8) due to the difference in the bark, global 
shape of the tree, and defect types. The oak characteristics 
are a furrowed bark with often epicormic defects such as 
burl and picot. The branch scars on oak, however, are dif-
ficult to be detected from external characteristics of the bark 
because the scar tends to vanish with time, evolving towards 
a normal aspect of rhytidome. On the opposite, for beech, 
the smooth bark reveals easily even the very small and weak 
relief defects. And consequently, it is also very easy to get 
false detections. These false detections are more difficult to 
remove in comparison with the false detections occurring 
on oaks because they are very similar to old scars of early 
pruned branches ridging the bark surface.

Beech bark often has anomalies due to Nectria (Nectria 
coccinea Desm.). This disease caused by fungi and is one of 
the most common beech bark diseases at least in Northern 
France. The irregularities of the bark associated with the 
Nectria disease are mostly superficial and have little or no 
impact on wood quality (McCullough et al. 2005). These 
irregularities, however, were often miss-identified as branch 
scars by our algorithms. It might be possible to remove these 
false identifications in the classification step by adding a 
dedicated class for damages due to Nectria.

4.3 � Potential application to grading  roundwoods 
and standing trees

The results obtained in this study show clearly that the accu-
racy of defect measurements with TLS technology can be 
used to assess the wood quality of standing trees or round-
woods. It turns out that the use of the information delivered 
by our algorithm, such as position, type, and dimension of 

Fig. 12   The difference between the manual and the automatic meas-
urement of the burl diameter. The automatic measurement often leads 
to larger values than the manual one
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defects, makes the automated grading of roundwoods or 
standing trees possible by standards such as NF EN 1316–1 
(AFNOR 1997) grading oak or beech logs and Jourez et al. 
(2010) for grading broad leaf standing trees. However, we 
observed that grading a class A log is rather challenging 
whether by an automatic algorithm or by an operator. That 
is because this class tolerates no defects on a beech log or 
just a small defect such as picot or sound knot, which has 
a diameter of less than 15 mm. An error of the algorithm 
or an operator could lead to a miss evaluation from class 
A to B or vice versa. For class B, these standards use the 
sum of the defect’s diameters for grading oak and beech 
logs. However, as shown above, the algorithm gave results 
often larger than the results from a manual evaluation. For 
the sum of diameters, the automatic measurement is about 
50% larger than the manual measurement on oak, which 
might lead to an under evaluation of quality compared with 
a manual evaluation, and must be corrected by improving 
the method or by inter-calibration like it is the rule when 
changing a measurement tool.

The method still has limits as the underestimation of 
branch scar edge due to the insufficiency of the relief and 
the under-segmentation of defects. The under-segmen-
tation of defects may affect both the grading of standing 
trees and roundwood. For example, an under-segmentation 
might count two defects as one, which results in a class B 
log graded as a class A. Thus, further analysis is needed to 
detect under-segmentations and then correct them.

These results need to be improved through the differ-
ent possibilities already mentioned. Furthermore, the two 
methods mentioned are based on the evaluation of external 
defects, the correctness of the assessment needs thus to be 
validated by a measurement of knot inside the wood, and the 
coupling between the outside and internal characteristics of 
the defect can be improved by building a learning database 
for classification making use of internal information coming 
from X-ray CT scanning.

An important point in grading log quality is the identifi-
cation between a sound knot and an unsound knot. To our 
knowledge, there was no research about this aspect of using 
TLS. For a completed automatic procedure of grading log 
quality using TLS, a study of the feasibility of the identifica-
tion of these two-knot types is still necessary.

The last aspect that we want to compare to a conven-
tional procedure for grading standing trees such as Jourez 
et al. (2010) is the processing time. As showed in the section 
“Results,” the required time for running our algorithms was 
small if we choose an optimized parameter, in particular, 
using the voxel size of 3 mm. The execution time for a nearly 
2 million vertices mesh was from 2 to 3 min. However, if 
we count the time for acquiring and preprocessing the TLS 
data for a tree, this could be as long as 2 h. The overall time 

required to process a tree by using TLS data was longer 
than the field procedure used in research, with a duration 
around 30 min, and longer than the qualification duration of 
a tree by an expert which lasts a couple of minutes. Although 
the human vision is known to be better than the machine 
vision for an object recognition task, an operator, however, 
could make errors and inconsistent results depending on the 
emotion and working condition. Furthermore, digital infor-
mation or its synthesis resulting from a computer program, 
however, often gives a reproducible result, and a significant 
advantage will be the availability of detailed information 
along the commercial and processing chain for traceabil-
ity and optimization purposes. Moreover, with the future 
advance of technology, we could incrementally improve the 
accuracy and reduce the acquisition and processing times.

4.4 � Limitations of TLS

The TLS has several limitations such as the occlusion by 
branches, moss, or ivy and the reduction of the spatial reso-
lution in the high parts of tree trunks. A small cluster of 
moss can also look like a picot or a sphaeroblast leading to 
an increase in the number of detected defects. In this work, 
the choice of TLS data was justified as a reference method 
for getting detailed and accurate 3D information on standing 
trees, but the processing method is independent on the origin 
of the 3D cloud, and how can we speed up the 3D data acqui-
sition keeping a relevant level of details, is the task we must 
and can address thanks to the present work. Furthermore, we 
only use geometrical information, in our approach, but other 
data, such as distance-normalized reflectance or color, could 
be used in addition to improving the classification.

5 � Conclusion

In this paper, we presented the final evaluation of a method 
consisting of a suite of algorithms to measure the defects of 
the trunk surface from only 3D information contained in TLS 
data. This final evaluation depended on the success of the three 
different steps involved in the process. The detection algorithm 
was very performant despite it relies only on a geometrical 
analysis targeting local protuberance. This geometrical analy-
sis was performed with high-density 3D data, and such density 
requires special conditions for the acquisition, and the question 
of the minimal defect size detectable with lower point densities 
is still opened. Nevertheless, the challenge achieved by this step 
is to be enough sensitive to avoid forgetting defects, the coun-
terpart was the detection of many small singularities which are 
not defects but bark irregularities. This is the function of the 
Random Forests classification step to re-examine all detected 
singularities and to decide, which is the most probable class 
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of defects it corresponds to. The classification was rather suc-
cessful and failed mainly for small defects but as a supervised 
method it is highly dependent on the quality and quantity of data 
in the learning database, and some improvement of the current 
database could be looked by structuring it not only through the 
biological definition of the defects, but also through size criteria, 
and by additional data. Then, the last step looking for character-
izing each defect according to its type by relevant dimensional 
characteristics gave encouraging results. Nevertheless, for some 
flat defects like old branch scars, some inconvenience is due to 
the definition of the defect borders coming from their different 
perceptions by the algorithm or by a human operator.

Despite possible improvements, the results presented in 
this paper demonstrates the theoretical feasibility of using 
detailed 3D information for looking for rather small defects 
complementing the trunk shape criteria to enhance the auto-
mation of grading standing trees or roundwood. Nevertheless, 
these results also questioned the role of the bark in industrial 
processes and the useful information about quality it contains.

Appendix

Evaluation criteria for detection and classification

The criteria used to evaluate the performance of the detec-
tion and classification were the F1 score (F-measure), which 
is the harmonic mean of the precision (P) and the recall 
(R). The F1 score of the classification result for each type 
is computed from the precision and the recall as follows:

where TP, FP, and FN are true positive, false positive, and 
false negative respectively. Their definition is as follows:

•	 TP is the number of actual defects correctly classified as 
defect.

•	 FP is the number of non-defects incorrectly classified as 
defect.

•	 FN is the number of actual defects incorrectly classified 
as non-defect.

F1 =
2PR

P + R

P =
TP

TP + FP

R =
TP

TP + FN

The overall F-measure ( F�1 ) is computed from the aver-
aged precision ( P� ) and recall ( R� ) (Manning et al. 2008) by 
the following equations:

where TPi and FPi are the true and false positive of class i 
(defect type i) respectively.

Acknowledgements  We would like to thank Bertrand Kerautret, Isa-
belle Debled-Rennesson, and Alexandre Piboule for their support in 
the development of the algorithms. We would also like to thank Florian 
Vast for providing technical support and for scanning and measuring 
the trees used in this research and the anonymous reviewers for their 
constructive reviews.

Funding  This work was supported by a grant overseen by the French 
National Research Agency (ANR) as part of the “Investissements 
d’Avenir” program (ANR-11-LABX-0002-01, Lab of Excellence 
ARBRE), and by the Grand-Est (ex-Lorraine) Region.

Data availability  The datasets generated during and/or analyzed during 
the current study are available on the Data INRAE repository (https://​
doi.​org/​10.​15454/​EOBUM0).

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

References

AFNOR (1997) EN 1316–1 - Hardwood round timber - Qualitative 
classification - Part 1: Oak and beech

Bailey BN, Mahaffee WF (2017) Rapid, high-resolution measurement of leaf 
area and leaf orientation using terrestrial LiDAR scanning data. Meas 
Sci Technol 28:064006. https://​doi.​org/​10.​1088/​1361-​6501/​aa5cfd

Béland M, Widlowski J-L, Fournier RA et al (2011) Estimating leaf 
area distribution in savanna trees from terrestrial LiDAR meas-
urements. Agric For Meteorol 151:1252–1266. https://​doi.​org/​10.​
1016/j.​agrfo​rmet.​2011.​05.​004

Bienert A, Hess C, Maas H, Von Oheimb G (2014) A voxel-based tech-
nique to estimate the volume of trees from terrestrial laser scanner 
data. Int Arch Photogramm Remote Sens Spat Inf Sci 40:101

Bradski G (2000) The OpenCV Library. Dr Dobbs J Softw Tools
Breiman L (2001) Random forests. Mach Learn 45:5–32
Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and 

regression trees. CRC press

F�1 =
2P�R�

P� + R�

P� =

∑l

i=1
TPi

∑l

i=1
(TPi + FPi)

R� =

∑l

i=1
TPi

∑l

i=1
(TPi + FNi)

32   Page 16 of 18 Annals of Forest Science (2021) 78: 32

https://doi.org/10.15454/EOBUM0
https://doi.org/10.15454/EOBUM0
https://doi.org/10.1088/1361-6501/aa5cfd
https://doi.org/10.1016/j.agrformet.2011.05.004
https://doi.org/10.1016/j.agrformet.2011.05.004


1 3

Brolly G, Kiraly G (2009) Algorithms for stem mapping by means of 
terrestrial laser scanning. Acta Silv Lignaria Hung 5:119–130

Carpenter RD, Jones M (1989) Defects in hardwood timber. US Depart-
ment of Agriculture, Forest Service

Cifuentes RM, Zande DV der, Salas CM et al (2017) Modeling 3D 
canopy structure and transmitted PAR using terrestrial LiDAR

Colin F, Mechergui R, Dhôte JF, Fontaine F (2010) Epicormic ontogeny 
on Quercus petraea trunks and thinning effects quantified with the 
epicormic composition. Ann For Sci 67:813–813

Colin F, Mothe F, Freyburger C et al (2010) Tracking rameal traces in 
sessile oak trunks with X-ray computer tomography: Biological 
bases, preliminary results and perspectives. Trees - Struct Funct 
24:953–967. https://​doi.​org/​10.​1007/​s00468-​010-​0466-1

Dassot M, Colin A, Santenoise P et al (2012) Terrestrial laser scanning 
for measuring the solid wood volume, including branches, of adult 
standing trees in the forest environment. Comput Electron Agric 
89:86–93. https://​doi.​org/​10.​1016/j.​compag.​2012.​08.​005

DGtal DGtal: Digital Geometry tools and algorithms library
Fonseca MA (2005) The measurement of roundwood: methodologies 

and conversion ratios. CABI
Friedman JH, Bentley JL, Finkel RA (1977) An algorithm for find-

ing best matches in logarithmic expected time. ACM Trans Math 
Softw 3:209–226. https://​doi.​org/​10.​1145/​355744.​355745

García M, Danson FM, Riano D et al (2011) Terrestrial laser scanning 
to estimate plot-level forest canopy fuel properties. Int J Appl Earth 
Obs Geoinformation 13:636–645

Gough B (2009) GNU scientific library reference manual. Network 
Theory Ltd.

Henning JG, Radtke PJ (2006) Detailed stem measurements of standing 
trees from ground-based scanning lidar. For Sci 52:67–80

Holopainen M, Vastaranta M, Kankare V et al (2011) Biomass esti-
mation of individual trees using stem and crown diameter TLS 
measurements. ISPRS-Int Arch Photogramm Remote Sens Spat 
Inf Sci 3812:91–95

Hopkinson C, Chasmer L, Young-Pow C, Treitz P (2004) Assessing forest 
metrics with a ground-based scanning lidar. Can J For Res 34:573–583

Hu MK (1962) Visual pattern recognition by moment invariants. IRE 
Trans Inf Theory 8:179–187

Huang H, Li Z, Gong P et al (2011) Automated methods for measuring 
DBH and tree heights with a commercial scanning lidar. Photo-
gramm Eng Remote Sens 77:219–227

Jourez B, de Wauters P, Bienfait O (2010) Le classement des bois feuil-
lus sur pied. Silva Belg 117:1–12

Kerautret B, Krähenbühl A, Debled-Rennesson I, Lachaud JO (2016) 
Centerline detection on partial mesh scans by confidence vote in 
accumulation map. In: Pattern Recognition (ICPR), 2016 23rd 
International Conference on. IEEE, pp 1376–1381

Kretschmer U, Kirchner N, Morhart C, Spiecker H (2013) A new 
approach to assessing tree stem quality characteristics using ter-
restrial laser scans. Silva Fenn 47:1–14. https://​doi.​org/​10.​14214/​
sf.​1071

Kwak DA, Cui G, Lee WK et al (2014) Estimating plot volume using 
LiDAR height and intensity distributional parameters. Int J Remote 
Sens 35:4601–4629

Liang X, Kankare V, Yu X et al (2014) Automated stem curve measure-
ment using terrestrial laser scanning. IEEE Trans Geosci Remote 
Sens 52:1739–1748

Maas HG, Bienert A, Scheller S, Keane E (2008) Automatic forest 
inventory parameter determination from terrestrial laser scanner 
data. Int J Remote Sens 29:1579–1593

Manning CD, Raghavan P, Schütze H (2008) Introduction to informa-
tion retrieval. Cambridge University Press, p 280

McCullough DG, Heyd RL, O’Brien JG, Marquette M (2005) Biology and 
management of beech bark disease. Mich State Univ Ext Bull E-2746

Meadows JS, Burkhardt E (2001) Epicormic branches affect lumber 
grade and value in willow oak. South J Appl For 25:136–141

Moorthy I, Miller JR, Hu B et al (2008) Retrieving crown leaf area 
index from an individual tree using ground-based lidar data. Can 
J Remote Sens 34:320–332

Moskal LM, Zheng G (2012) Retrieving forest inventory variables with 
terrestrial laser scanning (TLS) in urban heterogeneous forest. 
Remote Sens 4:1–20

Nguyen VT, Kerautret B, Debled-Rennesson I et al (2016a) Segmenta-
tion of defects on log surface from terrestrial lidar data. In: Pattern 
Recognition (ICPR), 2016 23rd International Conference on. IEEE, 
pp 3168–3173

Nguyen VT, Kerautret B, Debled-Rennesson I et al (2016b) Algorithms 
and implementation for segmenting tree log surface defects. In: 
International Workshop on Reproducible Research in Pattern Rec-
ognition. Springer, pp 150–166

Nguyen VT, Constant T, Kerautret B et al (2020) A machine-learning 
approach for classifying defects on tree trunks using terrestrial 
LiDAR. Comput Electron Agric 171:105332. https://​doi.​org/​10.​
1016/j.​compag.​2020.​105332

Nguyen VT, Constant T, Vast F, Colin F (2020b) 3D data from T-LiDAR 
describing tree trunks with bark singularities, and corresponding 
manual measurements. Data INRAE repository, V1. https://​doi.​
org/​10.​15454/​EOBUM0

Norzahari F, Turner R, Lim S, Trinder J (2012) Estimating taper diam-
eter and stem form of Pinus radiata in Australia by terrestrial laser 
scanning. In: 2012 IEEE International Geoscience and Remote 
Sensing Symposium. IEEE, pp 6491–6494

Noyer E, Fournier M, Constant T et al (2019) Biomechanical control 
of beech pole verticality (Fagus sylvatica) before and after thin-
ning: theoretical modelling and ground-truth data using terrestrial 
LiDAR. Am J Bot 106:187–198. https://​doi.​org/​10.​1002/​ajb2.​1228

Olofsson K, Holmgren J, Olsson H (2014) Tree stem and height meas-
urements using terrestrial laser scanning and the RANSAC algo-
rithm. Remote Sens 6:4323–4344

Pfeifer N, Winterhalder D (2004) Modelling of tree cross sections from 
terrestrial laser scanning data with free-form curves. Int Arch Pho-
togramm Remote Sens Spat Inf Sci 36:W2

Pitkänen TP, Raumonen P, Kangas A (2019) Measuring stem diameters 
with TLS in boreal forests by complementary fitting procedure. 
ISPRS J Photogramm Remote Sens 147:294–306

Popescu SC, Wynne RH, Nelson RF (2002) Estimating plot-level tree 
heights with lidar: local filtering with a canopy-height based vari-
able window size. Comput Electron Agric 37:71–95

Rosin PL (2001) Unimodal thresholding. Pattern Recognit 34:2083–
2096. https://​doi.​org/​10.​1016/​S0031-​3203(00)​00136-9

Rusu RB, Cousins S (2011) 3D is here: Point Cloud Library (PCL). 
In: IEEE International Conference on Robotics and Automation 
(ICRA). Shanghai, China

Schütt C, Aschoff T, Winterhalder D et al (2004) Approaches for rec-
ognition of wood quality of standing trees based on terrestrial 
laserscanner data. Laser-Scanners For Landsc Assess Proc ISPRS 
Work Group VIII2 Freibg Ger Int Arch Photogramm Remote Sens 
Spat Inf Sci 36:179–182

Seidel D, Ammer C, Puettmann K (2015) Describing forest canopy 
gaps efficiently, accurately, and objectively: new prospects 
through the use of terrestrial laser scanning. Agric For Meteorol 
213:23–32. https://​doi.​org/​10.​1016/j.​agrfo​rmet.​2015.​06.​006

Simonse M, Aschoff T, Spiecker H, Thies M (2003) Automatic deter-
mination of forest inventory parameters using terrestrial laser 
scanning. In: Proceedings of the scandlaser scientific workshop 
on airborne laser scanning of forests. Sveriges Lantbruksuniver-
sitet Ume\aa, pp 252–258

Srinivasan S, Popescu SC, Eriksson M et al (2015) Terrestrial laser 
scanning as an effective tool to retrieve tree level height, crown 
width, and stem diameter. Remote Sens 7:1877–1896

Stängle SM, Brüchert F, Kretschmer U et al (2013) Clear wood content 
in standing trees predicted from branch scar measurements with 

Page 17 of 18    32Annals of Forest Science (2021) 78: 32

https://doi.org/10.1007/s00468-010-0466-1
https://doi.org/10.1016/j.compag.2012.08.005
https://doi.org/10.1145/355744.355745
https://doi.org/10.14214/sf.1071
https://doi.org/10.14214/sf.1071
https://doi.org/10.1016/j.compag.2020.105332
https://doi.org/10.1016/j.compag.2020.105332
https://doi.org/10.15454/EOBUM0
https://doi.org/10.15454/EOBUM0
https://doi.org/10.1002/ajb2.1228
https://doi.org/10.1016/S0031-3203(00)00136-9
https://doi.org/10.1016/j.agrformet.2015.06.006


1 3

terrestrial LiDAR and verified with X-ray computed tomography 
1. Can J For Res 44:145–153

Taheriazad L, Moghadas H, Sanchez-Azofeifa A (2019) Calculation of leaf 
area index in a Canadian boreal forest using adaptive voxelization and 
terrestrial LiDAR. Int J Appl Earth Obs Geoinformation 83:101923

Thies M, Pfeifer N, Winterhalder D, Gorte BG (2004) Three-dimen-
sional reconstruction of stems for assessment of taper, sweep and 
lean based on laser scanning of standing trees. Scand J For Res 
19:571–581

Thomas L, Shaffer CA, Mili L, Thomas E (2006) Automated detection 
of severe surface defects on barked hardwood logs. Forest

Thomas L, Thomas E, others (2010) A graphical automated detection 
system to locate hardwood log surface defects using high-resolu-
tion three-dimensional laser scan data. In: Proceedings of the 17th 
Central Hardwood Forest Conference. pp 5–7

Watt PJ, Donoghue DNM (2005) Measuring forest structure with ter-
restrial laser scanning. Int J Remote Sens 26:1437–1446

Wernsdörfer H, Constant T, Mothe F et al (2005) Detailed analysis of 
the geometric relationship between external traits and the shape of 
red heartwood in beech trees (Fagus sylvatica L.). Trees 19:482–
491. https://​doi.​org/​10.​1007/​s00468-​005-​0410-y

You L, Tang S, Song X et al (2016) Precise measurement of stem 
diameter by simulating the path of diameter tape from terrestrial 
laser scanning data. Remote Sens 8:717

Yu X, Liang X, Hyyppä J et al (2013) Stem biomass estimation based 
on stem reconstruction from terrestrial laser scanning point 
clouds. Remote Sens Lett

der Zande DV, Jonckheere I, Stuckens J et al (2008) Sampling design of 
ground-based lidar measurements of forest canopy structure and 
its effect on shadowing. Can J Remote Sens 34:526–538

Authors and Affiliations

Van‑Tho Nguyen1   · Thiéry Constant1 · Francis Colin1

 *	 Van‑Tho Nguyen 
	 nguyen.vantho@outlook.com

	 Thiéry Constant 
	 thiery.constant@inrae.fr

	 Francis Colin 
	 francis.colin@inrae.fr

1	 Université de Lorraine, AgroParisTech, INRAE, Silva, 
54000 Nancy, France

32   Page 18 of 18 Annals of Forest Science (2021) 78: 32

https://doi.org/10.1007/s00468-005-0410-y
http://orcid.org/0000-0001-6600-3894

	An innovative and automated method for characterizing wood defects on trunk surfaces using high-density 3D terrestrial LiDAR data
	Abstract
	• Key message 
	• Context 
	• Aims 
	• Methods 
	• Results 
	• Conclusion 

	1 Introduction
	2 Material and methods
	2.1 Method overview
	2.2 Data collection and preprocessing
	2.2.1 Manual measurement of defects on standing trees
	2.2.2 TLS data collection and preprocessing

	2.3 Detection
	2.4 Identification
	2.5 Automatic estimation of dimensions
	2.5.1 Measurement of the position of the defect and the dimensions of burls, small defects, and branch scars
	2.5.2 Measurement of branch scar dimension w and h
	2.5.3 Estimation of branch diameter

	2.6 Implementation of the software

	3 Results
	3.1 Defect detection and identification
	3.2 Defect measurement
	3.2.1 Branch scar
	3.2.2 Burl
	3.2.3 Small defect
	3.2.4 Branch diameter measurement
	3.2.5 Overall species effect
	3.2.6 Missing and false identifications

	3.3 Processing time

	4 Discussion
	4.1 Defect detection and identification
	4.2 Quantification
	4.2.1 Comparison between defect types
	4.2.2 Comparison between oak and beech

	4.3 Potential application to grading  roundwoods and standing trees
	4.4 Limitations of TLS

	5 Conclusion
	Acknowledgements 
	References




