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Abstract
•Key message  An ensemble modelling approach was performed to predict the distributions of seven sympatric 
sclerophyllous oak species in the Hengduan Mountains of Southwest China. Spatial eigenvector filters revealed missing 
factors in addition to commonly used environmental variables, thus effectively improved predictive accuracy for the 
montane oak species. This study identified a richness center of sclerophyllous oaks, which provides a reference for 
proper conservation and utilization of oak resources.
•Context  As key species and important trees for construction- and fuel-wood, montane sclerophyllous oaks (Quercus sect. 
Heterobalanus) in the Hengduan Mountains of Southwest China are threatened by climate change, habitat fragmentation, 
and human activities.
•Aims  This study aims to simulate the potential distributions of seven sympatric sclerophyllous oak species with an emphasis 
on exploring the relative importance of climatic, non-climatic, and additional spatial factors.
•Methods  We performed an ensemble modelling approach of six ecological niche models in combination with spatial 
eigenvector filters to predict the potential distributions of seven oak species.
•Results  The results elucidated that temperature seasonality, followed by land use/cover and the human influence index were 
the most critical variables controlling oak species distributions. Regardless of the selected algorithm, the best performing 
models for most oaks combined climatic and non-climatic factors as well as additional spatial filters.
•Conclusion  It is necessary to strengthen the conservation of oak species at the junction of Sichuan and Yunnan Province 
where we found the richness center of the studied oaks. Our research provides essential insights for the rational conservation 
and management of sclerophyllous oak species, suggesting that spatial constraints might reflect limited ability of migration 
under future climate change.

Keywords  Quercus · Spatial constraints · Ensemble model · Variation partitioning · Niche overlap · Potential distribution

1  Introduction

The Hengduan Mountains, located in the southeastern 
Tibetan Plateau, consist of a series of spectacular 
north–south ridges and valleys (Royden et al. 2008). This 
region contributes to the core of Asian freshwater’s supply 
by serving as an essential catchment zone for many great 
rivers in Asia (Favre et al. 2015). Moreover, it is recognized 
biogeographically as a land passage between the floras of 
Eurasia and the equatorial region (Huang et al. 2016) and 
a global biodiversity hotspot (López-Pujol et al. 2011). 
Benefiting from a high elevational variation and vertical 
climate gradient, the Hengduan Mountains provide intact 
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habitats that range from tropical or subtropical zones to 
a cold temperate zone (Sun et al. 2017), sustaining over 
12,000 vascular plants species of which 3500 are endemic 
(Xing and Ree 2017).

Quercus sect. Heterobalanus consists of several 
species, which are montane sclerophyllous oaks in 
the Hengduan Mountains; these trees have recently 
attracted much interest from physiological ecologist 
because of their specific adaptations to the harsh 
environment and unique traits (Yang et al. 2009; Zhou 
et al. 2015; Du et al. 2017). These oak species, relying 
on their high tolerance to low temperatures, drought, soil 
impoverishment, and strong ultraviolet radiation, can 
survive in extreme environments such as above the forest 
line and steep montane gorges where other broad-leaved 
trees are challenging to establish and grow (Zhang et al. 
2005). Forests dominated by oak species of the section 
Heterobalanus are the second-largest forest type in the 
Hengduan Mountains after dark coniferous forests and 
play a pivotal role in biodiversity maintenance, soil and 
water conservation, and carbon storage (Yang 1990; Xu 
et al. 2016; Lu et al. 2018).

Currently, the oak species of the section Heterobalanus 
are roughly estimated to be distributed from the 
southeastern Tibet Plateau to Kashmir, with the Hengduan 
Mountains being their geographic distribution and 
differentiation center (Yang et al. 2009). Historically, these 
oaks have undergone considerable human disturbances, 
such as harvesting and burning, all of which continue 
today (Zhou 2001; Li et al. 2018). Despite their strong 
abilities to regenerate via sprouting (Zhu et  al. 2012), 
frequent acute disturbances can lead to fragmented and 
isolated populations, or even the local extinction in some 
locations (Zhou 2001; Song et  al. 2019). Therefore, a 
more comprehensive understanding of the oak species 
distributions across the Hengduan Mountains and the 
interactions of their driving factors is needed for the proper 
conservation and resource utilization measures.

Ecological niche models (ENMs, see Franklin 2009) 
quantify the correlation between species occurrences 
and various kinds of environmental variables to describe 
the realized ecological niche or habitat suitability of a 
species (Guisan and Zimmermann 2000). Various ENM 
algorithms have been implemented to successfully 
simulate the potential distributions of many tree species, 
such as keystone species (Liao et  al. 2020a), rare 
species (Thurm et al. 2018), invasive species (Gallien 
et al. 2012), and economically important species (Zizka 
et al. 2020). To overcome the variability and to reduce 
the uncertainty caused by various algorithms, a recent 
improvement to ENMs has been to ensemble those 
forecast into a single, final prediction (Thuiller et al. 
2009; Gritti et al. 2013; Breiner et al. 2018).

Generally, climate could determine a species 
distribution through some key variables, notably over 
a large scale (Vedel-Sørensen et  al. 2013; Vessella 
et  al. 2015). However, non-climatic factors, such 
as topography, geomorphic, edaphic, and land use 
variables, may be of greater importance for determining 
distribution ranges over smaller scales (Feng et al. 2016; 
Zuckerberg et al. 2016)—in some cases, even equaling 
or exceeding the importance of climatic factors (e.g., 
Estrada et al. 2016; Figueiredo et al. 2018). Furthermore, 
compared with natural factors, intense human activity 
could dramatically alter species’ habitat suitability and 
thus accelerate their distribution dynamics (Byg and 
Salick 2009; Li et al. 2018). Accordingly, some studies 
have argued that the results generated by climate-only 
ENMs are coarse predictions of actual distributions, 
and suggested integrating more comprehensive climatic 
and non-climatic predictors into the ENM process for 
improving its performance and accuracy (Austin and Van 
Niel 2011).

Meanwhile, naturally occurring plant species usually 
show non-random aggregated spatial patchiness (Fahrig 
2003). Apart from the current environmental factors, 
such patterns can also be related to historical effects 
like time-limited expansions from refugia (Gaston 2009; 
Dullinger et al. 2012; Nobis and Normand 2014) as well 
as intrinsic biotic interactions, such as competition and 
predation (Svenning et al. 2014). Such spatial constraints 
may prevent species from adapting their distributions to 
changing climate conditions; in other words, species are 
left unable to unobstructed expand, even if the changing 
environments are suitable to their survival.

In contrast to the realized distributions that species 
successfully occupy in geographical space, their potential 
distributions yielded by ENMs are often calculated 
without such spatial constraints. Consequently, the 
species’ potential distributions are often over-predicted 
compared with the actual distribution (Dubuis et  al. 
2011). To rectify this mismatch, eigenvectors (spatial 
filters) that effectively capture otherwise unconsidered 
constraints like limited migration are used as additional 
factors in ENMs to produce more accurate results (Blach-
Overgaard et  al. 2010; Vedel-Sørensen et  al. 2013; 
Cardador et al. 2014). Nevertheless, the number of such 
studies remains limited, especially for trees (Blach-
Overgaard et al. 2010; Vedel-Sørensen et al. 2013).

To our knowledge, rough distributions of oak species 
in the Hengduan Mountains have been investigated 
based on local field expedition or forest inventory data 
(Zhou et al. 1995). These pioneer findings, however, may 
insufficiently reflect the entire distributions because a 
large number of inaccessible areas were not considered. 
Furthermore, there has been little evaluation of the 
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relative importance of multiple factors that may drive 
those oak species distributions in general. Therefore, 
examining the effect of spatial constraints in addition 
to climatic and non-climatic drivers on the potential 
distributions of tree species is a promising methodological 
approach, especially in the Hengduan Mountains, where 
the topographic and climatic conditions are complex.

To sum up, we hypothesized that the reason for shaping 
the current distribution patterns of oak species of the 
section Heterobalanus in the Hengduan Mountains might 
simply be explained not only by climatic factors but 
also by non-climatic and additional spatial constraints 
reflecting unconsidered factors. Our study aimed to figure 
out the following: (1) the current potential distribution of 
sclerophyllous oak species across the Hengduan Mountains; 
(2) the relative importance of climatic, non-climatic, and 
other spatial constraints for the distributions of these 
oak species; (3) the location of the core region where 
sclerophyllous oak species co-occur in the Hengduan 
Mountains. Therefore, we selected seven sympatric 
sclerophyllous oaks of the Hengduan Mountains to simulate 
their potential distributions based on ensemble ENMs, 
with an emphasis on exploring the relative importance of 
climatic, non-climatic, and other spatial constraints. Our 
research provides insights for the conservation and use of 
sclerophyllous oak species, thereby enhancing the prospect 
of the Hengduan Mountains’ nature conservation and 
sustainable resource management.

2 � Materials and methods

2.1 � Study area

The Hengduan Mountains region consists of a group of 
mountain ranges and valleys on the edge of the Tibetan 
Plateau in Southwest China, most of which run roughly 
north to south. The range of Hengduan Mountains is still 
inconclusive, but traditionally, it includes the western 
Sichuan Province, the northwestern portions of Yunnan 
Province, and the easternmost part of the Tibet Autonomous 
Region (Fan et al. 2009). In our study, since the oak species 
of the section Heterobalanus are widely distributed on the 
southeastern Tibetan Plateau, the range of the Hengduan 
Mountains follows its broad definition (see Chen 1984). 
Therefore, the Hengduan Mountains was identified as an 
area (ca. 5.5 × 105 km2) within the geographical coordinates 
of 24°–34° N and 95°–105° E (Fig. 1).

2.2 � Occurrence data

According to the Flora of China (Editorial Committee 
of Flora of China CAS, 1999), there are seven species 
of Quercus sect. Heterobalanus—Quercus aquifolioides 
Rehder & Wilson, Q. guyavaefolia H.Lév., Q. pannosa 
Hand.-Mazz., Q. longispica Hand.-Mazz., Q. senescens 
Hand.-Mazz., Q. spinosa David and Q. monimotricha 
Hand.-Mazz.—that are mainly distributed in the Hengduan 

Fig. 1   Geographical extent of 
the Hengduan Mountains. The 
locations of cities and rivers are 
provided for reference
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Mountains (Huang et al. 1999; Zhou et al. 2003). The 
scientific names of the seven oak species were verified as 
acceptable based on the GBIF.org Backbone Taxonomy 
(GBIF.org, https​://www.gbif.org/). These species have 
similar habitats, preferring areas situated between 2500 
and 3600 m a.s.l. (see Appendix Table 3). We collected 
1741 village-level occurrences of the seven oak species 
from the following five sources: (1) National Plant 
Specimen Resource Center (NPSRC, https​://www.cvh.
ac.cn/), (2) Chinese National Specimen Information 
Infrastructure (NSII, http://www.nsii.org.cn/2017/
home-en.php), (3) Global Biodiversity Information 
Facility (GBIF.org, https​://www.gbif.org/), (4) private 
observation databases, and (5) published literature. 
Because some of these specimens lacked geographical 
coordinates, the collections were georeferenced using 
the available location descriptions found on the labels of 
those specimens. We excluded all cultivated occurrences 
according to observation notes and their locations, that 
is, occurrences in parks, botanical gardens, and nearby 
buildings. Due to the longevity (Plomion et  al. 2018) 
and low dispersal ability (Moran and Clark 2012) of 
the oak species, we assumed that the mismatch between 
the period 1960–2015 (occurrence data) and the period 
1960–1990 (current climatic data) would not bias the 
results following Dyderski et al. (2018). To avoid pseudo-
replications, we used “GeoRes” option of “SSDM” 
package (Schmitt et  al. 2017) in R (R Development 
Core Team, 2017) for thinning the occurrences within 
a grid of a resolution of 30 arc-seconds (~ 1 km at the 
equator). This step reduced sampling bias while retaining 
a high amount of information. Finally, the number of the 
remaining occurrences of each species were as follows: Q. 
aquifolioides (237 out of 452); Q. longispica (103/144); 
Q. monimotricha (148/204); Q. pannosa (159/222); Q. 

spinosa (275/538); Q. senescens (75/118); Q. guyavaefolia 
(54/63).

2.3 � The selection of predictors

For climatic predictors, we initially selected 19 bioclimatic 
variables with 30 arc-seconds (~ 1 km at the equator) spatial 
resolution for the period of 1960–1990. These layers were 
obtained from WorldClim v1.4 (https​://www.world​clim.
org; Hijmans et al. 2005). We first ran the ensemble models 
(parameter settings and variable evaluation were consistent 
with the subsequent modelling as described below) to 
examine the relative importance of 19 bioclimatic variables 
for each species according to the output of ensemble models. 
As extreme temperature and precipitation are often considered 
the most critical limiting factors affecting tree growth in 
montane regions (Zhang et al. 2005), such nine variables 
(Appendix Table 4) with average contribution more than 5% 
were thus selected for the subsequent analysis. To remove 
multicollinearity among the remaining nine variables, we 
deleted highly correlated factors based on two criteria, that 
is (a) the variance inflation factor (VIF) value of each factor 
less than 10 (Kubota et al. 2015), and (b) the pairwise Pearson 
correlation coefficients |r| < 0.7 (Dormann et al. 2013). The 
above analyses were performed using the “vifstep” function 
of the R package “usdm” (Naimi 2017) and the “layerStats” 
function of R package “raster” (Hijmans 2019), respectively. 
Four independent bioclimatic variables were finally selected 
to represent the climatic predictors (CLIM), i.e., (1) BIO3, 
isothermality; (2) BIO4, temperature seasonality; (3) BIO15, 
precipitation seasonality; and (4) BIO19, precipitation of 
coldest quarter (Table 1; Appendix Fig. 7).

For the non-climatic predictors (NCLIM), we integrated 
topography and geomorphic, edaphic, land use/cover classes 
and human impact variables of the study area (Appendix 

Table 1   The environmental predictor sets used in the different ensemble models

CLIM climatic variables only, CLIM + NCLIM climatic and non-climatic variables, CLIM + NCLIM + SPAT climatic, non-climatic and spatial 
constraint variables, VIF variance inflation factor

Abreviation Environment variable VIF CLIM CLIM + NCLIM CLIM + NCLIM
 + SPAT

BIO3 Isothermality (BIO2/BIO7) (× 100) (°C) 3.12 • • •
BIO4 Temperature seasonality (standard devia-

tion × 100) (°C)
4.83 • • •

BIO15 Precipitation seasonality (coefficient of 
variation:mean/SD × 100)

6.36 • • •

BIO19 Precipitation of coldest quarter (mm) 5.15 • • •
LUCC​ Land use and land cover classes 1.19 • •
POC Profile curvature 1.00 • •
CST Classification of soil texture 1.09 • •
HII Human influence index 1.19 • •
S1~S8 Eight spatial filters 1.14~1.86 •
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Fig. 7). These variables have demonstrated their importance 
in previous studies of species distributions (Flojgaard et al. 
2011; Zuckerberg et  al. 2016; Figueiredo et  al. 2018). 
For topography and geomorphic factor, we chose profile 
curvature (POC), which was downloaded from EarthEnv 
(https​://www.earth​env.org/topog​raphy​, Amatulli et al. 2018). 
POC is a measurement of the rate of change of slope and 
is considered to be related to some ecological processes, 
such as soil moisture and nutrient cycling (Thomas et al. 
2015). Classification of soil texture (CST) was used as an 
edaphic predictor and was obtained from the China Soil 
Map-Based Harmonized World Soil Database (HWSD) 
(http://westd​c.westg​is.ac.cn/), which classifies Chinese soil 
types into 11 different categories. The layer of land use/
cover classes (LUCC) with 22 categories is provided by the 
Data Center for Resources and Environmental Sciences, 
Chinese Academy of Sciences (RESDC) (http://www.resdc​. 
cn). The human impacts were represented by a human 
influence index (HII) that measures human influence on the 
terrestrial ecosystem using several human activity effects 
factors (Sanderson et al. 2002). This layer was obtained from 
the Last of the Wild Project v2 (https​://sedac​.ciesi​n.colum​bia. 
edu/). The above non-climatic predictor layers were all at 
the same spatial resolution with climatic variables (Table 1; 
Appendix Fig. 7).

Spatial variables (SPAT) derived from spatial eigenvector 
mapping (hereafter called spatial filters) were calculated 
using SAM v3.0 software (Rangel et  al. 2010). This 
method presupposes that the spatial arrangement of data 
(i.e., sample locations or, as in our study case, the regular 
grid cells of the whole study area) can be translated into 
a set of predictor variables that capture the spatial effects 
at different spatial scales. In SAM, spatial filters were 
computed by constructing a pairwise distance matrix 
among all grid cells by using their geographical coordinates, 
that is latitude and longitude. This matrix was submitted 
to principal coordinates of neighbor matrices (PCNM) to 
generate the spatial filters (Borcard and Legendre 2002). 
Because of the computational limitations of SAM, spatial 
filters were created using coordinates at a coarse resolution 
(~ 20 km) and then interpolated to the same resolution as 
ca. 1 km by using the inverse distance-weighted method 
(IDW) in ArcGIS v10.3 (Esri, Redlands, CA, USA, https​:// 
www.esri.com), following Blach-Overgaard et al. (2010). 
How to choose a suitable spatial filter is still controversial; 
here, the approach we followed is consistent with that of 
De Marco et al. (2008) and Blach-Overgaard et al. (2010), 
both of which used an equal number of spatial filters with 
other predictors. In our study, the number of spatial filters is 
eight based on the above four climatic and four non-climatic 
variables. The spatial filters represent relatively large- and 
medium-scale spatial patterns (Appendix Fig. 8). Finally, 
we calculated the VIF values of all 16 predictor layers and 

calculated pairwise Pearson correlation coefficients among 
all predictors to ensure all VIF values < 10 (Table 1) and 
|r| < 0.7 (Appendix Fig. 9).

2.4 � Overlap of species niches

The environmental niches of the seven sympatric oak 
species were described and compared from occurrence and 
environmental data using the framework in Broennimann 
et al. (2012). This framework applies kernel smoothers to 
densities of species occurrence in gridded environment 
space to calculate metrics of niche overlap. We applied 
principal component analysis (Pearson 1901) to transform 
all environmental predictors plus the spatial filters 
(CLIM + NCLIM + SPAT) into two principal components 
(see Liao et  al. 2020b for details). The environmental 
space was then defined by the axes of principal component 
analysis and was divided into a grid of 100 × 100 cells. 
The smoothed density of occurrence in each cell for each 
species was calculated by applying Gaussian kernel density 
function (Silverman 1986). Meanwhile, the occupancy of the 
environment was calculated and compared to estimate the 
niche overlap metric (Schoener 1970; reviewed in Warren 
et al. 2008).

2.5 � Ensemble models

To simulate the potential distributions of seven oak species, 
we used an ensemble modelling approach encompassing 
six algorithms: generalized linear models (GLM), boosted 
regression trees (GBM), multivariate adaptive regression 
splines (MARS), maximum entropy (MAXENT), random 
forests (RF), and support vector machines (SVM). These 
algorithms were available in the “SSDM” package (Schmitt 
et al. 2017). For successful running each algorithm, 1000 
pseudo-absence points were randomly selected from the 
background localities (as suggested by Barbet-Massin et al. 
2012). To assess the average predictive performance of the 
ensemble model, we repeated a holdout method ten times 
and randomly selected a subset of 70% of presences and 
pseudo‐absences for calibration and the remaining 30% 
for validation each time. To reduce the uncertainty of each 
algorithm, we performed ten replications of each algorithm 
to calculate the mean area under the curve (AUC) of the 
cross-validation (Bahn and McGill 2013). Models with 
AUC values of > 0.7 were included in the final ensemble 
ENM, and the weighting of each algorithm prediction was 
based on its true skill statistic (TSS) following Liu et al. 
(2005). Further, we adopted the best default settings for each 
algorithm recommended by Schmitt et al. (2017).

In the present study, we performed three models with 
different combinations of the predictors for each oak 
species: namely (1) climatic predictors alone (CLIM); 
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(2) environmental variables that included both cli-
matic and non-climatic predictors (CLIM + NCLIM); 
(3) all environmental predictors plus the spatial filters 
(CLIM + NCLIM + SPAT), which was the full model. We 
used the maximum training sensitivity plus specificity 
(MTSS) as a threshold recommended by Liu et al. (2005), 
and divided the habitat suitability into two classes: not suit-
able (0–MTSS), suitable (MTSS–1). Model performance 
was evaluated by comparing the area under the curve 
(AUC) of the receiver operation curve (ROC) as well as the 
TSS (Schmitt et al. 2017) using the holdout data. Addition-
ally, the differences in AUC values between paired mod-
els produced by different predictor sets were tested using 
Wilcoxon signed-rank tests (Blach-Overgaard et al. 2010).

2.6 � Statistical analysis

To assess the unique importance of each predictor, we used the 
output of the SSDM package based on the Pearson’s coefficient 
between a full model and a model with each environmental 
variable omitted in turn (Schmitt et al. 2017). Furthermore, 
variation partitioning was performed to quantify the unique 
contribution of the three predictor sets to the variation of 
predicted habitat suitability (Borcard et al. 1992; Heikkinen 
et al. 2004). The variation in the predicted habitat suitabilities 
of all seven oaks were decomposed into the three groups 
of explanatory variables, i.e., CLIM, NCLIM, and SPAT 
variables, using a series of (partial) regression analyses with 

redundancy analysis (RDA), as implemented in the SAM v3.0 
software (Rangel et al. 2010).

3 � Results

3.1 � Model validation

The AUC value of all 126 models (i.e., seven species × six 
algorithms  ×  three predictor sets, see Liao et  al. 
2020b for details) ranged from 0.701 to 0.886 (mean 
0.778 ± 0.036), while the TSS value ranged from 0.403 to 
0.772 (mean 0.555 ± 0.072), indicating huge variability 
of model performance existed among species, predictor 
sets and algorithm (Fig.  2). For most species, except 
for Q. monimotricha and Q. senescens, the full model 
CLIM + NCLIM + SPAT showed superior predictive ability 
than the CLIM and CLIM + NCLIM models by its slightly 
but not significantly higher median AUC and TSS values 
(Fig. 2 a and b). Furthermore, predictive performances varied 
among the six modelling algorithms without considering the 
differences between species and predictors (Fig. 2 c and d). 
Three of the modelling algorithms, namely MAXENT, RF, 
and SVM, shared a better predictive capacity; these three 
algorithms produced higher median AUC and TSS values 
compared with the average predictive abilities (Fig. 2 c 
and d). In our case, the best performing algorithm was RF 
(median AUC = 0.793; median TSS = 0.586), while the 
lowest-ranked method was GLM (0.766; 0.531).

Fig. 2   Predictive abilities of 
the ensemble models for three 
predictor sets (a, b), and of six 
modelling algorithms for seven 
species of Quercus section 
Heterobalanus (c, d). Predictive 
ability is expressed as the area 
under the curve of the receiver-
operating curve (AUC) and the 
true skill statistic (TSS). The 
same letters or “ns” indicate no 
significant differences between 
models by Wilcoxon sign rank 
test comparisons. Dashed 
lines in red represent a cutoff 
threshold for AUC (0.7) used 
for selecting the algorithms and 
represent a good performance 
for TSS (0.5), while in black 
represent the average AUC and 
TSS value of all models
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3.2 � Niche overlap and potential distributions

The niche overlap between species varies from 0.44 to 
0.82 (Appendix Table 5). The highest overlap occurred 
between Q. monimotricha and Q. spinosa, while the 
lowest occurred between Q. aquifolioides and Q. 
longispica (Appendix Fig. 10 and Table 5).

Overall, the potential distributions simulated by 
the CLIM and CLIM + NCLIM models were less 
different but more extensive than those produced by 
the CLIM + NCLIM + SPAT model (Fig. 3; Appendix 
Table  6). For example, only three oaks analyzed in 
our study truly grow in the eastern part of the Tibetan 
Autonomous Region; nevertheless, the western margin 
of Hengduan Mountains was deemed suitable habitat 
for all oaks by both CLIM and CLIM + NCLIM 
models. Among the oak species, Q. aquifolioides had 
the relatively larger range irrespective of the predicted 
model sets. The CLIM and CLIM + NCLIM models 
indicated suitable areas of Q. aquifolioides which fully 
covered the Hengduan Mountains, even extending 
northward to south Ganlan Prefecture and westward 
to east Bowo Prefecture. However, these areas were 
absent in the full (CLIM + NCLIM + SPAT) model, 

which also identified the significant differences in the 
southeast corner of Hengduan Mountains when compared 
with our partial (CLIM or CLIM + NCLIM) model 
(Fig. 4a). Q. longispica was found to have a relatively 
consistent range in the southern Hengduan Mountains 
by the CLIM and CLIM + NCLIM models, while the 
CLIM + NCLIM + SPAT model confined its range to 
southwestern Hengduan Mountains, specifically in Diqing 
and Lijiang Prefectures and southern Ganzi Prefecture 
(Fig. 4b).

For Q. monimotricha, Q. pannosa, and Q. spinosa, the 
CLIM + NCLIM + SPAT results showed these species 
primarily distributed in the southeastern part of Hengduan 
Mountains, i.e., from Nujiang-Aba Prefecture eastward 
to the edges of Hengduan Mountains. By contrast, their 
distributions predicted by the CLIM and CLIM + NCLIM 
models extended farther, up to eastern part of Linzhi and 
Changdu Prefectures in the west, along the valleys of the 
Lancangjiang, Nujiang, and Jinshajiang Rivers (Fig. 4 c, 
d, and e). Potential distributions for Q. senescens and Q. 
guyavaefolia were largely restricted to the southern part 
of Hengduan Mountains, covering the northern Yunnan 
Province and southwestern Sichuan Province, when predicted 
by the CLIM + NCLIM + SPAT model (Fig. 4 f and g).

Fig. 3   The simulated potential distribution areas of ensemble models for all studied species based on three combinations of predictor variables
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Fig. 4   The occurrence records 
and the predicted distributions 
of seven oak species based on 
the ensemble models that used 
different variable sets. Binary 
maps were generated based 
on MTSS threshold, i.e., Q. 
aquifolioides (0.180), Q. long-
ispica (0.234), Q. monimotricha 
(0.208), Q. pannosa (0.205), Q. 
spinosa (0.154), Q. senescens 
(0.168), Q. guyavaefolia (0.266)
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1 3

When overlapping the highly suitable areas (suitabil-
ity value > 0.6) of seven oak species simulated by their 
CLIM + NCLIM + SPAT models in our study area, a rich-
ness center of oak species was located within a triangular 
area situated among the Shangri-La, Eryuan, and Muli 
Prefectures, at the junction of Sichuan and Yunnan Prov-
inces (Fig. 5).

3.3 � The drivers of species potential distributions

As the CLIM + NCLIM + SPAT model better predicted 
the potential distributions of oak species across the 
Hengduan Mountains, we focused on the full models’ 
predictor variables when evaluating their relative 
importance. Generally, predictors differ in the importance 
of shaping the distribution of each species; however, 
temperature seasonality (BIO4) and land use/cover classes 
(LUCC) were consistently indispensable to all species’ 

distributions. Human influence index (HII), followed by 
isothermality (BIO3) and profile curvature (PC) together 
supplemented influences of their distributions greatly 
(Table 2). Besides, some spatial eigenvectors (e.g., S4 and 
S6) were ranked into the top-five factors in the distribution 
of specific species (Table  2). For all studied species, 
about 75 to 87% of the total variation in predicted habitat 
suitability was explained by CLIM, NCLIM, and spatial 
variables together, leaving corresponding 13 to 25% of 
the variation unexplained (Fig. 6). The main source of the 
variation was the rather dissimilar unique contributions 
from the three groups of predictors. The fractions of the 
pure effect of climate alone ranged from 21.5 to 31.0%; 
however, the fractions of the pure effect of non-climate 
alone were all less than 10%. Notably, the fraction for the 
spatial filters varied considerably, with four species less 
than 10% (Fig. 6 c, d, e and f), two close to 20% (Fig. 6 b 
and g), and one species over 41.3% (Fig. 6a).

Fig. 5   A sketch of the pre-
sumed contemporary geo-
graphic distribution center for 
the seven oak species. The 
triangular region at the junc-
tion of Sichuan and Yunnan 
Provinces, China, is based on 
the habitat suitability (> 0.6) 
from the full ensemble models 
(CLIM + NCLIM + SPAT 
models)
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4 � Discussion

4.1 � Potential distributions of the oak species

Accurately simulating the potential geographical 
distributions of plant species at broad scales in the Hengduan 
Mountains is a challenge because of data deficiencies, 
which mainly arise from many inaccessible hwigh 
mountains and deep ravines (Zhang et al. 2014), but also 
from potentially incomplete sets of model predictors. Based 
on a comprehensive collection of available data, we used 
an ensemble modelling approach to analyze the potential 
distributions of seven oak species in a remote mountainous 
area, the Hengduan Mountains. This approach could better 
balance the different results produced by different algorithms 
when calibrating the same dataset (Thuiller 2004; Guisan 
et al. 2007), like in our study.

In the present study, jointly judged by the resulting AUC 
and TSS values, and predicted area, the full ensemble model, 
that is CLIM + NCLIM + SPAT model, was better than both 
the partial models (CLIM and CLIM + NCLIM models). In 
addition, the full models are more consistent with previous 
field surveys which indicated most of the oaks occurring 
between 25°–32° N and 98°–102° E (Liu et al. 2008). These 
results support Bucklin et al. (2015) who suggested that 
using spatial filters as additional species-related limiting 
factors and coupling them with climate factors in ENMs 
is more likely to approach the actual distributions in 
nature. The full models, however, has the highest number 
of predictors and might therefore be more adjusted to 
the observations with an increasing risk of overfitting. 
Nevertheless, the model evaluation was based on a cross-
validation strategy using holdout data, which would have 
detected significant overfitting (Merow 2014).

Interestingly, the richness map showed that areas of high 
suitability were almost always located on high mountains 
and on both sides of river valleys across the Hengduan 
Mountains, yet they were missing from flat hilly plateaus, 

such as found at the junction of Sichuan and Qinghai 
Provinces, and from western and northern parts of Hengduan 
Mountains. In reality, the oak species may distinguishable 
as two life-history types with corresponding terrain 
requirements. Oak forests adapted to cold-dry, or sub-humid 
environments typically grow at high elevations, whereas 
the warm or hot, dry valleys, or extremely cold areas are 
inclined to develop an oak scrub-like community (Yang 
1990; He et al. 1997). Therefore, our simulations matched 
this habitat preference of the oak species. Although the 
modelling results indicated differences between oak species, 
their distribution areas overlap largely. This characteristic 
of sympatry differs considerably from the evergreen 
sclerophyllous Quercus species of the Mediterranean that 
seem morphologically, and physiologically similar to the oak 
species of the section Heterobalanus (Manos et al. 2001) yet 
have disparate distributions (López-Tirado et al. 2018). As 
noted above, the oak habitats can range from deeply incised 
valleys to the high mountains, thus forming a clear vertical 
distributional gradient at the Hengduan Mountains (Yang 
1990). Previous researchers found that all oak species of 
this section share the similar habitat requirements and have 
a similar tolerance of drought and cold (Yang et al. 2009; 
Tang 2015), exhibiting inconspicuous vicarious distribution 
in altitude (Yang 1990; He et al. 1997). In this way, these 
oak species are able to coexist on mountains to form a 
mosaic distribution (Yang 1990; He et al. 1997), which is 
also supported by the results of overlapping species niches 
(Fig. 10 and Appendix Table 5).

Based on field sampling records, He et  al. (1997) 
proposed the region located at “the mid-point of the 
W-shape of Jinshajiang River (towards the north of 
Lijang)” as the most species-rich area for oak species of 
the section Heterobalanus. In this study, we proposed 
a “triangular”-shaped region consisting of Shangri-La, 
Muli, and Eryuan prefectures which locate at Jinshajiang 
River and Yalongjiang River Basins (Fig. 5). Although 
this region also includes areas without a single species, a 

Table 2   Mean relative importance of each variable to the final ensemble model of each species studied for all environmental predictors plus spa-
tial filters model (CLIM + NCLIM + SPAT). The variables highlighted in italics are the five top-ranked importance factors for each species

Species CLIM NCLIM SPAT

BIO3 BIO4 BIO15 BIO19 CST HII LUCC​ PC S1 S2 S3 S4 S5 S6 S7 S8

Q. aquifolioides 6.3 18.7 3.9 7.6 4.1 4.0 17.5 5.0 6.2 3.7 3.1 3.1 2.5 6.3 4.5 3.7
Q. longispica 10.7 14.9 4.7 5.2 3.9 5.7 11.1 4.0 4.7 5.1 3.5 4.9 4.2 9.0 4.7 3.6
Q. monimotricha 8.2 17.8 2.9 5.5 2.7 19.3 9.9 5.5 3.2 2.8 3.7 5.0 2.7 3.8 3.3 3.6
Q. pannosa 5.5 22.9 3.7 4.5 4.5 7.3 11.5 5.7 2.4 3.8 3.5 6.3 3.3 7.8 3.6 3.5
Q. spinosa 10.0 10.2 4.0 6.7 3.9 17.4 17.8 5.3 3.9 2.5 3.2 4.1 2.8 2.5 2.8 3.1
Q. senescens 7.4 22.6 4.3 4.1 5.4 5.6 12.5 8.7 2.9 3.6 3.5 5.0 2.5 3.8 3.5 4.5
Q. guyavaefolia 4.9 15.7 5.3 3.8 3.9 5.7 10.8 7.9 7.0 3.6 3.9 8.3 4.5 5.5 5.3 4.1
Mean 7.6 17.5 4.1 5.3 4.0 9.3 13.0 6.0 4.3 3.6 3.5 5.2 3.2 5.5 4.0 3.7

5   Page 10 of 22 Annals of Forest Science (2021) 78: 5
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Fig. 6   Results of variation parti-
tioning for the predicted habitat 
suitability simulated by our 
ensemble models in terms of 
fractions of variation explained. 
Variation of the occurrence 
probability is explained by three 
groups of explanatory variables: 
CLIM (climatic predictors), 
NCLIM (non-climatic predic-
tors) and SPAT (spatial predic-
tors). a–c Unique effects of 
CLIM and NCLIM factors and 
SPAT variables, respectively. 
d–g Fractions indicating their 
joint effects. Negative values are 
shown as “< 0%” in the figure. 
The font-size increases with the 
intensity of the effect. Note that 
for large datasets like our study, 
negative explained variances are 
possible when explanatory vari-
ables explain no more variation 
than random normal variables 
would (Legendre 2008)
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supplemented richness hotspot close to Muli might also be 
of high importance with respect to genetic diversity (Zhang 
et al. 2014). More importantly, sporopollenin and fossils of 
oak species of the section Heterobalanus have been found at 
numerous locations in and near to this region (Huang et al. 
2016), which indicates a suitable environment for oak since 
long, including interglacial-glacial cycles of late Pleistocene. 
However, under the rapid climate change, ecotypes at 
southern (or hottest/driest) range limits might be very 
important as well adapted proveniences for reforestation or 
(quasi-intraspecific) assisted migration (Liao et al. 2020a). 
Therefore, focusing only on the detected region of highest 
predicted species richness might not be appropriate under 

future climate change, although it is of great value to the 
biodiversity conservation of these oak species at present.

4.2 � Climatic factors governing the oak species 
distribution across Hengduan Mountains

The results of variation partitioning showed that climatic 
variables have a stronger influence on all oak species, 
compared to the non-climatic variables in our study. This 
finding is consistent with the current perspective that climate 
is the primary determinant for the geographic distributions 
of plant species over large spatial scales. Evidence from 
the fossil record confirms that paleoclimate change has 
shaped the current oak species distribution patterns (Zhou 
et al. 2007; Meng et al. 2017). Earlier, Zhou et al. (1992) 
had proposed that ancestors of the oak species of our study 
were distributed within subtropical evergreen broad-leaved 
forests, as companion species, at the junction of China, 
Vietnam, and Myanmar during the Miocene. Because of 
successful adaptive evolution, they have gradually become 
prevalent in the eastern Himalayas and Hengduan Mountains 
under the development of an arid and cold climate caused by 
the uplift of the Tibetan Plateau. In particular, the ancestors 
of these oak species evolved specific ecophysiological 
traits, such as dense hairs, thick cuticles, lignified epidermal 
cell walls and cuticles, and a low stomatal density, which 
collectively increased their tolerance of dry-cold climates 
(Yan et al. 2019). Other studies have further indicated that 
the oak species of our study are favored by the seasonal 
alternation of dry and wet periods (Yang 1990; Tang 
2015), similar to the Mediterranean and North America 
evergreen sclerophyllous Quercus spp. (Yang 1990). 
However, unlike water availability, which predominately 
determines the geographical distribution ranges of evergreen 
sclerophyllous Quercus species in the Mediterranean (Ogaya 
et al. 2003; Hidalgo et al. 2008), our results showed that 
effects of temperature-related variables exceeded those of 
water-related variables. The unique geography and climate 
conditions of the Hengduan Mountains probably explain 
this discrepancy. Firstly, the oak species of our study mainly 
inhabit the high mountains in southeastern Hengduan 

Table 5   The niche overlap between species. The metric varies between 0 (no overlap) and 1 (complete overlap)

Q. aquifolioides Q. longispica Q. monimotricha Q. pannosa Q. guyavaefolia Q. spinosa Q. senescens

Q. aquifolioides 1 0.442 0.772 0.545 0.462 0.710 0.509
Q. longispica 0.442 1 0.594 0.765 0.705 0.481 0.612
Q. monimotricha 0.772 0.594 1 0.695 0.644 0.822 0.692
Q. pannosa 0.545 0.765 0.695 1 0.744 0.613 0.754
Q. guyavaefolia 0.461 0.704 0.644 0.744 1 0.560 0.627
Q. spinosa 0.710 0.480 0.822 0.613 0.560 1 0.691
Q. senescens 0.509 0.612 0.692 0.754 0.627 0.691 1

Table 6   Predicted suitable areas based on three combinations of 
predictor variables: climatic predictors (CLIM), climatic and non- 
climatic predictors (CLIM + NCLIM), and all environmental predic-
tors plus spatial filters (CLIM + NCLIM + SPAT)

Predictor sets Species Area (km2)

CLIM Q. aquifolioides 432,203
Q. guyavaefolia 221,689
Q. longispica 238,688
Q. monimotricha 302,031
Q. pannosa 340,844
Q. senescens 316,782
Q. spinosa 362,670

CLIM + NCLIM Q. aquifolioides 376,027
Q. guyavaefolia 198,661
Q. longispica 238,897
Q. monimotricha 223,068
Q. pannosa 288,706
Q. senescens 296,494
Q. spinosa 309,819

CLIM + NCLIM + SPAT Q. aquifolioides 285,244
Q. guyavaefolia 118,026
Q. longispica 174,269
Q. monimotricha 214,636
Q. pannosa 248,879
Q. senescens 289,801
Q. spinosa 300,586
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Mountains, where the annual precipitation is approximately 
> 900 mm due to the East Asian and Southwest monsoon, 
thus making it a humid region (Yang 1990). Those high 
mountains also always give rise to low-temperature 
environments, which more strongly govern montane plant 
growth than drought (Yang 1990; Zhou et al. 2015).

Notably, temperature seasonality was the most crucial 
variable for most oak species (Table  2). The Hengduan 
Mountains climate is characterized by hot, rainy summers and 
cold, dry winters; hence, the driest quarter is traditionally from 
February through April and accompanied by low temperatures 
(Zhang et  al. 2005; Yang et  al. 2009). A recent popular 
perspective was reported that the temperatures of the non-
growing season (i.e., winter) are more closely linked to montane 
plant distributions than the annual or summer temperatures 
(Ladwig et  al. 2016; Choler 2018). Extreme low winter 
temperatures could lead to freezing and frost injuries to plants 
that inhibit their growth in profound ways, such as via membrane 
damage and photosynthesis reduction (Ladwig et al. 2016). 
Alternatively, too high winter temperatures will reduce the soil 

moisture available to plants via increased evapotranspiration and 
disturb tree phenology and root activities (Choler 2018). Over 
the past several decades, both an increased winter temperature 
and the response of montane plants to winter warming on the 
Tibetan Plateau have been extensively observed (IPCC 2014). 
Hence, our finding also suggested these oak species would be at 
risk in the global context to future climate warming.

4.3 � Effects of non‑climatic variables on oak species 
distribution

Researchers have elucidated that when more non-climatic 
variables are added to ENMs—such as edaphic conditions, 
land cover, or human influence—along with climate, 
they could prove useful because they refine the potential 
distribution range (Hidalgo et  al. 2008; Estrada et  al. 
2016; Figueiredo et al. 2018). In our case, the non-climatic 
variables of land use/cover classes, human influence index, 
and profile curvature were of high importance for many 
of the oak species distributions, while the classification 

Fig. 7   The distributions of four climatic and four non-climatic 
variables used in the models: Isothermality (BIO2/BIO7) (×  100) 
(°C), temperature seasonality (standard deviation  ×  100) (°C), 

precipitation seasonality (coefficient of variation: mean/SD  ×  100), 
precipitation of coldest quarter (mm), land use/cover classes, profile 
curvature, classification of soil texture, and human influence index
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of soil texture was opposite. However, the pure fraction 
of non-climatic variables explained less than 10% of the 
total variation in predicted habitat suitability, and for 
some species even less than 3%, e.g., Q. senescens and Q. 
guyavaefolia. Nevertheless, the importance of non-climatic 
factors showed an overlap with climatic factors as indicated 
by fraction d in Fig. 6, which strongly suggests some critical 
potential role of non-climatic variables for the distribution 
of these oak species.

In contrast to cultivated plants introduced elsewhere by 
humans, the oak species of our study maintain an almost 
natural distribution pattern in the Hengduan Mountains. 
Being the most important firewood in the eastern Tibetan 
Plateau, they were reported to be more disturbed by logging 
than by livestock grazing, planned burns, or infrastructure 
(Zhou 2001). Despite the aboveground biomass lost in 
oak forests destroyed by logging, these sclerophyllous oak 
species can quickly recover via their excellent resprouting 
ability to form scrub vegetation (Zhu et al. 2012). For this 
reason, the human impact on the distribution of oak species 
might in our study be lower than climate effects, which 
is consistent with findings of López-Tirado and Hidalgo 
(2014). The effect of land use/cover, however, seems to 
be one more noteworthy driver in comparison to other 
non-climatic variables. The transformation of land use 
through a number of disruptive measures (defragmentation, 
deforestation, fire, harvesting, etc.) would dramatically alter 
the distribution of species (Sala et al. 2000).

Even though human activity did not seem to be 
stronger related to the oak species ranges on a large scale, 
negative effects should not be dismissed. Hengduan 
Mountains regions, in particular, the “three parallel river-
running areas,” are the richest in hydropower resources 

in China and the building of critical hydropower projects 
are underway. Reservoir water impounding and related 
infrastructure could damage or extirpate many oak 
populations, thereby affecting their distribution ranges 
at local or regional scales. Unfortunately, these oak 
species currently lack effective protected areas as well as 
relevant protection strategies. Therefore, it is necessary 
to strengthen the conservation of proveniences for oak 
species in the detected hotspot region, especially in 
the existing provincial nature reserve, that is Lashihai 
wetland, Haba Snow Mountain, and Jade Dragon Snow 
Mountain and to formulate effective conservation 
policies, such as the prohibition of excessive logging or 
unsustainable expansion of hydropower.

4.4 � Spatial constraints and its implications

In our study, the CLIM + NCLIM + SPAT model took 
into account the spatial filters and exhibited highest 
AUC and TSS value for most species, suggesting that it 
was superior to models excluding this type of predictor. 
Spatial eigenvectors are sensitive to migration lags 
(Blach-Overgaard et al. 2010) and could reveal missing 
“classic” variables including climate predictors. For 
example, for Q. aquifolioides, pure spatial predictors 
explained 41.3% of the total variation, which even 
exceeded climatic variables in this case (Fig. 6a). These 
findings from the Hengduan Mountains are in accordance 
with other studies showing that spatial filters help to 
better predict palm distributions at continental (Blach-
Overgaard et al. 2010), national scales (Tovaranonte et al. 
2015), and regional scales (Vedel-Sorensen et al. 2013). 
We noticed that in the CLIM + NCLIM + SPAT model, its 

Fig. 8   The geographic patterns 
of the eight spatial filters used, 
showing the spatial relation-
ship among cells (1 km × 1 km 
grids). Increasingly lighter 
(white) colors indicate larger 
numerical values of the eigen-
vectors
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results removed some areas where no occurrence records 
have been found and the potential distribution ranges 
seem to resemble a large extent the actual distribution 
ranges (Fig.  4). This discrepancy means that these 
suitable habitats were more likely to have been over-
predicted due to the lack of more accurate predictors. On 
the other side, spatial filters seemed to cause also some 
false negatives in regions with only few observations 
(Fig. 4). Therefore, we suggest that adding spatial filters 
in ENMs can be essential for obtaining more realistic 
potential distribution ranges, but at the same time, the 
risk of false negatives should be taken into account.

Although the mechanisms underpinning spatial range 
constraints are not yet thoroughly understood, many 
researchers believe that limited migration involving 
barriers of seed dispersal and/or time-lagged migrations 
from refugia play an important role. Meng et al. (2017) 
and Du et al. (2017) revealed the distributions of both 
Quercus sect. Heterobalanus and Q. aquifolioides were 
fairly stable during Last Glacial Maximum. Accordingly, 
we suppose that geographic features may chiefly impede 
the dispersal of these oak species. They are inferred to 
have originated in the northern Indo-China Peninsula, 
and its surrounding areas (Zhou 1992) and the Hengduan 

Mountains contains a large number of north–south 
mountains and rivers, which could provide channels 
for animal and water dispersing seeds of oak species to 
expand northwards along the river valley and mountain 
ridges (He and Jiang 2014). However, according to two 
paleogeographic studies (Qu et  al. 2011; Yang et  al. 
2012), this special north–south direction topography 
is apparently a barrier for many species of Hengduan 
Mountains expanding westward to the interior Tibetan 
Plateau. This could partly explain why the oak species 
of our study insufficiently occupy the western part of 
the Hengduan Mountains which are suitable according 
to the CLIM model. Moreover, whether a species fills 
its entire potential range must depend on its intrinsic 
dispersal and migration ability. Apart from dispersal 
limitation, other researchers have posited that spatial 
constraints are associated with mechanisms of biotic 
interactions, for example, competition (Svenning et al. 
2014). Early investigators, actually, partly attributed 
the extant distribution patterns of oak species of the 
section Heterobalanus to species competition (Yang 
1990; Zhou 1992). They found most oak species were 
at a disadvantage when competing with broad-leaved 
species in the tropical and subtropical climate, with 

Fig. 9   Pearson correlation coef-
ficients for all 16 predictors, i.e., 
four climatic (bio3, bio4, bio15, 
and bio19), four non-climatic 
(CST, HII, LUCC, and POC) 
and eight spatial predictors 
(S1~S8). All coefficients are 
shown as percentages and are 
less than 0.7
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only Q. spinosa able to colonize eastern China from 
the Hengduan Mountains (Zhou 1992). Similarly, on 
the hilly plateau plane, in the western part of Hengduan 
Mountains, oak species could not outcompete alpine 
grassland plants that are better adapted to drought (Yang 
1990). Therefore, the weak competitive ability could be 
another reason for explaining why these species were 
unable to expand westward through the Hengduan 
Mountains.

On the Tibetan Plateau, endemic species, including 
oaks, are faced with global climate changes, such as winter 
warming (IPCC 2014), which would strongly alter their 
extant distribution patterns. Interestingly, it is noteworthy 
that species with the broadest distribution (Q. aquifolioides) 
and those with smallest distributions (Q. longispica and 
Q. guyavaefolia) were most affected by spatial factors 
(Figs. 3 and 6a, b, and g). Therefore, we could speculate 
that factors behind these spatial constraints, especially for 
Q. guyavaefolia, could hinder their colonization of suitable 
climate habitats in the future that would amplify the negative 
effect of global climate change for these oak species. The 
decrease or disappearance of key species like the oak species 
of our study would affect species composition, ecosystem 
functions and local economy, e.g., local farmers’ income by 
affecting the production of the lucrative edible mushroom, 
Tricholoma matsutake. On the other hand, suitable but 
currently uncolonized areas detected by the climate-only 
models may serve as candidate areas for future range 
expansion and assisted migration. Although other uncertainty 

factors like biological interaction or dispersal ability 
(Thibaud et al. 2014) were not considered in this study, the 
results might fill data gaps in survey records and estimate 
priority regions for future surveying and monitoring efforts.

5 � Conclusions and recommendations 
for future research

Our results revealed ensembles of ENMs in combination 
with spatial eigenvector filters as a useful tool to model the 
potential distributions of sclerophyllous oak species in the 
Hengduan Mountains. The temperature-related variables in 
climatic predictors were the most critical factors and non-
climatic variables, including land use/cover and human 
impact, had a clearly visible influence on oak species’ 
distributions on a large scale. The “triangular”-shaped 
region identified by our models at the junction of Sichuan 
and Yunnan Provinces, is the current geographic distribution 
center for seven oak species in the Hengduan Mountains. 
Our predictions also highlight climatically suitable areas, 
which can be used for developing more sustainable 
reforestation strategies, although nature reserves currently 
protect only a small part of these areas. Hence, these tree 
species now need improved protection policies, such as 
reduced logging intensity and the reinforcing of the existing 
protected reserves in the above triangle. Furthermore, the 
availability of past, present, and future potential distributions 
of oak species would help to detect putative climate refugia. 

Fig. 10   Niches of the seven sympatric oak species along the two first axes from the principal component analysis (PCA) of all 16 predictors. The 
color that changes from red to blue shows the density of the occurrences of the species by cell
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Potential changes in the distributions of oak species under 
future climate change should be further studied to better 
understand both the effects of global change and possible 
management options.
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