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Abstract

Key message The potential of airborne laser scanning (ALS) and multispectral remote sensing data to aid in generating
improved wind damage risk maps over large forested areas is demonstrated. This article outlines a framework to generate
such maps, primarily utilizing the horizontal structural information contained in the ALS data. Validation was done over an
area in Eastern Finland that had experienced sporadic wind damage.

Context Wind is the most prominent disturbance element for Finnish forests. Hence, tools are needed to generate wind
damage risk maps for large forested areas, and their possible changes under planned silvicultural operations.

Aims (1) How effective are ALS-based forest variables (e.g. distance to upwind forest stand edge, gap size) for identifying
high wind damage risk areas? (2) Can robust estimates of predicted critical wind speeds for uprooting of trees be derived
from these variables? (3) Can these critical wind speed estimates be improved using wind multipliers, which factor in
topography and terrain roughness effects?

Methods We first outline a framework to generate several wind damage risk-related parameters from remote sensing data
(ALS + multispectral). Then, we assess if such parameters have predictive power. That is, whether they help differentiate
between damaged and background points. This verification exercise used 42 wind damaged points spread over a large area.

Results Parameters derived from remote sensing data are shown to have predictive power. Risk models based on critical
wind speeds are not that robust, but show potential for improvement.

Conclusion Overall, this work described a framework to get several wind risk—related parameters from remote sensing data.
These parameters are shown to have potential in generating wind damage risk maps over large forested areas.

Keywords Windthrow - Forest wind damage - Risk modelling - LIDAR - Remote sensing

Handling Editor: Jean-Michel Leban 1 Introduction

Contribution of the co-authors Ranjith Gopalakrishnan, Petteri
Packalen, Heli Peltola and Ari Venildinen -contributed to
the design of the study and the risk assessment framework.

Wind storms have caused a significant amount of forest
damage and economic losses in European forests over the

Ranjith Gopalakrishnan and Veli-Pekka Ikonen contributed to last few decades (Seidl et al. 2014; Reyer et al. 2017). So far,
the development of associated software used and data analysis. the most destructive damage has occurred in Western and
Janne Rity was part of the verification field data collection team. Central Europe (Seidl et al. 2014) but such damage has also

Petteri Packalen, Ari Venildinen, Mikko Laapas and Heli Peltola

contributed to data analysis. All authors contributed to the writing increased in nor.them Europe (Reyer ?t al. 32 01 7_; Gregow
of the manuscript. et al. 2017). In Finland, in total, 25 million m” of timber has
b4 Ranjith Gopalakrishnan

ranjith.gopalakrishnan @uef.fi Extended author information available on the last page of the article.

I N R A@ @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s13595-020-00992-8&domain=pdf
http://orcid.org/0000-0002-0788-8407
http://orcid.org/0000-0002-6578-8965
mailto: ranjith.gopalakrishnan@uef.fi

97 Page2o0f18

Annals of Forest Science (2020) 77: 97

been damaged during autumn and summer storms since
2000 (Kirha et al. 2018). This is a substantial amount con-
sidering that, for example, the average annual roundwood
removal in Finland in the past few years has been around
65 to 70 million m> (Vaahtera et al. 2018). The increased
amount of wind damage may at least partially be explained
by increasing volume of growing stock and changes in for-
est structure (e.g. age, size, tree species composition) due
to forest management interventions. Increasing forest dis-
turbances under a changing climate may even cancel out the
expected higher forest productivity (Reyer et al. 2017).

In boreal conditions, wind damage is most likely to
occur especially at stand edges adjacent to newly clearcut
areas or in recently heavily thinned older stands (Laiho
1987; Zubizarreta-Gerendiain et al. 2012). This is because
of the sudden increase in wind loading in such stands
(Gardiner et al. 1997). In general, older Norway spruces
(Picea abies [L.] Karst.) with shallow rooting are the
most vulnerable to wind damage, followed by Scots pines
(Pinus sylvestris [L.]). However, also broadleaves like
silver and downy birches (Betula pendula and Betula
pubescens) are vulnerable to wind damage in summer (with
leaves) unlike in late autumn or winter (without leaves)
(Zubizarreta-Gerendiain et al. 2012; Peltola et al. 1999).
The susceptibility of trees and tree stands to wind damage
is largely affected also by tree height, diameter/height
ratio, crown and rooting characteristics, stand density, and
site characteristics (Peltola et al. 1999; Dupont et al.
2015; Ikonen et al. 2017). Mitchell (2013) provides a
comprehensive overview of the contributing factors as well
as the impacts of such disturbances for forested areas.

At the regional level, the fragmentation of the landscape
(Zeng et al. 2007; Heinonen et al. 2009) and tree species
composition (Ikonen et al. 2017) affect the risk of wind
damage. For example, large height differences between neigh-
bouring stands increase the risk for wind damage as well
as a large proportion of Norway spruce dominated stands
(Heinonen et al. 2009; Valinger and Fridman 2011; Ikonen
et al. 2017; Zubizarreta-Gerendiain et al. 2012). The risk of
wind damage to forests may also increase in boreal conditions
under climate change even if the frequency and severity of
wind storms do not increase (Laapas et al. 2019; Feser et al.
2015). This is due to the shortening of the frozen soil period,
which still currently improves tree anchorage during the the
windiest season of the year from late autumn to early spring,
e.g. in Finland, from October to March (Laapas et al. 2019;
Peltola et al. 1999). On the other hand, topography and
surface roughness also affect the local wind climate (e.g.
mean wind speed, gustiness, and its duration), and thus, risk
of wind damage to forests (Venildinen et al. 2017).
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Mechanistic wind damage risk models offer the means
to predict the threshold wind speeds (critical wind speeds)
needed to uproot or break trees in alternative management
schedules, based on the characteristics of the subject stand
and its immediate neighbour stands (e.g., Peltola et al.
(1999), Peltola et al. (2010), Gardiner et al. (2008), and
Dupont et al. (2015)). They allow also the calculation
of the probability of wind damage based on local wind
characteristics (e.g. Byrne and Mitchell 2012; Seidl et al.
2014; Ikonen et al. 2017). Based on HWIND model
simulations (Peltola et al. 1999), Heinonen et al. (2009)
further on developed simple regression models, which may
be used to predict the threshold wind speeds needed to
uproot Scots pine, Norway spruce, and birch at upwind
stand edges in Finnish conditions. These predictions are
based on the characteristics of both the subject stand (tree
species, mean tree height, and breast height diameter to
height ratio) and the adjacent stand (mean height and
area of the stand), respectively. Others have also employed
statistical modelling (Schmidt et al. 2010; Albrecht et al.
2012; Kamimura et al. 2015; Suvanto et al. 2019) or
machine learning techniques (Hanewinkel 2005; Hart et al.
2019) to investigate and understand the risk of wind
damage.

Over the past two decades, airborne laser scanning
(ALS) has established itself as a versatile tool for forest
mensurationists and managers. For example, it has already
become part of large-scale forest inventory pipelines of
some countries, especially in the Scandinavian region
(Maltamo and Packalen 2014). It also shows potential
for being adapted for other diverse uses such as large-
area productivity assessment (Tompalski et al. 2015;
Gopalakrishnan et al. 2019), the characterization of streams
and riparian areas (Tompalski et al. 2017), habitat mapping
(Vierling et al. 2008), and general biodiversity assessment
(Miiller and Vierling 2014). ALS data has become an
integral part of Finnish forest management scene for the
past 10 years; it is used broadly (in combination with
aerial images) to formulate management plans of almost
all managed forests (including family-owned, company-
owned, and state) (Holopainen et al. 2014). This data is
collected on a periodical cycle jointly by the National Land
Survey (NLS) of Finland and the Finnish Forest Centre. The
current annual cost of this data collection and processing
is approximately 1 to 2 million euros. Hence, given that
a substantial amount of resources is spent annually in
collecting this spatially explicit and large-area dataset, it
is imperative that additional value-added uses of the data
(such as windstorm risk estimation) are systematically
studied. The ALS-based vertical structure of forests has
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been previously used to assess windstorm risk (Saarinen
et al. 2016). In a previous study, ALS data was used to
generate tree lists, which was subsequently used as input
to the ForestGALES forest wind damage model (Suarez
et al. 2008). But, to date, little effort has been dedicated
to explore the utility of ALS-based stand-level information
(and associated horizontal metrics) when coupled with a
forest wind risk model in assessing wind damage risk.
Meanwhile, the efficacy of such ALS-based horizontal
metrics in the context of forest analysis and management
has been highlighted before (Gopalakrishnan et al. 2018).

The objective of the present study is to determine the
utility of remote sensing—based forest stand information to
better estimate wind damage risks. Specifically, we try to
address the following research questions:

1. How useful are forest stand variables derived from ALS
and multispectral data (such as distance to upwind edge
and gap size) for identifying high wind damage risk
areas?

2. Can good estimates of critical wind speeds for
uprooting trees be derived from these variables?

3. Can the estimates of these critical wind speeds
be improved, when used in conjunction with wind
multipliers, thus including the effects of terrain
roughness and topography?

This set of questions will help us appraise whether ALS
and multispectral data collected over large areas (mainly
for land inventory purposes) can also be used to understand
patterns of wind damage risk over forests.

2 Materials and methods
2.1 Study area

Our study area is a large, forested area southwest of the city
of Joensuu, eastern Finland (Fig. 1). This area represents a
typical managed middle boreal landscape, with a dominance
of coniferous species. The main tree species present are
Scots pine, Norway spruce, silver birch, and downy birch.
A few other deciduous tree species such as aspen (Populus
tremula) and grey alder (Alnus incana) also occur in the
midstory canopy layers. The proportion of Norway spruce,
Scots pine, and broadleaves as measured by their growing
stock volume are 40.5%, 51.4%, and 8.0%, respectively.

2.2 Remote sensing datasets used

Lidar data Airborne laser scanning (ALS) data was col-
lected over the study area using the Leica ALS60 laser
scanner system between 30™ April and 3™ May, 2016. This
instrument is able to record up to four echoes for each
emitted pulse (including intensity measurements). The asso-
ciated mean flying height was 2400 m above ground level,
the scanning angle was +20°, and a side overlap between
flight strips was approximately 20%. This flying config-
uration resulted in a nominal sampling density of about
0.9 emitted pulses per m>. A digital terrain model (DTM)
was constructed by first classifying points as ground and
non-ground returns using the approach described by Axels-
son (2000). A raster DTM of 2 m spatial resolution was

Fig.1 (a) The location of the
study area in Eastern Finland is a
marked by a red star in the inset
(small) map. It is located in the
municipality of Liperi, and is
around 43,000 ha. The main
map shows the outline of the
study area, in red. The image
enclosed is an aerial
photomosaic of 2016, indicating
the major land cover types
present. (b) An ALS-derived
canopy height map over the
study area, indicating vegetation
and land cover heights
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then obtained by computing the mean of the ground echoes
within each raster cell. Values for the cells with no ground
echoes were interpolated using Delaunay triangulation and
triangular interpolation.

Aerial photographs Aerial images were acquired over the
study area by the National Land Survey of Finland on
23 and 24" of May 2016 using a DMC Z/I Intergraph
(01-0128) digital aerial camera. The focal length of the
camera was 30 mm and it had four spectral bands: red,
green, blue, and near-infrared. The associated flying height
was 4100 m above the ground level. The camera had
3456 x 1920 pixels for the multispectral bands, resulting
in a ground sampling distance of approximately 160 cm.
External sensor orientations were determined by the bundle
block adjustment technique, using both ground control
points and tie points.

Two remote sensing products were used in this study:
(1) microstand forest data and (2) gridded forest data.
The microstand data was provided by Blom Kartta Ltd.
The gridded data is publicly available as part of a data
distribution service maintained by the Finnish Forest Centre
(Finnish Forest Center (2019)).

Microstands are smaller and more homogeneous than
conventional stands used in silviculture. They are created by
means of image segmentation. Here, the segmentation was
based on a fused version of the ALS and aerial image data.
Initial segmentation was done using the Trimble eCognition
program. Then, Chaikin’s algorithm as implemented in
GRASS GIS (GRASS Development Team (2017)) was used
to slightly smooth the segment borders. These smoothed
segments were then divided into smaller parts, which we
call nanosegments. Nanosegments are comparable with
cells in conventional ALS inventories. The benefit of using
nanosegments is that they do not cross the microstand
borders; i.e. problems with ‘edge cells’ are avoided.
The process of creating microstands and nanosegments is
described more detailed in Pascual et al. (2019). Forest stand
attributes were then predicted to nanosegments and then

Fig.2 (a) A sample forested
area delineated into microstands
(red border polygons). It can be
seen that the forest area inside
each such polygon appears
relatively homogeneous. (b
Dominant height associated with
each polygon is indicated. The
height of some areas is indicated
in the figure, for reference
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aggregated to the microstands (see Maltamo and Packalen
(2014)). Thus, the final output of this segmentation-based
process is the partitioning of the forest landscape into
microstands, each being associated with a set of forest
attributes. In this work, we used the dominant canopy height
and stand density attributes from each microstand. Here,
dominant height is defined as the mean height of the 100
tallest trees per hectare. See Fig. 2 for an illustration of
microstands, and their dominant heights.

The gridded forest data consists of high-resolution (cell
size 16x 16 m) forest attribute data from the Finnish Forest
Centre (Finnish Forest Center (2019)). This again involves a
fusion of ALS data and aerial images. Forest attributes were
predicted for each such cell, similar to predictions made for
each nanosegment in the case of microstands. We used three
attributes from this dataset for our study, namely the main
tree species, median height, and median diameter.

2.3 Field-observed wind damage data

Various locations in the study area were visited by an
inventory crew during June to September, 2016. This was
part of an independent inventorying effort. While travelling
through the forest, they recorded several locations where
recent wind damage to forest stands was observed (i.e.
damaged within the last 2-3 years). This time-interval was
assessed by the field crew by examining leaf or needle
attachment and stem tarnishing patterns. The field crew
identified wind damaged areas by noting that at least one
uprooted tree was found on the ground. In some cases, as
many as 20 uprooted trees were found on the ground at the
damaged spot. Hence, snow damage (where trees are bent
or broken in a characteristic manner, and typically involve
fewer trees) can be ruled out on all sites. The location
of each such wind damaged spot was recorded using
a standard, consumer-grade, GNSS-enabled smartphone
(estimated location accuracy is =5 m). In some cases, high-
resolution satellite images coupled with visual inspection
of the site were used to correct the geolocation of the
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observed wind damage areas. As the field crew were not
sampling systematically the whole study area, such damage
locations constitute only ‘presence-only’ data in contrast to
presence-absence data (to be discussed later).

From this dataset, we first discarded locations where only
two trees or less had been uprooted or broken. Then, we
applied the following additional criteria: (1) The locations
should be in forested stands, with a (microstand) dominant
height of at least 16 m, and (2) they should be at least be
100 m away from each other (as to minimize autocorrelation
effects). In Finland, young forest stands (height <16 m)
have very low possibility of wind damage (Zubizarreta-
Gerendiain et al. 2012), hence the height cutoff. After this
screening step, we were left with 42 locations of observed
wind damage, spread over the study area.

2.4 Wind climate and wind multiplier data

Our field observations for wind damage data were from 2016,
and therefore we ascertained the windstorm directions that
could have been associated with such damaging events.
From the observed wind climate data of 2014-2016 (Valta
et al. 2019), we identified that windstorm magnitudes were
strongest along three directions: west, northwest, and north.
Hence, there is a strong possibility that the recorded wind dam-
age had been caused by winds primarily along these directions.

We also downscaled regional meteorological wind
speeds (i.e. either from the local weather station or
from reanalysis) to local wind speeds, considering the
effects of topography and surface roughness (land cover)
characteristics. This was done using the wind multiplier
approach (Venildinen et al. 2017). In this approach, the
upwind characteristics of the local topography and surface
roughness in a 20-m grid were taken into account via
topographical wind speed multiplier (fm) and roughness
wind speed multiplier (rm), respectively. In tm, the small
scale variations of topography in a 1000-m upwind fetch
from the point on interest, e.g. the wind speed accelerating
effect of upward slope, as well as the general increase of
wind speed as a function of elevation were considered. In
rm, surface roughness of a 500-m upwind fetch was used to
calculate effective roughness with larger weight closer the
point of interest. The development of the wind multipliers
used in this study has been described earlier in more detail
(Veniéldinen et al. 2017).

2.5 Calculation of critical wind speeds for uprooting
of trees using remote sensing data

The critical wind speed (cws) required for causing damage
to a tree can be defined as the threshold wind speed
needed to uproot or break the tree. It inherently depends

on the properties of individual trees and forest stands
in consideration. In this study, we calculated the cws
needed for uprooting of trees by using a regression model
(Heinonen et al. 2009), which was developed based on
calculations using a mechanistic wind damage model
(HWIND, see Peltola et al. (1999)) under various stand
and forest configurations. We use the simplified regression
version of HWIND so as to make our task computationally
tractable and hence scalable over large areas.

The wind direction is an important driver of critical
wind speed estimates at any given forested point. This is
because the cws at the point depends on the shelter provided
by neighbouring stands and the size of upwind gap, both
of which may differ largely depending on wind direction
(Gardiner et al. 1997) . In this work, we considered winds
blowing in from eight different directions, namely north
(N), northeast (NE), east (E), southeast (SE), south (S),
southwest (SW), west (W), and northwest (NW). For each
forested point considered, we could hence calculate eight
different cws values from the north to the northwest: cwsy
(critical wind speed at the point, considering that the wind
is blowing from the north), cwsyg, cwsg, cwssg, cwss,
CWSSW, CWSW, CWSNW -

For the calculation of cws at any forested point, we first
fixed the wind direction under consideration as one of the
eight mentioned above (N, NE, E,...). Then, we executed
several steps, a brief outline of which is given in Table 1.
These steps are then replicated for all eight wind directions.
We restricted ourselves to these eight for simplicity; the
wind direction could be any arbitrary vector between 0 and
360°. The implementation of the steps in Table 1 was done
using several scripts written in the python programming
language (version 2.7.10) and the R programming language
(version 3.5.1), and with the help of ArcPy GIS modules
(version 10.4.1).

2.6 Calculation of threshold meteorological wind
speeds (tmws)

For our study area, wind multiplier data is available for each
of the eight directions (see Section 2.4). Consider a steady
wind from the north. Consider that the meteorological
wind speed (i.e. measured at the local weather measuring
station using standard techniques) is mwsy. In this
case, we have two wind speed multipliers available
along this wind direction: (1) tmy: Topographical wind
speed multiplier (north direction), (2) rmy: Roughness
wind speed multiplier (north direction). Hence, the ‘wind
multiplier modified’” wind speed at our point of interest
can be calculated by multiplying these three values. And
tree uprooting is highly probable if this calculated wind
speed exceeds the critical wind speed cwsy needed to cause

I N R A@ @ Springer
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Table 1 Outline of the five steps taken for calculation of the critical wind speed (cws) any given forested point

Num.

Step description

The distance to the edge of the forest stand for the given point inside the given stand is estimated from the ALS-based forest
microstand data. This is along the upwind direction, and is denoted as distToEdgey, distToEdgenE, ... depending on the
wind direction considered. This estimation is done by constructing a transect along the upwind direction and scanning and
analysing the profile of canopy height along it. Canopy height is uniform within a microstand, and changes (rise/drop) occur
along the transect only during transitions from one microstand to another. A sudden and steep drop in canopy height, followed
by a sizable ‘gap’ (i.e. relatively low vegetation height), signalled the location of the edge of the forest stand. We used a height
percentage threshold to identify such steep drops: if the canopy height drops by more than 25% when transitioning between
microstands, it was deemed to be a ‘steep drop’. The stand density and dominant height (dom HtStand) at the given point is
also extracted from the microstand attribute data.

The gap size (again, along the upwind direction; either of gapizey, gapizenE, ...) is also estimated from the microstand data.
This was done by extending the transect (described above) beyond the forest stand edge and analysing the profile of canopy
heights. The gap was considered ‘closed’ when there was a sudden, steep rise in canopy height when transitioning from one
microstand to another. Here too, we used a height percentage threshold to identify such ‘steep rises’. That is, if the canopy
height reached at least 80% of the original height (i.e. before the drop of step 1), the gap was considered closed. This gap
could be several land covers such as short seedling stands, agricultural fields, fallow plots, powerline clearings, roads, or water
bodies. See Fig. 3 for an illustration of steps 1 and 2.

The height of the surface/vegetation in the upwind gap/lower stand (i.e. sheltering stand) identified above is computed. This
is the average height of the vegetation in the gap.

Several forest variables are derived from the fine-resolution (16m) gridded data from the Finnish forestry centre. There, a
combination of ALS data and aerial image data was used to estimate several species-level forest parameters (Maltamo and
Packalen 2014). From this dataset, we derived: 1. Tree species: This is one of the following three: Scots pine, Norway spruce,
or birch species; 2. Taper: This was defined as dbh/height, based on basal area weighted median diameter (DGM) and height
(HGM); and 3. The basal area weighted median height (HGM) (i.e. tree height).

If the point under consideration is very near the edge (i.e. less than 2.0 tree heights distance to the edge), the critical wind
speed for uprooting is calculated using the regression model described in Heinonen et al. (2009). The variables used are tree
species, taper (dbh/height), tree height, distance to the upwind edge, and size of the adjacent gap (estimations of which are
described above). If the point is far enough inside the stand (more than 2.0 tree heights distance to the edge), the calculated
cws is scaled as a function of the distance to the upwind edge and the stand density (based on Peltola et al. (1999), table
3). Based on this approach, the cws needed to uproot a tree increases when the distance to the upwind edge increases. The
stand density affects cws less than the distance to the upwind edge, i.e. cws is only slightly increasing when stand density is
increasing and vice versa.

A suitable wind direction has been assumed/fixed. Microstands are assumed to be equivalent of forest stands

damage (mwsy *tmyxrmpy > cwsy). We can re-formulate
this inequality to define:

tmwsy = — N (1)

tmy xrmpy

where tmwsy is defined as the threshold meteorological
wind speed, for the north direction. This threshold, which is
defined at any given forested point, is the wind speed needed
at the local meteorological station along the given direction
above which the critical wind speed at the damage point
in question, along the given direction, is exceeded. Thus,
we can define this threshold by dividing corresponding cws
value with the associated wind multipliers.

We further explain the utility of the concept of threshold
meteorological wind speed using Fig. 4. In that figure, we
assume that the cws values computed at points 1 and 2
are 18 m/s and 15 m/s, respectively (as indicated). Further,
we assume that the corresponding topographic multipliers
are 1.8 and 1.2, respectively. Hence, tmws needed for the
southwest direction would be 10 and 12.5 m/s. Here, a

@ Springer I N R A@

tmws value of 10 m/s at point 1 means that a southwest
wind of speed 10 m/s or higher as measured at point 3
(the meteorological station) would cause the critical wind
speed threshold being breached at point 1. Point 1 has a
higher critical wind speed in the southwest direction than
2. Hence, it would be considered less vulnerable, in the
absence of wind multipliers. But we calculated that point 1
has a lower threshold meteorological wind speed (tmws),
which makes it more vulnerable than 2; the local ridge
topography increases the vulnerability of point 1.

All variables calculated can be seen in Table 2.

2.7 Validation of the approach

Outlines for validation We used the set of 42 damaged
points (see Section 2.3) to validate the efficacy of variables
(calculated above) for wind damage risk assessment. As
this was a relatively low number of points, we used all
of them for model formulation and validation, rather than
keeping aside a proportion for independent testing of our
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Fig.3 Illustration of the
estimation of distance to edge
and gap size for several points.
In all cases, the wind is assumed
to originate from the southwest.
(a) (Top left) The distance to
edge of two sample points is
shown, as calculated by
constructing a transect along the
upwind direction. Here (as in b),
the graduated colours indicate
dominant height, the associated

symbology is the same as (c).
(b) (Top right) The gap size
associated with two similar
sample points is depicted. (c¢)
(Bottom panel) The estimated
distance to edge and gap size of
several points (black dots) inside
forest stands is shown. For any
point, the red segment
corresponds to the distance to
edge. Likewise, the blue segment
corresponds to the gap size. For
points marked with text ‘1, 2°,
the associated ‘distance to edge’
is low while the gap size is high.
This contributes to higher wind
damage vulnerability. Again, for
points marked with text ‘3, 4°,
the associated ‘distance to edge’
is high while the gap size is low.
This sheltering effect, in turn,
contributes to lower damage
vulnerability

Dominant ht (m)

[ Joo-20
[ ]20-160
[ 1160-200
[ 200-25.0
I 25.0-320

models. Hence, the strength of the formulated model, as
evaluated using fit statistics, was the sole criteria to evaluate
the goodness of fit of our models. As mentioned before, an
analysis of the wind speed and direction data for the years
of 2012 to 2016 suggested that the damaging storms for that
period for our study area had originated from either west,
northwest, or north. Hence, variables associated with these
wind directions were studied in more detail in the analysis
below.

We also evaluated the suitability of several sets of vari-
ables (see Table 2) to distinguish between these 42 damaged
points, versus random (assumed non-damaged) forested
points. We used two different and complementary mod-
elling frameworks to evaluate the suitability of variables.
The first was the maximum entropy modelling framework
(usually abbreviated to maxent), a non-parametric, machine

500 Meters

learning method (Phillips et al. 2006). The primary moti-
vation for selecting maxent was its correct handling of for
presence-only data, such as ours. For good discussion of the
use of presence-only data and associated issues, see Gomes
et al. (2018). Maxent models are built to discern and dif-
ferentiate between the predictor variables at wind damage
(‘occurrence/presence’) areas and those for the whole study
area (i.e. the ‘background’). It has been used extensively
to study the factors behind observed biotic species distri-
bution patterns (Elith et al. 2011), as well as for several
observed abiotic phenomena such as wildfires (West et al.
2016; Parisien et al. 2012), landslides (Chen et al. 2017,
Convertino et al. 2013), and even windstorms (Wade et al.
2015). Hence, it is well-suited to model wind damage occur-
rence over our study area. The second framework was the
simple and straightforward approach of logistic regression
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Fig.4 (a) Illustration of the
modification of the critical wind a y 9 }
speed (cws) by wind multipliers =

(1) (southwest wind). The map > i
colours represent the topology ]
over the study area: e.g. red
spots denote small hills. We
assume that the roughness
multiplier rmgw is uniformly
equal to 1.0 over this area
(tmwssw = cwssw /tmsw).
Labels 1 and 2 represent two

forested points, label 3 the local
meteorological station. (b)
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(LR) (Hastie et al. 2013). LR has been previously used to
model snow and wind damage (Canham et al. 2001; Saari-
nen et al. 2016; Valinger and Fridman 2011) and we use it
as a second (simpler) alternative in this study.

Maxent requires a large number of ‘background’ points,
over where there is high probability that no wind damage
has taken place. Essentially, in this framework, the predictor
variable distribution at the occurrence points is contrasted
with that at the backgro und points, and a suitable model that

Table 2 The set of metrics computed at each forested point

mimics these two distributions is formulated. For generating
such background points, we randomly distributed several
points over the study area constrained by two criteria. These
criteria are similar to the ones outlined in Section 2.3 and
are: (1) They are in forested stands, with a (microstand)
dominant height of at least 16.0 m. (2) They are at
least 100 m away from each other, and from any of
the 42 locations of observed wind damage (again to
minimize autocorrelation effects). This resulted in 4441

Variable

Description

From GIS considerations

of microstand height data:
distToEdgey, distToEdgenE, ...
(eight of them)

gapizey, gapizenE, ...

From the regression-based
critical wind speed model:

CWSN, CWSNE, CWSE, ...

After modification with wind
multipliers:

tmwsy, IMWSNE, IMWSE, ...

Distance of the target tree from the indicated upwind stand edge.
For example, distToEdgey is the distance to the associated edge
when the wind direction is from the north.

This is the size of the gap (in metres) in the indicated upwind
direction. For example, gapizey is the size of the associated

gap when the wind direction is from the north.

Critical wind speed (for various wind directions). For example,
cwsy denotes the critical wind speed calculated at

the point, assuming that the wind is blowing from the north.

Threshold meteorological wind speed.
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background points. The wind damage in our study area was
limited to several small patches and there was absence of
blowdown over large areas. Hence, there is an extremely
high probability that such a randomly chosen forested spot
would not be wind damaged.

Statistical analysis of computed values We first analysed
whether forest parameters related to wind damage were
significantly different between damaged and background
(assumed as ‘non-damaged’) points. This analysis was done
separately for each of the eight possible wind directions,
keeping in mind that the wind direction is a major driver
of the associated spatial risk pattern. We used the Kruskal-
Wallis ranked-sum test to compare the points (Hollander
and Wolfe 1973). This test is whether there is a significant
difference between the population medians, for the two
given groups.

Suitability of critical wind speed estimates in predicting
wind damage We first used the following three predictor
variables to model occurrence odds in the maxent model:
cwswy, cwsyw, cwsy. We ensured that the cross-correlation
(Pearson’s coefficient) between any of these variables was
lesser than 0.6, before model fitting. Also, all predictor
variables were scaled and normalized before being used in
the model. That is, they were scaled so that their mean was
0.0 and standard deviation was 1.0. This was done to make
the inter-comparison between them (i.e. their effect sizes)
more intuitive.

To evaluate maxent model strength, we primarily used
two metrics: the gain and the area under receiving operating
characteristics curve (AUC). The gain is an indication
of how closely the model is concentrated around the
presence samples. For example, a gain of 2.0 signifies
that the average likelihood calculated by the model over
the presence samples is 7.38 times (¢>?) higher than at
the background locations (Phillips 2005). The AUC is a
measure of a model’s ability to separate presence points
from the background (Hastie et al. 2013). An AUC value of
0.5 or lesser suggests that the model-based predictions are
not better or worse than random ones. Meanwhile, values
between 0.5 and 0.7 indicate poor performance, while
values increasing from 0.7 to 1.0 suggest progressively
higher performance (Anderson et al. 2003). We also decided
to use the default value of 1.0 for the regularization
multiplier parameter in maxent, to avoid overfitting. It
should be noted that the output (response) of the maxent
model is an index of suitability (as a function of the
predictor variables), and should not be interpreted as
probability of occurrence. We also plotted and compared
response curves for each predictor in the model. These
curves indicate the dependence of the response variable to

the selected predicted variable, keeping all other predictors
constant, at their average value. If the maxent model was
considered to have good predictive power, we opted for
a ‘jackknife test’ of variable importance. This essentially
involves excluding predictor variables and assessing the
drop in model fit statistics (Phillips 2005).

In the case of LR too, we used the entire set of 42
damaged points and 4441 background points mentioned
above to formulate the model. It is possible to use LR
in understanding the underlying relations (even with such
unbalanced datasets) (King and Zeng 2001) although the
results should be treated with some caution. All LR
regression coefficients (except the intercept) are well-
estimated from an unbalanced dataset such as ours (Hosmer
and Lemeshow 2000; King and Zeng 2001); hence, the
relative importance of predictors can be estimated. Again,
the discriminating ability of the LR models was tested
using the non-threshold-based metric of AUC (Hosmer and
Lemeshow 2000). As in the case of maxent, all predictor
variables were normalized to make inter-comparisons easy.
LR coefficients are easy to interpret, and they represent
the change of the odds of the event of interest (i.e. wind
damage, in our case) for a unit change in the predictor
variable. Again, the associated sign indicates whether the
odds increase or decrease for increase in the variable
considered.

Suitability of tmws speed estimates in predicting wind dam-
age Here, the maxent and logistic regression modelling
frameworks were fitted with rmws-based predictor vari-
ables. All other steps taken were the same as described
above. We hypothesize that the fit will be slightly bet-
ter in this case as local topography and roughness-based
effects (i.e. speeding up or slowing down of winds) are thus
factored in.

Suitability of forest stand variable estimates for predicting
wind damage Here, we used a more direct approach, using
a carefully chosen set of forest stand variables to model
wind damage risk (the ‘direct variables approach’). We
decided to use a parsimonious set (i.e. only 4) of inde-
pendent variables, considering that the number of wind
damaged points was limited (‘rule-of-10’, see (Hosmer and
Lemeshow 2000)). Also, we selected variable for which
robust estimates were possible from the remote sensing
data. Also, we kept in mind that the wind climate data
(Section 2.4) suggests the importance of three wind origin
directions (i.e. W, NW, N). Hence, we tried out (sepa-
rately) three sets of independent variables: (1) isSpruce
(dummy variable) + domHtStand + distToEdgew +
gapizew, (2) isSpruce (dummy variable) + dom Ht Stand
+ distToEdgenw + gapizenw, (3) isSpruce (dummy
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Table 3 Test of significant difference between damaged and non-damaged points, for various wind directions

N NE E SE S SW W NwW
Distance to edge 0.2453 0.4187 0.6010 0.6662 0.1482 0.8891 0.9931 0.0642
Vegetation height in upwind gap 0.0365 0.5948 0.0801 0.0251 0.5119 0.2207 0.5737 0.9004
Upwind gap size 0.9288 0.6370 0.0828 0.0801 0.2393 0.6831 0.6822 0.9270
Critical wind speed 0.0874 0.0834 0.5362 0.5525 0.3646 0.0210 0.0294 0.0015
Th. met. wind speed 0.9791 0.7783 0.8698 0.8380 0.3367 0.2247 0.1718 0.0463
Th. met. wind speed (topography only) 0.5376 0.7533 0.8694 0.5787 0.3359 0.1619 0.2332 0.0485
Th. met. wind speed (roughness only) 0.5305 0.6074 0.6341 0.4425 0.2476 0.1319 0.1172 0.0065

Here, ‘“Th. met. wind speed’ stands for ‘threshold meteorological wind speed’. Values that are significant at the 0.05 level are highlighted (bold).
These values indicate the significance of the difference: for example, the value of 0.2453 in the first column is associated with the distance to edge
of damaged versus background points (the two groups), considering a northerly wind. Hence, this high p value implies that the difference in the

distances to the south edge is not significant

variable) + domHtStand + distToEdgey + gapizen.
Here, isSpruce is an indicator (dummy) variable indicat-
ing whether the gridcell is dominated by Norway spruce,
and domHtStand is the average dominant height in the
microstand segment. The first set above assumes that the
damaging winds originated from the west, and hence points
nearer to the forest stand edge on the eastern side of a gap
were more susceptible to damage.

3 Results

3.1 General differences between the damaged
and background points

We estimated wind damage risk-related parameters listed
in Table 2 using the remote sensing data, for 4483 points
(i.e. 42 wind damaged and 4441 background points). This
was done for all eight different wind directions mentioned
in Section 2. We then used the Kruskal-Wallis test to
detect significant differences between the damaged and
background points (Table 3). Four of the seven variables
were significantly different between the damaged and
background cases in the northwest direction, which is the
highest proportion among the eight directions. Similarly,
there were significant differences noticed for critical wind
speed along the southwest and west directions, too. These
results imply that the damage observed was mostly caused
by winds from the northwest direction, although some
damage may be associated with other directions as well. The
distance to the stand edge is significantly different (p < 0.1)
in the northwest direction, suggesting that this factor has
probably contributed to observed damage. The magnitude
of the differences of some notable entries of Table 3 can be
seen in Fig. 5.

@ Springer I N R A@

3.2 Classification models

Our estimates of critical wind speeds were fairly suitable (in
a modelling context) for differentiating between damaged
and background points (Table 4). Models formulated using
both maxent and logistic regression frameworks were better
than null models (i.e. AUC values were larger than 0.5).
Likewise, threshold meteorological wind speed estimates
yielded fair, but weaker, models. The ‘direct variable
approach’ of using forest variables as predictors yielded
better overall goodness-of-fit numbers than in the previous
case (Table 5). With maxent, AUC values varied between
0.645 and 0.696, which indicated a good fit with observed
data. The gain here is an indication of how closely the model
is concentrated around the presence samples. In our case,
the model gain of 0.171 for the northwest direction in Table
5 means that the average likelihood calculated by the model
over the presence samples is 1.19 (¢%17!, see Section 2.7)
times higher, or 19% more, than that at a background
point location. The logistic regression models also produced
AUC values that were were quite similar to maxent, which
implies that the basic structure of these models was quite
comparable.

The response curves associated with the maxent model
for the northwest direction can be seen in Fig. 6. We focused
solely on this direction, both for the sake of brevity and
because it was associated with the most robust models.
Variable importance assessed via the maxent model, listed
in the descending order, is: dominant height is highest
(44.8%), distance to edge (northwest) is next (24.1%),
gapsize (northwest) is next (23.7%), and ‘isSpruce’ has
very low contribution (7.5%). Similarly, the effect size for
various variables in the logistic regression-based models
(of Table 5) is reported in Table 6. It should be noted that
the sign of all effect estimates is logical and in agreement
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Fig. 5 Differences in remote sensing estimated values between the
damaged and background set of points, for the northwest wind direc-
tion. The median values for distance to edge are: 64.0m (damaged
points) and 103.7m (background points); for upwind gap size: 43.6m
(damaged) and 39.0m (background); for vegetation height in upwind

with previous results. This is except for gap size, where
an increase in gapsize seems to be implausibly associated
with lowering risks. We further explore the northwest
wind direction model, as it has the best goodness of fit
characteristics, see Table 7.

4 Discussion

4.1 The utility of ALS and aerial image data in wind
damage risk assessment

The overall results of our analysis indicate that ALS-based
tree and stand characteristics have potential to be used in
assessing spatial patterns of wind damage risk to forests.
Canopy height has already been deemed important by
many previous studies (Miller 1986; Mitchell et al. 2001;
Albrecht et al. 2012; Locatelli et al. 2016; Diaz-Yaiez
et al. 2017) as has been the distance to the upwind forest
stand edge (Suvanto et al. 2018; Zubizarreta-Gerendiain
et al. 2012; Peltola et al. 1999). The compelling additional
contribution of this study is that we have outlined a new
method to estimate these meaningful metrics over large
forested areas using ALS and aerial image data. A major
advantage of our dataset was that forest structure (both

== Em

0-

Vegetation height in upwind gap (m)

background

background damaged

gap: 6.8m (both damaged and background). This illustrates that the
damaged points were closer to stands edges, and were associated with
slightly bigger upwind gaps. A number of points had large upwind gap
sizes (i.e. more than 200m) because of the lakes and the large clearings
in the study area

vertical and horizontal) was well represented, and this was
solely because of the usage of ALS data. Both ALS and
aerial image datasets comparable with the ones used in this
study are available over the whole of Finland (Holopainen
et al. 2014); hence, the methodology outlined has the
potential for expansion to much larger areas. Based on
our study, significant differences were seen along the west,
northwest, and north directions for the critical wind speeds
and consequently wind speeds needed for the damage at
certain forested point at the local meteorological station
(Table 3). This is inline with the fact that recent storms
over the study area had tracks along those directions (Valta
et al. 2019). Also, the distance to upwind stand edge
was a significant variable (p value is 0.0642). Contrary to
expectations, wind multipliers had less predictive value in
our analyses, probably at least partially due to the relatively
flat topography of the study area.

We used also two different analytical approaches (i.e.
maxent and logistic regression) towards quantifying the
relative importance of several sets of predictors. However,
the results from these contrasting frameworks were roughly
the same. Overall, the models formulated had only fair
goodness of fit statistics, partly because of the low number
of validation points available to us. Models based on the
estimated critical wind speed were slightly less predictive

Table 4 Model accuracy statistics using critical wind speed and related metrics

Maxent Logistic regression
Prediction variable set AUC Gain AUC Comments on variable significance
CWSW + CWSNW + CWSN 0.648 0.028 0.632 Lowest p value associated with cwsyw is 0.23674
tmwswy + tmwsyw + tmwsy 0.595 0.012 0.598 All p values greater than 0.3
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Table 5 Goodness-of-fit measures associated with the direct-variable modelling approach

Maxent Logistic regression
Prediction variable set AUC Gain AUC Num. variables significant
isSpruce + domHtStand + distToEdge (west) 0.680 0.028 0.649 1
+ gapSize (west)
isSpruce + domHtStand + distToEdge (northwest) 0.696 0.171 0.679 1
+ gap Size (northwest)
isSpruce + domHtStand + distToEdge (north) 0.645 0.087 0.645 1

+ gapSize (north)

as those directly based on forest stand variables. This result
may be due to several reasons. As for the ‘direct variables’
models, it was found out that the dominant height was
highly predictive of the susceptibility to wind damage. Both
upwind distance to stand edge and gap size variables were
only moderately predictive. One reason for this could be that
we did not distinguish in this study between temporary and
permanent gaps. Temporary gaps are those created by forest
clearcuts, logging decks, or such; they create vulnerable
trees at the edge. On the other hand, permanent gaps are
those associated with agricultural fields and lakes that are
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Fig. 6 Response curves for the four predictor variables of the max-
ent model (northwest). The Y-axis of each curve gives an index of
suitability, very similar to the probability of wind damage occurrence.
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less vulnerable (for example, see Zubizarreta-Gerendiain
et al. (2012)). In future studies, the ‘age’ of the gap (for
example, a newly formed clearcut versus an agricultural
field that has been in existence for decades), could be
taken account in the predictions. Also, from Fig. 6¢, one
can see that in the maxent model (northwest), gap size
increases susceptibility to damage at small values, but again
decreases it at larger values. This could be due to the fact
that smaller gaps are associated with clearcuts and logging
decks (temporary) while larger ones are associated with
large agricultural clearings and lakes (permanent).

S5 40 05 00 05 10 15 20 25 20
Distance to edge (NW)

Logistic output

isSpruce (dummy variable)

The X-axes are normalized versions of the following variables: Domi-
nant height of the microstand (a), distance to edge, NW direction (b),
gapsize, NW direction (c), ‘isSpruce’ (d)
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Table 6 Effect sizes of LR, by direct use of forest variables

Estimate Std. error z value Pr(>|z|)
Wind direction: West
Intercept -4.961 0.243 -20.461 <0.0001
isSpruce 0.395 0.330 1.198 0.231
domHtStand 0.420 0.149 2.814 0.005
distToEdgew 0.171 0.148 1.150 0.250
gapizew -0.133 0.186 -0.713 0.476
Wind direction: Northwest
Intercept -4.970 0.244 -20.370 <0.0001
isSpruce 0.321 0.328 0.978 0.328
domHtStand 0.388 0.147 2.638 0.008
distToEdgenw -0.309 0.199 -1.552 0.121
gapizenw -0.294 0.213 -1.381 0.167
Wind direction: North
Intercept -4.919 0.238 -20.677 <0.0001
isSpruce 0.302 0.330 0.915 0.360
domHtStand 0.377 0.150 2.517 0.012
distToEdgey -0.142 0.181 -0.786 0.432
gapizen 0.015 0.147 0.099 0.921

Here, isSpruce is a dummy variable, indicating the presence of spruce trees. All other variables are continuous, and have been standardized so

that they have a mean of 0.0 and a standard deviation of 1.0

Values that are significant at the p = 0.05 level are highlighted (boldface)

Table 7 Effect sizes of alternate LR models, obtained by successive elimination of least significant variables

Estimate Std. error z value Pr(>|z|)
Four variables:
Intercept -4.970 0.244 -20.370 <0.0001
isSpruce 0.321 0.328 0.978 0.328
domHtStand 0.388 0.147 2.638 0.008
distToEdgenw -0.309 0.199 -1.552 0.121
gapizenw -0.294 0.213 -1.381 0.167
Three:
Intercept -4.822 0.181 -26.667 <0.0001
domHtStand 0.429 0.142 3.012 0.003
distToEdgenw -0.323 0.199 -1.622 0.105
gapizenw -0.292 0.213 -1.375 0.169
Two:
Intercept -4.790 0.176 -27.193 <0.0001
domHtStand 0411 0.142 2.892 0.004
distToEdgenw -0.311 0.201 -1.548 0.122
One:
Intercept -4.750 0.169 -28.055 <0.0001
domHtStand 0.440 0.142 3.099 0.002

Here, the northwest wind direction model from Table 6 is taken, and further analysed/simplified

Values that are significant at the p = 0.05 level are highlighted (boldface)
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4.2 Relevance of wind climate and direction

We observed a pattern of prominence of the northwest
direction when significant differences were estimated
between various stand-related metrics (Section 3). Our
findings broadly indicate that the wind direction assumed
is highly important in determining the spatial pattern of
(future) storm damage risk. Hence, accurate projections
of future windstorm climate are essential. In general, for
the present climate, most wind storms over the study area
are either along the west, northwest, or north directions,
although rare easterly wind storms also occur (Valta et al.
2019). In a recent study by Ruosteenoja et al. (2019), it
was found out that climate change will not have any major
impact on wind direction during wind storm events. During
the late autumn, westerly winds may slightly increase, but
this is the prevailing direction also in the recent past climate.

4.3 Limitations of estimates and avenues
for improvement

Our critical wind speed estimates were rather inaccurate.
This is because they were only fairly predictive in
distinguishing between damaged and non-damaged points
(Section 3). It has been shown by earlier work that
inaccuracies in the target tree characteristics (i.e. height or
diameter) or other parameters that influence the magnitude
of the wind loading experienced at the tree level can
greatly influence the estimated wind speeds needed for
uprooting (Peltola et al. 1999; Zeng et al. 2006). In our
study, for example, the individual tree-level taper was
generally overestimated, mostly because of the particulars
of taper estimation from the forest centre’s gridded data
(Section 2.5). For any individual tree in each 16-m gridcell,
we had computed taper as: DGM/HGM, where DG M and

25-

% trees

Error in taper (cm/m)

a

Fig. 7 a Histogram of the error in taper (the difference between the
taper calculated at the tree level and the taper calculated at the plot
level) for plots examined. At the tree level, taper is calculated as the
ratio between the individual tree’s diameter and height, while at the
plot level, it is calculated as the ratio between DGM and H G M. Many

2 s INRA@

HGM are diameter and heights at the gridcell level. Such
an averaging at the gridcell level can lead to biased taper
estimates.

To understand this effect further, we looked at forest plot
data that had been collected over the same area in 2016.
From the total set (592 plots), we first selected plots that
had HGM values greater than 16.0 m, and then randomly
selected 50 from that set. There was a total of 1450 trees
distributed among these plots. For each tree, we computed
its taper (diameter/height). We then computed the difference
in this taper value and the taper estimated at the plot level
(DGM/HGM) (i.e. taper_plot-taper tree). This value
represents the error in taper estimation, for that single tree.
Then, histograms of these error values (considering all
1450 trees) were made (Fig. 7). A positive bias in plot-
level taper estimation can be seen. In many cases, taper
is overestimated by more than 50%. Keeping in mind that
plots here correspond to the 16-m forest centre gridcells
that we used, one can understand that our taper values may
not be representative of individual tree tapers. They may
have led to cws values being overestimated in many cases.
Predicting taper (by DBH) by remote sensing remains a
challenging task. In most cases, allometric models are used
to predict DBH from other variables such as tree height.
But this ignores tree density and silvicultural history and
hence tend to be inaccurate (Maltamo et al. 2014). Another
possible reason for the error in taper is that ALS data was
collected in 2016, after many of the damage-causing storms
had happened.

Another important factor that we could not include in our
work was the effect of soil type. According to one recent
study, the HWIND model tends to overestimate the wind
speeds required to uproot trees for soils associated with
shallow rooting (for example, partly open bedrock or poor
drainage soils) while underestimating those with permanent

20-

-50 0 50 100
Relative error in taper (%)

b

error magnitudes are large, considering that taper typically varies
between 0.7 and 1.5. b Histogram of the relative error of taper (%),
where ‘error’ definition is the same as that in a. The median value is
2.9%
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edges, respectively (Zubizarreta-Gerendiain et al. 2012).
The authors further state that this was a cause of high
discrepancy between predicted and observed damage in
their case (n = 189 trees). Detailed soil maps are available
over much of Finland (Lilja and Nevalainen 2006), and
could be incorporated into our framework at a later stage.

Upwind gap size was not an important predictor for
the maxent modelling framework, nor was it significant in
the logistic regression models. This could be due to the
following two reasons: (1) Wind damage susceptibility is
somewhat insensitive to gap size magnitude, provided that
it is sufficiently large enough. For example, a decrease of
only 19% in critical wind speed was estimated for a six-fold
increase in gap size, from 1h (1 tree height) to 6h. (2) The
gaps in our study area have been existing for quite some
time (i.e. several years) in most of the cases. Hence, the
downwind trees have got acclimatized to the stronger winds.

We were also constrained by the limited number of
validation points available to us from the study area. In
other words, more validation points, such as plots from
the national forest inventory (Suvanto et al. 2019), would
have made our results more conclusive. Collection of
such wind damage data over large areas is both laborious
and time-consuming. In this context, remote sensing may
provide a method to obtain such information quickly and
objectively. There have been some studies that used high-
resolution imagery (collected via airplanes or UAVs) to
detect windthrow at the scale of single trees (Honkavaara
et al. 2013; Duan et al. 2017). The sentinel satellite—based
radar data has also been used to detect windthrow (Riietschi
et al. 2019). A promising dataset in the context of collecting
more validation points is discussed in Forzieri et al. (2020).
It consists of over 80,000 spatially explicit demarcations of
forest areas affected by windstorm damage, spread all over
Europe, and over a period of 18 years.

4.4 Scope of maxent-based models for wind damage
assessment

Our primary motivation for the selection of the maxent
modelling framework is its suitability for the ‘presence-
only’ field data. We recognized that with such field data,
wind damage occurrence modelling is similar to several
species prevalence modelling efforts, where one tries to
establish a relationship between occurrence records of a
biological species and the environmental characteristics at
that location (Franklin 2010). Thus, it makes sense to
leverage on almost three decades of research done (in
ecological contexts) for accommodating such presence-
only data. There are several caveats associated with such
modelling efforts (e.g. issues in sample selection in some
cases, see Kramer-Schadt et al. (2013); difficulty in
estimating prevalence; also see Elith et al. (2011)). But the

relative ease of collecting such data (and hence, realizing
larger datasets) motivates the use of models that are able
to handle it well. Such field data can be collected either
by forest inventory crews or citizen or community science—
related efforts (McKinley et al. 2017). Meanwhile, the
utility of maxent for modelling the prevalence of abiotic
phenomena has been established in the context of wildfires
(West et al. 2016; Parisien et al. 2012) and landslides (Chen
et al. 2017; Convertino et al. 2013). In our case, when
compared with LR, maxent was able to indicate interesting
non-linear response patterns with respect to dominant height
and gapsize, see Section 4.1 and Fig. 6.

4.5 Significance and implications for forest
management

It has been reported by previous studies that the man-
agement of forest stands tends to highly influence their
vulnerability to storms (Albrecht et al. 2012). Interestingly,
it has also been argued that the cause of the increase in wind
damage seen over Europe recently can be traced back to
management-related changes in forest structure (Seidl et al.
2011). Our results also highlight the effect of tree height
on wind damage risk and further suggests that one effec-
tive way to reduce susceptibility is to make final felling
before forest stands reach ‘high risk’ heights. We have also
shown the importance of reducing the extent of exposed
edges, along the windward direction. This becomes impor-
tant when evaluating stand harvesting options. That is, our
methods and wind risk models could be coupled with a
forest planning and optimization model (such as Monsu
(Pukkala 2011)) to evaluate the effects of various silvi-
cultural management options to the wind damage risks of
the forested landscape. The alternative spatial and temporal
schedules of harvesting possibly could be evaluated to find
the most optimal one, with respect to wind damage risk con-
sideration and other relevant management objectives. For
example, a framework for deriving the optimal spatial har-
vesting pattern given the probability of wind damage has
been suggested by Meilby et al. (2001).

5 Conclusions

We developed a methodology by which ALS and aerial
image data could be used to develop several useful predictor
variables (based on forest structure) for wind damage risk.
Based on our findings: (1) This data is well-suited for
deriving several forest stand configuration—related wind
damage risk parameters; (2) the dominant height and
distance to upwind stand edge are important in predicting
wind damage risk; (3) critical wind speed (calculated based
on simple regression models) and wind multipliers show
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promise in this avenue, but further work is required to
make estimates more robust; and (4) wind direction is
an important parameter, and it is essential to understand
the pattern of frequency distribution of future wind storm
winds for projecting future risk. We also showed that
models based on edge proximity and dominant height have
good predictive power, thus opening avenues for creating
spatially explicit wind damage risk maps over large areas.
However, further research is needed over bigger areas to
refine our methods and the datasets used. Such exploration
would hence help in fully realizing the capability of remote
sensing to identify windstorm-vulnerable forest edges and
parts, and to better guide forest management planning.
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