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Abstract
& Key message The diversity of structural injury underlying visible symptoms by ozone stress resulted from the succession
of degenerative processes and programmed-cell death events, depending on the ozone uptake and varying on a year-to-
year basis.
& Context The effects of tropospheric ozone (O3) on the vegetation will remain a lasting concern during the twenty-first century,
and deeper understanding of functional and structural responses to O3 in plant foliage in a changing environment is needed.
& Aims Comprehensive analysis of the O3 injury spectrum, with a view to functional understanding of cellular processes in
response to varying O3 doses.
&Methods Characterization of macro- and microscopic symptoms in the sun crown foliage of adult trees exposed to ambient and
twice ambient O3 levels in a Free Air O3 Enrichment (FACE) experiment using light and electron microscopy.
& Results Visible injury triggered by O3 resulted from (i) degenerative processes of varying severity (photobleaching, accelerated
cell senescence, ACS), (ii) programmed cell death with disruption of cell content (hypersensitive reaction–like, HR-like) and
occasional leakage of cellular debris into the apoplast, (iii) overlapping degenerative and disruptive processes, primarily in the
upper mesophyll and within organelles prone to oxidative stress (chloroplasts and mitochondria) and (iv) necrosis in lower
mesophyll with leakage of cellular debris in the intracellular space.
& Conclusion Especially the degenerative and disruptive traits showed contrasting structural features. In the case of stippling
symptoms, the structural variability was particularly high, as a consequence of interactions between early degenerative and late
disruptive processes. These findings thus confirmed the close dependency of processes—and a further spectrum of ozone
injury—on rates of ozone uptake. Such relationships and development of injury, as observed in the case of beech (Fagus
sylvatica L.) foliage, are expected to be basically similar in other broadleaved tree species.

Keywords Ozone injury . Cell degeneration . Cell content disruption . Chloroplast degeneration .HR-like response . Accelerated
cell senescence .Microscopic validation

1 Introduction

Implementing reliable air pollution abatements is an on-
going challenge (Watson et al. 2016). The background

concentrations of ground-level ozone (O3) have been
steadily increased, even though peak levels have declined
in intensity and frequency (Simon et al. 2015), as a con-
sequence of recently appeared O3 “hot spots” and long-
distance transport (Bytnerowicz et al. 2013). Because of
multi-factorial interactions among the vegetation, atmo-
sphere and O3 precursors, oxidative stress varies in sever-
ity from year to year and critical levels are commonly
exceeded in various regions throughout the world
(Cristofori et al. 2015; Moura et al. 2014a; Sá et al.
2016; Sharma et al. 2016). The prognoses beyond 2040
(Fuhrer et al. 2016; Klingberg et al. 2014) remain uncer-
tain, as a reduction of NOx and other emissions may not
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sufficiently alleviate the current O3 levels, as a conse-
quence of climate warming (Garthwaite et al. 2009;
Lauwaet et al. 2014). The O3 effects are mediated by
stomatal influx, which is determined by O3 exposure but
also by several other environmental drivers, especially
soil water availability and vapour-pressure deficit
(Baumgarten et al. 2009). During the exceptionally dry
summer of 2003, the O3 uptake—despite higher
exposure—was reduced, due to drought-induced closure
of stomatal pores (Löw et al. 2006). Given stress response
plasticity (Matyssek et al. 2012) and regional environ-
mental peculiarities (Trenberth et al. 2014), ecosystem
responses to O3 can be highly variable. Hence, the impact
of ground-level O3 on vegetation will remain a lasting
concern during the twenty-first century (Mills et al. 2016).

Visible symptoms in foliage, which provide some of
the most obvious indications of O3 stress, are better reli-
able when verified by a combination of approaches in-
cluding experimental exposure (Dai et al. 2017;
Harmens et al. 2017; Novak et al. 2003; Paoletti et al.
2017) and microscopic validation (Alves et al. 2016;
Simon et al. 2015; Vollenweider et al. 2013; Moura
et al. 2018). These approaches have been used extensively
for O3 monitoring and bioindication (Ferretti et al. 2015;
Sanz and Calatayud 2011; Schaub et al. 2016). Beech
(Fagus sylvatica L.) is a widespread tree species in
Central Europe. Visible O3 symptoms usually reported
for beech include gradients of interveinal bronzing, dark
stippling and less specific leaf discoloration, increasing in
severity along yearly shoot increments basipetally.
However, the inter- and intraspecific variability of visible
injury is astounding and complicates the diagnosis of O3

stress (Sanz and Calatayud 2011; Vollenweider and
Günthardt-Goerg 2006).

Microscopic validation can ascertain an O3 injury di-
agnosis by providing mechanistic understanding of the
cause and development of symptoms (Faoro and Iriti
2009; Günthardt-Goerg and Vollenweider 2007;
Kivimäenpää et al. 2005). Previous research has demon-
strated the close correlation between macro- and micro-
morphological symptoms (Moura et al. 2011, 2018; Reig-
Armiñana et al. 2004; Vollenweider et al. 2013) and has
linked the variability of structural injury with that of pro-
cesses and plant responses triggered or amplified by O3

stress in foliage (Faoro and Iriti 2009; Foyer and
Shigeoka 2011; Calderón Guerrero et al . 2013;
GünthardtGoerg et al. 1997; Günthardt-Goerg and
Vollenweider 2007; Mikkelsen and Heide-Jørgensen
1996; Moura et al. 2014b; Pasqualini et al. 2003).
Microscopic injury by O3 stress shows similar traits, irre-
spective of the taxonomic group (Bussotti et al. 2005;
Günthardt-Goerg et al. 2000), and leaf sclerophylly
(Calderón Guerrero et al. 2013; Reig-Armiñana et al.

2004). Further, structural markers indicative of other
stress factors can show how O3 interacts with several en-
vironmental factors such as drought (Calderón Guerrero
et al. 2013), light (Paoletti et al. 2010) or coldness during
winter (Vollenweider et al. 2013). Microscopic validation
is thus particularly insightful for understanding plant re-
sponses to O3 in a changing climate. However, such de-
manding evidence is still limited. Also missing is ultra-
structural evidence of responses in different subcellular
compartments and cell types, especially in the case of
disruptive processes. Furthermore, in most reports
(Table 1), only a few markers of O3 injury are described
and there is a lack of comprehensive functional under-
standing regarding the effects of O3 stress at the cell level
and for the different plant responses.

Given the availability of O3-exposed foliage in the
CASIROZ experiment performed in a mixed forest on
adult beech trees (Southern Germany, Matyssek et al.
2007), the objectives in the present study included to (i)
characterize the spectrum of O3 injury within beech fo-
liage by comprehensively analysing symptoms in the leaf
blade at the tissue, cell and subcellular levels, (ii) relate
the ozone stress markers mechanistically to physiological
processes and responses and (iii) analyse the incidence of
varying ozone dose on the spectrum of O3 injury and
prevalence of physiological responses causing the ob-
served O3 symptoms. Therefore, leaf samples were har-
vested repeatedly in the sun crowns of trees during field
campaigns between 2000 and 2006, focusing on the dif-
ferent types of visible O3-like symptoms. The underlying
structural injuries were extensively analysed, combining
different methods in bright field light, fluorescence and
transmitted electron microscopy (TEM).

2 Material and methods

2.1 The experimental site

This study made use of the Free Air O3 Enrichment
(FACE) facility within the framework of the CASIROZ
experiment (Carbon Sink Strength of Fagus sylvatica L.
in a Changing Environment—Experimental Risk
Assessment of Mitigation by Chronic Ozone Impact). In
a mixed stand within Kranzberg Forest, 35 km northeast
of Munich, Germany (48° 25′ N, 11° 39′ E, 485 m asl),
two neighbouring groups of five beech trees each (Fagus
sylvatica L.), about 60 years old and 27 m high, were
exposed to either the unchanged ambient or experimental-
ly enhanced twice-ambient O3 regime (both naturally fluc-
tuating) from April through October each during the peri-
od of 2000 to 2007. The experimental design has been
detailed in several papers (Karnosky et al. 2007;
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Matyssek et al. 2007; Nunn et al. 2002; Werner and
Fabian 2002). The overall outcome from the CASIROZ
experiment on tree physiology and growth responses to
O3 stress is summarized in Matyssek et al. (2010).

Depending on the regime, yearly ozone levels and environ-
mental conditions, the foliage material sampled between June
and September and analysed in this study had been exposed to
phytotoxic O3 doses above a threshold of 1 mmol m−2 s−1

(POD 1) varying between 5 and 36 mmol m−2 (Fig. 1).

2.2 Leaf injury assessments and microscopy

At each sampling date (Fig. 1), a leaf sample collection
including all O3-like symptom types and asymptomatic
material was harvested in the sun crown of beech trees
and within both O3 regimes. Hence, we focused on symp-
tom type variability in the most symptomatic part of the
canopy, irrespective of each type frequency and recur-
rence as a function of O3 regime or crown position (mi-
croscopic validation approach). In situ, O3 stress effects
were diagnosed on the basis of (i) smooth gradients of
injury increasing in severity basipetally at branch and leaf
levels, (ii) prevalence of injury in foliage (or parts of
foliage) exposed to direct solar radiation and (iii) foliar
symptoms in the form of leaf discoloration and/or isolated
or confluent dark or light stippling (Günthardt-Goerg and
Vollenweider 2007; Innes et al. 2001; Schaub et al. 2010).
Other types of symptoms incited by various abiotic and
biotic stress factors were used for differential diagnosis
(Fink 1999; Hartmann et al. 2007; Vollenweider and

Günthardt-Goerg 2006). After documenting the symptom
position and morphology, disc samples were excised,
fixed and processed with a view to histochemical, struc-
tural and ultrastructural analysis (Moura et al. 2018;
Vollenweider et al. 2013). For relating the micro- to mac-
roscopic injury, the position of sections within sampled
discs was determined, assessing the location of analysed
macro-and microscopic lesions.

3 Results

3.1 Visible injury

Several types of visible O3-like symptoms, varying be-
tween harvests and years, were diagnosed in the upper
canopy of beech trees (Fig. 2a). The O3 regimes did not
show differences regarding the symptom types. At branch
level, the symptoms were distributed along smooth gradi-
ents, with their severity increasing basipetally (Fig. 2b).
At leaf level, the different types of symptoms included
photo-bleaching (Fig. 2e), bronzing (Fig. 2c, e, f), inter-
costal dark discrete and sometimes confluent stippling
(Fig. 2g) and intercostal yellowish dots (Fig. 2h). These
symptoms were observed separately (Fig. 2f, g, h) or in
combination (Fig. 2e), primarily on the adaxial and light-
exposed leaf sides, whilst shaded leaf parts stayed asymp-
tomatic (Fig. 2e). The yellowish dots formed discrete le-
sions evenly distributed in the leaf blade and also visible
abaxially. In 2003, large intercostal brown flecks, as a
consequence of aggregated stippling, were additionally
observed (not shown).

3.2 Microscopic injury underlying discoloration
symptoms

Whatever the symptom type, the most severe structural
injury was detected in mesophyll. At tissue level, the me-
sophyl l ce l l s d i rec t ly under ly ing symptoms of
photobleaching and bronzing showed degenerative chang-
es in comparison to cells in asymptomatic leaf segments
(Fig. 3c versus Fig. 3a). Symptoms were more severely
expressed adaxially than abaxially (Fig. 3d versus Fig.
3l). They included an increase in the condensation of cell
content, enlargement of vacuome and accumulation of
condensed tannins (bronzing symptoms only), especially
within the upper palisade parenchyma cell layer (Fig. 3d
versus Fig. 3b). At subcellular level, the cytoplasm and
nucleus of mesophyll cells showed a coarser granular
structure than in asymptomatic material (Fig. 4f versus
Fig. 4a). The matrix and inner membrane system of mito-
chondria were degraded (Fig. 4i, j versus Fig. 4d, e),
whilst chloroplasts showed reduced size, reduced grana

Fig. 1 Cumulated phytotoxic ozone dose (POD1, Grünhage et al. 2012)
for beech leaf area during the growing seasons of 2002, 2003 and 2006
(May–September) in the top canopy layer of ambient and twice ambient
O3 treatment by a free-air fumigation experiment in Kranzberg Forest,
Germany. Arrow heads indicate foliage harvest dates with emphasis on (i)
visible O3 symptoms 2002 and 2003, (ii) histochemical analyses of vis-
ible symptoms 2003 and (iii) analyses of structural and ultrastructural cell
injury 2006
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width and increased size and density of plastoglobules
(Figs. 3d and 4g, h versus Figs. 3b and 4b, c). Within
the upper palisade cells and with an apparent and con-
comitant increase in chloroplast illumination, such

symptoms were enhanced adaxially (Fig. 4g versus Fig.
4h). Plastoglobules, primarily consisting of lipids
(Fig. 5a, c), were excreted into the vacuole where they
were either degraded, as indicated by undigested rim

Fig. 2 Visible injury triggered byO3 within foliage of adult beech trees. a
Gradients of leaf injury in the canopy, increasing in severity in the better
illuminated branches. b Gradients of O3 injury at branch level, increasing

in severity basipetally. c–h Singular or combined O3 injury at leaf level:
bronzing (b; c, e, f), photobleaching (phb; e), stippling (st; g) and
yellowish dots (nd; h). d Asymptomatic
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residues, or aggregated into lipid inclusions (Fig. 5d, e).
In vacuoles which accumulated condensed tannins, the
latter inclusions were found within cavities inside
sponge-like solid tannin bodies (Fig. 5g, h). Similar but
less severe symptoms were observed in spongy parenchy-
ma (Fig. 6g, h versus Fig. 4g–j).

3.3 Microscopic injury underlying stippling

Structural injury underlying stippling was more severe
than that underlying bronzing and photobleaching (Fig.
3, Table 1). Degenerative symptoms in upper palisade
cells were aggravated (Fig. 3e versus Fig. 3c). Besides
enhanced condensation and degeneration of organelles
(Fig. 4l–o versus Fig. 4g–j), cell death was indicated by
cytorrhysis, partial decompartmentation of cell content,
tonoplast disruption and shrunken vacuoles (Fig. 4k, o).
Vacuoles contained a sizable amount of lipid droplets
from excreted plastoglobules. Some of these structures
had been leaked into the enlarged intercellular space
(Fig. 5b). However, some upper palisade cells lacked
any degenerative symptom and only showed structural
changes indicative of a hypersensitive reaction–like syn-
drome (HR-like; Table 1). HR-like markers included (i)
cytorrhysis (Figs. 3f and 4p), (ii) disruption of plasmalem-
ma and cell content (Figs. 3f and 4p, s), (iii) pyknotic
nucleus, after condensation, deformation and shrinkage
of nucleic material (Fig. 4r), and (iv) condensation and
deformation of chloroplasts. These showed disruption of
the lamellar system and chloroplast envelope in the ab-
sence of an accumulation of plastoglobules (Fig. 4q, s).
The peculiar macroscopic stippling injury observed in
2003 was underlain by more severe structural injury than
in other years, with larger groups of necrotic cells show-
ing typical HR-like traits, often extending into the lower
palisade parenchyma (Fig. 3i, j). Furthermore, spongy pa-
renchyma showed injury similar to that observed in the
case of macroscopic bronzing injury (Fig. 3m, o versus
Fig. 3l).

3.4 Microscopic injury underlying yellowish dots

The structural injury underlying yellowish necrotic dots
showed traits differing in several instances from those in
the case of bronzing and dark stippling (Table 1). The
most severe symptoms were found in the lower meso-
phyll, where entire tissue segments were necrotic and col-
lapsed and the intracellular space was obstructed by
leaked material (Figs. 3g, n and 4x). Within the upper
mesophyll, strands of cells showing advanced degenera-
tion alternated with others that were cytorrhyzed and

disrupted (Figs. 3h and 4t). Advanced degeneration was
indicated by (i) cytoplasm and organelle condensation
(Fig. 4u, x), (ii) increase in plastoglobule density (Fig.
4u, x) and (iii) accumulation of oxidized tannins in the
vacuole (Fig. 3g). Besides cytorrhysis (i), the markers of
cell death in cytorrhyzed cells included the (ii) disruption
of cell content (Figs. 3h and 4t), (iii) nucleus pyknosis
(Fig. 4w) and (iv) degradation of the lamellar system
and envelope in chloroplasts (Fig. 4v), whereas only a
few and small plastoglobules were observed.

3.5 Microscopic injury in epidermis

Irrespective of the type of visible injury, symptoms in
epidermal cells were generally less severe and less vari-
able than those prevailing in mesophyll (Table 1). The
micromorphological markers of oxidative stress in the up-
per and lower epidermis were similar (Fig. 6c, d versus
Fig. 6j), but injury was occasionally more severe in the
upper epidermis (Fig. 3g, i). At the cell level, the degen-
erative traits within symptomatic material included the (i)
condensation of the cytoplasm (Fig. 6j), (ii) decrease in
thylakoid size and apparent enlargement of plastoglobules
within leucoplasts (Fig. 6c, d, j), (iii) degeneration of cris-
tae and matrix in mitochondria (Fig. 6d) and (iv) accumu-
lation of condensed tannins (Figs. 3c, g and 6c, d, j)—but
not of lipids (Fig. 5b)—in the vacuole. The less severe
injuries, as compared to mesophyll cells, may relate to
lower physiological activity, as indicated by the thinner
cytoplasm layer, fewer organelles, larger vacuome and
flattened and slightly condensed nucleus (Fig. 6a, b, i
versus Fig. 6e, f).

4 Discussion

4.1 Visible injury

Irrespective of the O3 regime, a broad spectrum of visible
O3-like symptoms and symptom combinations was ob-
served in the upper canopy of adult beech trees during
the 8 -yea r dura t ion o f CASIROZ expe r iment .
Photobleaching, bronzing and dark stippling symptoms
were typical of oxidative injury by O3 stress in beech.
They were similar to evidence (i) reported from field stud-
ies (Bussotti and Ferretti 2009; Hůnová et al. 2011;
Vollenweider et al. 2003), (ii) reproduced experimentally
(Gerosa et al. 2008; Innes et al. 2001; Novak et al. 2003)
or (iii) used as hallmarks of O3 injury in beech during
monitoring (Günthardt-Goerg 2013; Sanz and Calatayud
2011). Photobleaching symptoms alone lack specificity
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with respect to O3 stress diagnosis (Vollenweider and
Günthardt-Goerg 2006). The yellowish dots observed in
the two O3 treatments were atypical for beech. Apparent
on both leaf sides, they thus showed morphological fea-
tures contrasting with O3 injury common in broadleaved
trees. However, Nunn et al. (2002) reported an apparent
increase in the frequency of this symptom under the
twice-ambient versus ambient O3 regime. Moreover,
light-coloured stipples on the adaxial leaf side can be
observed in several broadleaved species, in response to
elevated O3 levels (Innes et al . 2001; Sanz and
Calatayud 2011). These symptoms also resembled mot-
tling injury in conifers (Miller et al. 1996; Vollenweider
et al. 2013). Particularly in the case of yellowish dots and
photobleaching, microscopic validation was needed,
therefore, to confirm the causal link between O3 stress
and morphological traits.

4.2 Cellular responses to O3 stress responsible
for the degenerative changes

The broad spectrum of microscopic injury (Table 1) was
indicative of the several distinct or overlapping plant re-
sponses which O3 triggered in foliage of beech trees from
the CASIROZ experiment over the 8-year experiment.
Whatever the macroscopic symptom type, chloroplast in-
jury was consistently observed as a distinct indication of
oxidative stress, even in the case of mild symptoms (Figs.
3c, d and 4f, g). The production of reactive oxygen species
(ROS) is a side effect of photosynthetic activity and further
enhanced in the case of O3 stress (Foyer and Shigeoka
2011; Vainonen and Kangasjärvi 2015). Hence, chloro-
plasts can show incipient (Desotgiu et al. 2010), severe
(Vollenweider et al. 2013) and specific injury (Fink 1999;
Günthardt-Goerg and Vollenweider 2007) in response to
O3 stress. Given photobleaching and bronzing symptoms,
the structural changes in chloroplasts appeared basically
similar to those during autumnal senescence in beech
leaves (Mikkelsen and Heide-Jørgensen 1996; Tevini and
Steinmüller 1985). Consistent with degenerative symp-
toms in other cell compartments, they denoted, therefore,
accelerated cell senescence (ACS; Inada et al. 1998;
Vollenweider et al. 2003). Further, the increased amounts
of oxidized waste lipids being encapsulated within en-
larged plastoglobules and transferred to vacuoles (Fig.
5e) were indicative of enhanced lipid trafficking and thy-
lakoid membrane turnover (Bréhélin et al. 2007;
Mikkelsen and Heide-Jørgensen 1996). In the case of
milder symptoms, however, lipids did not accumulate in
the vacuole, probably in relation to the apparent degrada-
tion of excreted plastoglobules. Degenerative changes in
epidermal cells (Fig. 6c, d, j) were also indicative of ACS.

Some interactions in the vacuole between lipid excre-
tion mediated by plastoglobules and tannin deposition—
after formation within the endoplasmic reticulum (Evert
2006)—may explain the peculiar ultrastructure of
sponge-like tannin bodies (Franceschi et al. 1998). When
both degradation products were observed in the same vac-
uolar compartment, the lipids appeared segregated, there-
fore, within spherical cavities of tannin bodies (Fig. 5g).
The cavities showing an electron-translucent content
might result from subsequent lipid degradation, whilst
the polymerized tannin bodies tended to show cracks but
never signs of hydrolysis. Large amounts of condensed
tannins can be observed in stressed beech foliage
(Bussotti et al. 1998; Günthardt-Goerg and Vollenweider
2007; Oksanen et al. 2001), and, together with increasing
tannin oxidation adaxially, they form hallmarks of O3

stress (Calderón Guerrero et al. 2013; Hartmann et al.
2007; Vollenweider et al. 2003). Similar to other intra-
and intercellular gradients of oxidative injury within the
studied material (Figs. 3c and 4k), such markers were
indicative of synergistic effects of O3 and photo-
oxidative stress (Foyer et al. 1994; Günthardt-Goerg and
Vollenweider 2007), as they contributed to visible symp-
tom expression.

4.3 Contrast between degenerative and disruptive
traits underlying stippling symptoms

The observation of cell degeneration together with cell
death markers within the same mesophyll cells (Fig. 4k)
was indicative of the occasional overlap of ACS and HR-

Fig. 3 Tissue- and cell-level changes caused by oxidative stress within
foliage of beech trees. Changes in segments of leaf blades underlying
bronzing (c, d, l), stippling (e, f, i, j, m, o) and yellowish dots (g, h, n)
versus asymptomatic material (a, b, k). Bronzing symptoms (c, d): con-
densed tannins inside vacuoles of upper epidermis (UE, blue) and pali-
sade parenchyma (PP), sometimes in the form of plugs (*), condensation
of cytoplasm (c) and nucleus (n), decrease in chloroplast (ch) size and
increase in plastoglobule (pg) size and frequency. Stippling symptoms (e,
f, i, j, m, o): changes observed in the case of bronzing interspersed with
dead, disrupted and partly cytorrhyzed cells in upper palisade parenchy-
ma (e, f); groups of cytorrhyzed, disrupted and condensed (#) cells ex-
tending into lower palisade, in the case of stronger reactions (2003; i, j).
Less injury in spongy parenchyma (SP) and lower epidermis (LE; l,m, o).
Yellowish dots (g, h, n): injury by oxidative stress more severe in abaxial
than adaxial tissues, with parts of lower mesophyll disrupted and the cells
cytorrhyzed (&; g). Lesions consisting of cell strands either collapsed and
condensed (#) or deformed and degenerated (§; h) and containing oxi-
dized condensed tannins (oct; g, h). Leakage of cell debris in the inter-
cellular space (is) of lower leaf blade (n). Other structures: st: starch, oct:
oxidized condensed tannins. Technical specifications: staining with
Toluidine blue and p-phenylenediamine, observation in bright field mi-
croscopy (a, c, e, g, i), using phase contrast (b, d, f, h, j–o)
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like processes within stippling symptoms. Whilst ACS
progressively develops during the growing season (Pell

et al. 1997), the HR-like processes are triggered once an
oxidative stress threshold has been exceeded, causing
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rapid cell death soon thereafter (Calderón Guerrero et al.
2013; Rao and Davis 2001). In chloroplasts of some cells
exhibiting HR-like traits (Fig. 4q), missing degenerative
features, such as large and numerous plastoglobules
(Lichtenthaler 2013), thus suggested cell death early in
the growing season. The disrupted cellular material fur-
ther contrasted with such undergoing degenerative chang-
es by showing deformation and coagulation, whilst the
inner and outer membrane systems were fused, broken
or partially hydrolysed (Fig. 4s). Other HR-like hallmarks
included nuclear pyknosis (Fig. 4r; Jones 2000; Pasqualini
et al. 2003) and incomplete degradation of cellular resi-
dues (Fig. 4s; Fukuda 2000). Major injury to cell walls, as
observed in other cases of HR-like processes triggered by
O3 stress (Calderón Guerrero et al. 2013; Paoletti et al.
2010; Vollenweider et al. 2013), was indicated by leakage
of cellular material into the apoplast (Fig. 5b). Regarding
the aforementioned accumulation of lipids, and in the case
of inclusions contiguous to incompletely degraded struc-
tures within dead cells (Figs. 4f and 5d), our observations
suggest a decrease in the hydrolytic capacity of vacuoles
shortly before cell death. Disruption of the latter hydro-
lytic compartment forms a terminal degeneration stage of
cell content during senescence (Inada et al. 1998). In con-
trast to ACS, vacuole disruption preceded—maybe

impeded—full cell content degradation in the case of
HR-like events (Fig. 3j and 4k), which might represent a
benchmark trait to differentiate between the slow ACS
degeneration process and the quick HR-like cell death.

4.4 Structural indications of O3 injury in yellowish
dots

Underlying necrotic dots (Fig. 3g, h, n), strands of cells,
either degenerated or disrupted, indicated typical contrasts
between ACS or HR-like processes. The absence syner-
gism with photo-oxidative stress effects, together with
major injury next to stomata in tissues of the lower leaf
blade, suggests oxidative injury by O3 stress alone. Owing
to the tissue arrangement within needles, mottling injury
by O3 stress in pines is generally closely associated with
stomata (Evans and Miller 1972; Soda et al. 2000;
Vollenweider et al. 2013). In angiosperms, cell death pri-
marily within the lower mesophyll in response to O3

stress has been observed after exposure to high O3 con-
centrations (150 ppb; Faoro and Iriti 2005; Pasqualini
et al. 2003). The indications of severe O3 stress leading
to rapid cell death included (i) necrotic cells also in upper
mesophyll (Fig. 3g), (ii) massive leakage of cell debris
(Fig. 5b) or (iii) small plastoglobules inside chloroplasts
(Fig. 4v). Hence, the singular structural traits underlying
the yellowish dots suggest origin from acute O3 stress and
locally high O3 concentrations. The severity of injuries
peaking in the lower mesophyll also explains that the
symptoms become visible on both leaf sides.

4.5 Variability of structural O3 injury in relation to O3

uptake

The variability of visible macroscopic symptoms, under-
lying microscopic injury and cellular responses to O3

stress observed during the CASIROZ long-term experi-
ment, provided insights on the dependency of macro-
and microscopic symptoms by the end of the growing
season on the seasonal ozone uptake (Fig. 7). Closely
assigning the microscopic injury to visible symptoms dur-
ing microscopic analyses, the precedence of microscale
injury became evident, as macro-scale visibility emerged
only once a sizable group of cells had been affected. The
concomitance of degenerative and disruptive traits within
the same cells can only be understood in terms of a suc-
cession, with ACS progressing until a species-specific
threshold is reached, so that HR-like processes are trig-
gered, which incite the rapid cell death. In 2003, this
succession occurred at an earlier date, as indicated by
the low accumulation of tannins and tannin plugs in the
mesophyll (Fig. 3i, j). In the case of massive O3 dose,
structural injury should mainly relate to HR-like

Fig. 4 Cellular and subcellular changes caused by oxidative stress within
foliage of beech trees. Changes within palisade cells underlying bronzing
(f–j), stippling (k–s) and yellowish dots (t–x) versus asymptomatic
material (a–e). Bronzing symptoms (f–j): the adaxial chloroplasts (ad
ch, g) contained more plastoglobules (pg) but fewer grana than abaxial
organelles (ab ch, h). Plastoglobules were larger and grana stacks smaller.
Nucleus (n) content was condensed and its envelope electron-opaque (i). j
condensed cytosol (c) and injured matrix and inner membrane system (+)
within the mitochondria (mt). Stippling symptoms (k–s): the severity of
degenerative traits in chloroplasts (l, m), nucleus (n) and cytoplasm (o)
was enhanced. k Fewer chloroplasts adaxially and vacuole filled with
oxidized tannin bodies (*) often plugging the adaxial cell lumen.
Occasionally, partial cell decompartmentation (~), shrinking vacuoles
(shv) and cytorrhysis (arrowheads) indicated terminal cell degeneration
and cell death. HR-like traits (p–s): cells were cytorrhyzed (arrowheads)
and their content disrupted (p), chloroplasts (q, s) together with other
organelles and cell structures (s) condensed and deformed, and extensive
membrane damage was indicated by poor membrane resolution. Some
material had been leaked into the periplasm (pe) through ruptured plas-
malemma (pl). r Pyknotic nucleus showing deformation and acute chro-
matin condensation. Yellowish dots (t–x): cytorrhyzed and condensed (#)
versus deformed and degenerated (§) strands (t). Within the latter group
of cells (§; u, x), the chloroplasts showed degenerative traits (i.e. thinner
grana and higher plastoglobule density). Within the former group of cells
(#; v, w), the chloroplasts were condensed and deformed, their grana
poorly resolved and the plastoglobules still small. w Pyknotic nucleus.
x Intercellular material (im) leaked from adjacent dead cells. Other struc-
tures: cw: cell wall, d: dictyosome, l: lipid droplet, re: smooth endoplas-
mic reticulum, st: starch, v: vacuole. Technical specifications:
postfixation using OsO4, contrasting using uranyl acetate and lead citrate,
observation in TEM
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processes. The visible symptom progression commonly
observed in the field, with photobleaching symptoms
sometimes in summer prior to discoloration and subse-
quent stippling appears (authors’ unpublished observa-
tions) can also be conceptually understood in terms of
succeeding ACS and HR-like processes. Hence, by the
end of the vegetation season, when most observations of
ozone symptoms are realized in the field (Schaub et al.
2010), the symptom types and macro- and micromorphol-
ogy traits will synthetically reflect the reactions and cel-
lular responses to the experienced ozone dose.

5 Conclusion

In the CASIROZ experiment, a large spectrum of typical
as well as atypical O3 macroscopic and microscopic injury
was observed during the 8-year period. Variation was en-
countered especially regarding the microscopic markers of
O3 stress from year to year. This variability primarily re-
lated to (i) ACS and HR-like plant responses either dis-
tinct or overlapping, (ii) interaction between O3 and

Fig. 5 Contribution of plastoglobules to the accumulation of vacuolar
lipids. a Accumulation of plastoglobules (in blue) in degenerating cells
from palisade (PP) and spongy (SP) parenchyma. b Within stippling
symptoms, lipids (encircled) were leaked into the enlarged intercellular
spaces (is) between disrupted and cytorrhyzed cells (#). c Accumulation
of large plastoglobules within chloroplasts (ch) from palisade parenchy-
ma cells in leaves showing bronzing symptoms. d Accumulation of vac-
uolar lipid (lpv) after apparent excretion of plastoglobules into the vacu-
ole. e–h Plastoglobule excretion and fate in the vacuole. e The
plastoglobules excreted from chloroplasts into vacuoles (v) had their
lipids apparently degraded, with an outer shrunken ring as the only rem-
nant. f Accumulation of vacuolar lipids shortly before cell death within

disrupting vacuoles (v ~). g Simultaneous accumulation of plastoglobules
and condensed tannin (vct) in the vacuole, with lipids filling globular
cavities within and gaps between tannin deposits. h Contiguous arrange-
ment of lipids and tannins in the vacuole. The polymerization of con-
densed tannins in solid bodies was indicated by splits (arrows) and broken
pieces (*). The vacuolar lipids formed globular deposits, sometimes en-
capsulated within tannin bodies and showing evidence of degradation.
Other structures: c: cytoplasm; cw: cell wall; g: grana; LE: lower epider-
mis; n: nucleus; st: starch; UE: upper epidermis. Technical specifications:
histochemical revelation of lipids using Sudan Black B (a–d), TEM as in
Fig. 3 (e–h)
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photo-oxidative stress and (iii) yearly variation in O3 dose
and uptake rates. Especially traits of degeneration and
disruption showed contrasted structural features.
Concerning stippling symptoms, the structural variability
was particularly high, as a consequence of interacting
ACS and HR-like responses and the initiation of pro-
grammed cell death at different times of growing season.
Hence, the expression of macroscopic and microscopic
symptoms by the end of summer can provide an integra-
tive view of successive plant responses and symptom

development during the preceding course of the growing
season. The difficulties posed by the symptom variability
can be alleviated conceptually, when relating the injuries
observed at different scales to the experienced ozone dose
and environmental conditions. Within a changing climate
and ozone pollution context, farther variability of O3 in-
jury in trees can be expected. Based on the present obser-
vations, symptom variability will nevertheless arise from
shifting prevalence of typical O3-induced responses and
prominent structural markers, as observed so far.

Fig. 6 Cellular and subcellular changes caused by oxidative stress in the
upper epidermis (a–d), spongy parenchyma (e–h) and lower epidermis
(i–j) of symptomatic (c, d, g, h, j) versus asymptomatic (a, b, e, f, i)
foliage material. Degenerative changes were indicated by the
condensation of cytoplasm (c), decrease of thylakoids and increase of
plastoglobules within leucoplasts (lc) or chloroplasts (ch), injury (+) to
cristae and matrix of mitochondria (mt) and accumulation of condensed

tannins (vct) in the vacuole (v). Notice the lower physiological activity in
the asymptomatic epidermis (a, b, i) versus spongy parenchyma (e, f), as
indicated by the thinner cytoplasm layer, few organelles, larger vacuome
and more condensed nucleus structure (n). Other structures: cu: cuticle;
cw: cell wall; g: grana; is: intercellular space; re: smooth endoplasmic
reticulum, st: starch, v: vacuole. Technical specifications: TEM as in Fig.
3
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