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Abstract
& Key message We provided a complete set of tree- and stand-level models for biomass and carbon content of silver fir
Abies alba. This allows for better characterization of forest carbon pools in Central Europe than previously published
models. The best predictor of biomass at the stand level is stand volume, and the worst are stand basal area and density.
& Context Among European forest-forming tree species with high economic and ecological significance, Abies albaMill. is the
least characterized in terms of biomass production.
& Aims To provide a comprehensive set of tree- and stand-level models for A. alba biomass and carbon stock. We hypothesized
that (among tree stand characteristics) volume will be the best predictor of tree stand biomass.
&Methods We studied a chronosequence of 12 A. alba tree stands in southern Poland (8–115 years old). We measured tree stand
structures, and we destructively sampled aboveground biomass of 96 sample trees (0.0–63.9 cm diameter at breast height). We
provided tree-level models, biomass conversion and expansion factors (BCEFs) and biomass models based on forest stand
characteristics.
& Results We developed general and site-specific tree-level biomass models. For stand-level models, we found that the best
predictor of biomass was stand volume, while the worst were stand basal area and density.
& Conclusion Our models performed better than other published models, allowing for more reliable biomass predictions. Models
based on volume are useful in biomass predictions and may be used in large-scale inventories.

Keywords Allometric equations . Biomass allocation . Biomass conversion and expansion factors . IPCC guidelines . Silver fir

1 Introduction

One of the most important services of forest ecosystems is
sequestration of carbon dioxide in tree biomass (IPCC 2013;

Rieger et al. 2017; Felipe-Lucia et al. 2018). Forest ecosys-
tems are one of the most important pools of carbon, estimated
to accumulate 2.4 ± 0.4 Pg C year−1 (Pan et al. 2011). For that
reason, in the Anthropocene epoch and changing climate, this
function of forests has gained special attention of scientists,
practitioners, and policymakers (Meier et al. 2012; Seidl et al.
2016; Sohngen and Tian 2016). As carbon content in plant
tissues is less variable than biomass per se, most carbon as-
sessments are focused on patterns of biomass variability
(Schepashenko et al. 1998; Thurner et al. 2014; Neumann
et al. 2016). For that reason, the last 50 years of forest ecology
has yielded the development of thousands of allometric
models for proper biomass estimation, both at tree (e.g.,
Baskerville 1972; Zianis et al. 2005; Forrester et al. 2017)
and stand levels (e.g., Lehtonen et al. 2004; Teobaldelli et al.
2009; Schepaschenko et al. 2018).

Precise assessment of carbon balance in forest ecosystems
is possible due to detailed studies of particular species and site
conditions, as biomass accumulation patterns depend on tree
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stand age (e.g., Peichl and Arain 2007; Donnelly et al. 2016;
Jagodziński et al. 2018a), climate (e.g., Oleksyn et al. 1999;
Schepaschenko et al. 2018), soil fertility (e.g., Rademacher
et al. 2009; Lehtonen et al. 2016) or successional stage (e.g.,
Kuznetsova et al. 2011; Jagodziński et al. 2017). In recent
decades, researchers developed very precise tools for biomass
assessment for the main forest tree species (Zianis et al. 2005;
Teobaldelli et al. 2009; Forrester et al. 2017). Although there
are also general models, allowing biomass estimates for tree
species which have not been studied, their accuracy is usually
lower than species-specific models.

One of the least characterized tree species in terms of bio-
mass production and carbon sequestration is Abies alba Mill.
(Forrester et al. 2017). This is a large (up to 60 m height), long-
lived (up to 500–600 years old) late-successional coniferous
tree species growing naturally in Central Europe and themoun-
tains of southern Europe (Mauri et al. 2016). A. alba occurs
from Polish lowlands up to elevations of 2000 m in the Alps.
Its native distribution ranges from the Carpathians in the east to
the Pyrenees in the west and from southern Italy in the south to
the Polish lowlands in the north. This species is also cultivated
in western France and Denmark (Nord-Larsen and Nielsen
2015). A. alba growing stock in Europe in 2010 was estimated
to be 694.4 million m3, making it the sixth most important
forestry tree species (FAO 2015). Due to high productivity of
A. alba stands, as well as non-resinous and light wood, this
species is the second most economically important tree in the
mountain forests of Europe. Due to its relatively high temper-
ature requirements, this species is predicted to increase its geo-
graphical range due to climate change and its potential future
range expansion will be more extensive than future range con-
traction (Dyderski et al. 2018). Thus, the importance of this
species is likely to increase, due to predicted retreat of Picea
abies (Dyderski et al. 2018; Thurm et al. 2018).

A comprehensive review of the published European tree-
level allometric models comprised only six models for A. alba
(Zianis et al. 2005; Muukkonen and Mäkipää 2006): including
only one for aboveground biomass, one for woody above-
ground biomass, two for crown biomass (branches and fo-
liage), one for stumps, and one for dead branches. Moreover,
five of them came from the same source (Italy; Gasparini et al.
2006). In a more recent review, Forrester et al. (2017) found
only ten models. After a comprehensive literature review, we
collected 33 published models (including those generated by
Forrester et al. 2017). Except for a dataset of young trees with
399 sample trees (Annighöfer et al. 2016) and crown biomass
models of Ledermann and Neumann (2006), previous studies
showed either a low number of sample trees (up to 48) or
limited range of diameters. Most of these studies come from
southern Europe, with the exception of plots from Denmark
(Nord-Larsen and Nielsen 2015), outside the native range of
A. alba. At the stand level, BCEFs (biomass conversion and
expansion factors) were provided for Abies spp. by Teobaldelli

et al. (2009) as a function of age and growing stock, as well as
estimates of BCEFs for coniferous trees in temperate climate
by IPCC (Eggleston et al. 2006). Much more data is available
for A. sibirica (e.g., Lakida et al. 1996; Schepashenko et al.
1998). However, due to different climate and soil conditions of
its growth, resulting in different biomass allocation (Oleksyn
et al. 1999; Schepaschenko et al. 2018), these models are not
transferable to temperate forests of Europe.

Our literature review (previous paragraph) revealed that
there is a great disproportion between the relatively wide dis-
tribution of A. alba, its quantitative and cultural importance
for forestry, and the amount of biomass data available for the
species (33models). The number of models per area of species
distribution, according to Forrester et al. (2017), is one of the
lowest among European tree species (6.7 models per percent-
age of Europe’s forest area where that species occurs, accord-
ing to Köble and Seufert 2001; using our search results—
22.1). Thus, we aimed to provide a comprehensive set of
tree- and stand-level models for A. alba biomass and carbon
stock, as well as to assess changes in tree stand biomass and its
allocation patterns with increasing age. We hypothesized that
among available tree stand characteristics, volume will be the
best predictor of tree stand biomass.

2 Material and methods

2.1 Study sites and material

We established a set of 12 study plots to cover the whole
chronosequence of A. alba tree stands from 8 to 115 years
old (Table 1). Plots were established in southern Poland
(15.6736° E–19.6546° E; 49.5263° N–50.9588° N; Table 1),
at elevations of 303–889 m a.s.l. (mean = 496.5, SE =
52.7 m a.s.l.). The plots were selected from stands in the
Forest Data Bank (Bank Danych o Lasach 2015) with
A. alba volume proportion over 70% and growing on mesic
and fertile soils, typical of natural A. alba forests (Mauri et al.
2016). We also ensured that selected tree stands were not
thinned or damaged in the previous 5 years. Within each tree
stand, we established a rectangular plot, covering at least 100
trees ofA. alba. Thus, plot area ranged from 0.239 to 0.680 ha.

2.2 Methods

Within all study plots, we measured diameter at breast height
(DBH) of every tree and tree heights (H) of at least 20% of the
trees. Due to low height in the youngest tree stand (8 years
old), wemeasured diameter at root collar (DRC) and in the 13-
year-old stand, we measured diameter at 0.5 m (D0.5).We used
these diameters for modeling, as in the case of young trees
they are robust as biomass predictors (Jagodziński et al.
2018b). For each plot, we determined stand density (N), mean
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height weighted by tree basal area (Hg), stand volume (V), and
age (A). After dimensional measurements, we divided trees into
nine diameter quantiles. Next we selected trees at the borders of
each quantile as sample trees (eight sample trees per plot) to
ensure good representation of all diameter classes. After the
sample trees were cut down, we divided each sample tree into
stem, branches, and foliage. We took randomly selected sam-
ples from branches with foliage (at least 5% of the tree crown
fresh mass, representing lower, upper and middle parts of the
crown) and divided it into foliage and branches in the lab by
removing all individual needles from the branches. This
allowed us to assess the proportion of each component as a
representative of the whole crowns. To obtain tree stem volume,
we measured two diameters (perpendicularly) at 1-m-long in-
tervals along the stem. Then, we divided the stem into three
sections of equal length and from the middle of each, we cut off
a 10–15-cm-thick disc. In the field, we measured two diameters
of discs (maximal and perpendicular to maximal) and four
height (at the two perpendicular diameters) to calculate disc
volume. In the lab, we divided discs into stem wood and stem
bark to assess proportion of these components in whole stem
biomass.We decided to use this approach as sufficient for prop-
er wood density estimation according to Ochał et al. (2018).

We oven-dried all samples to constant mass (75 °C) and
then weighed them with an accuracy of 1 g. We used the
proportions of fresh and dry masses of samples and total fresh
masses of biomass components (obtained in the field) to cal-
culate total biomass of each tree component. For stems, we
calculated dry mass using proportion between discs and stem
section volumes and dry masses of the discs. We did not an-
alyze the biomass of dead branches and cones separately, as
their proportions strongly vary across study sites and tree
stand age. We incorporated them into total aboveground bio-
mass. We analyzed biomass of stem bark, stem wood,
branches, foliage, stem (stem wood and stem bark), above-
ground woody part of tree (stem and branches), and total
aboveground biomass.

We assessed carbon content in main biomass components:
stem wood, stem bark, branches, and foliage. For each sample
tree, we analyzed three samples of stem wood and bark (from
each disc) and one sample of foliage and branches. In total, we
analyzed 64 samples per study plot (24 of stemwood and bark
and eight of branches and foliage). We determined carbon
content with an ECS CHNS−O 4010 Elemental Combustion
System (Costech Instruments, Italy/USA) and a CHNS/O
Analyzer 2400 Series II (PerkinElmer, USA).

2.3 Data analysis

We used R software (R Core Team 2018) for all data analyses.
We calculated heights of each tree using measurements of
heights and site-specific Naslund’s models from the
lmfor::ImputeHeights() function (Mehtatalo 2008). Tree level

biomass models were compiled for the tree components for
each study plot (site-specific models) using formulas from
Table 2. Model selection was based on the goodness of fit
by using Akaike’s Information Criterion (AIC). However,
we also evaluated pseudo-R2 and RMSE and we visually
inspected residual distributions to assess the level of homo-
scedasticity. We decided to not exclude parameters which are
statistically insignificant. For biomass prediction, it is not im-
portant whether any single parameter is significant or not, but
which model has the highest predicting power. Moreover, lack
of statistical significance may be not connected with lack of
effects but may be related to small sample size or shape of an
allometric curve. Because the relationship between tree di-
mensions and biomass is non-linear, reduction of parameter
b would lead to linearization of the non-linear model and
violation of the assumption of non-linearity. Following recom-
mendation of the American Statistical Association
(Wasserstein and Lazar 2016), we decided to not focus on
significance of the parameters. Moreover, we developed a
set of general models, using all sample trees for models based
on DBH and using 16 sample trees from 8- and 13-year-old
plots, based on DRC and D0.5. In each model, we assumed
normal distribution of errors, as well as uniform variance of
residuals along the predicted variable. To exclude site-specific
effects frommodels, we applied mixed effects models. Plot ID
was assigned as a random effect to maintain independence of
observations within the dataset. Following Forrester et al.
(2017), we tested linearized forms of allometric models
(Table 2). For random factors in the models, we provided
values of SD of plot-specific random effects. For backward
transformation of log-transformed models, we provided cor-
rection factors (CF = exp(SEE2/2)), where SEE was standard
error of the estimate based on natural logarithms (Sprugel
1983). Mixed effects models were developed using the lmer
and lmerTest packages (Bates et al. 2015; Kuznetsova et al.,
2017). Model selection was based on the goodness of fit using
Akaike’s Information Criterion (AIC). For each mixed effects
model, we also calculated two coefficients of determination,
allowing us to assess the proportion of variance explained by
fixed and both random and fixed effects. Marginal coefficients
of determination (R2

m) express the amount of variance ex-
plained by fixed effects only and conditional coefficients of
determination (R2

c) express the amount of variance explained
by both random and fixed effects. These coefficients were
calculated using the MuMIn::r.squaredGLMM() function
(Bartoń, 2017).

For the model validation, we selected one of the best fitting
models for each study and biomass component among tree-
level models published for A. alba. After verification, we used
16 models for comparison with our general models. We ap-
plied them to our sample trees to compare differences between
observed and predicted biomasses. To avoid extrapolation
biases, we decided to apply these functions only to trees within
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the dimension range of a particular function or trees which dif-
fered from its minimal or maximal values by not more than
20%. We assumed 20% as a trade-off between comparability
and extrapolation bias following our earlier studies (Jagodziński
et al. 2018a,b). In the case of models provided byMontero et al.
(2005) (three separate models for three branch diameter classes),
we compared the sum of masses for each class with branch
biomass from our models, as we did not divide branches into
categories. According to data provided by the mentioned au-
thors, we assumed that branches with diameter > 7 cm were
not present for trees up to 20 cm DBH.

For stand-level biomass analyses, we calculated biomass
conversion and expansion factors (BCEFs) as BCEF = W/V,
where W—dry mass of the considered biomass component
(Mg ha−1) and V—total stem volume of trees (m3 ha−1). We
prepared stand-level estimators for four of the most important
biomass components—total aboveground biomass, branches,
foliage, and stem. To assess the relationships between tree
stand characteristics and BCEFs, we used following model
types (Teobaldelli et al. 2009; Wojtan et al. 2011;
Jagodziński et al. 2018b; Table 2). In eachmodel, we assumed
normal distribution of errors, as well as uniform variance of
residuals along the predicted variable. We also used these
models (Eqs. 14–17 in Table 2) to predict relationships be-
tween tree stand characteristics and biomass. We used AIC as
the main criterion in selection of the best model; however, we
also evaluated pseudo-R2 and RMSE and we visually
inspected residual distributions to assess the level of homo-
scedasticity. We also compared quality among models using
AIC of each model and the background of AIC0—AIC of the
null model (intercept only). Due to intercorrelations between
tree stand characteristics (connected with age dependence)

and related variance inflation, we decided not to provide mul-
tiple regression models for tree stand biomass and BCEFs.
Moreover, small sample size (12 plots) would decrease reli-
ability of multiple regression analysis. We compared our stand
level total aboveground biomass estimations using both
BCEFs and biomass models (based onVand onHg) with those
provided by Teobaldelli et al. (2009) and by IPCC. For bio-
mass calculation using BEF (biomass expansion factors;
m3 m−3), which returns biomass after multiplying by wood
density, we applied 0.353 Mg m−3 (Chave et al. 2009). Due
to lack of merchantable volume, we excluded the youngest
plots from stand-level BCEF analyses. We compared methods
of stand-level biomass estimation using mean error, i.e., mean
difference between observed and predicted biomass (ME).

3 Results

3.1 Tree-level models

Site-specific allometric models developed for study sites ex-
plained from 95.3 to 99.8% (average 98.2 ± 0.4%) of variation
in total aboveground biomass, depending on diameter type.
For branches, foliage, and stem biomass, coefficients of deter-
mination varied from 0.850 to 0.993, from 0.884 to 0.997, and
from 0.961 to 0.997, respectively. Fixed effects of general
allometric models explained from 90.5 to 99.6% of variation
in biomass (Table 3). Plot-specific (random) effects explained
from 0.0 to 5.9% of variance. There were no plot-specific
effects for five models based on D0.5 and four based on
DRC. Stem and total aboveground biomass models had better
fits than those for branches and foliage. Similarly, site-specific

Table 2 Formulas of regression models used in the study

Type of models Formulas Dependent variables (Y) Independent variables References

Site-specific tree-level
models

(1) Y = a ×Db

(2) Y = a + b ×D2

(3) Y = a + b × log(D)
(4) Y = a + (b/D)
(5) Y = a × (D2H)b

(6) Y = a ×Db ×Hc

(7) Y = a + b × log(D2H)
(8) Y = a + b ×D2 + c ×H
(9) Y = a + b × (D2H)
(10) Y = a + b ×D2 + c ×H2

Biomass (dry weight) of
the tree component (kg)

D—diameter (cm),
H—height (m),
D2H—pseudovolume (m3).

(Jagodziński et al., 2018a, b)

General tree-level
models

(11) log(W) = a + b × log(D) + uj
(12) log(W) = a + b × log(D2H) + uj
(13) log(W) = a + b × log(D)

+ c × log(H) + uj

Biomass (dry weight) of
the tree component (kg)

D—diameter (cm),
H—height (m),
D2H—pseudovolume (m3),
uj—random intercept for

plot j.

(Forrester et al. 2017)

Stand-level models (14) Y = a × zb

(15) Y = a + b × e−z × c

(16) Y = a + b/z
(17) Y = a + b/zc

Biomass (Mg ha−1)
BCEF (Mg m−3)

z—tree stand characteristics
(stand density, height,
volume or age)

(Teobaldelli et al. 2009;
Wojtan et al. 2011;
Jagodziński et al. 2018b)

a, b, c—model parameters, e—base of the natural logarithm
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effects in models based on DBH were highest in models of
branches and foliage.

3.2 Comparison of models accuracy of general
and published tree-level models

Analysis of comparison with original data revealed that
models from Denmark (Nord-Larsen and Nielsen 2015) and
Switzerland (Burger 1951) underestimated biomass of A. alba
(Fig. 1). However, model of ST from Denmark performed
similarly to our general models. Models from Italy
(Gasparini et al. 2006; Tabacchi et al. 2011) had small under-
estimations of aboveground woody biomass and stem bio-
mass but well-fit estimates of total aboveground biomass.
Models from Spain (Montero et al. 2005; Ruiz-Peinado et al.
2011) had overestimations of total aboveground, stem, and
branch biomass. For small trees, our general model provided
estimates similar to the model provided by Annighöfer et al.
(2016). Our general models provided reliable predictions in
low and medium ranges of biomass, while they tended to
underestimate biomass of the two largest sample trees.

3.3 Models for stand level biomass and BCEFs

The biomass of A. albawas strongly positively correlated with
tree stand age, volume, mean diameter, height, and basal area
(Fig. 2; Table 4). We found the highest correlations for total
aboveground and stem biomass and the lowest for foliage. The
weakest predictor among all analyzed biomass components
was stand density (N). In case of BCEFs, we found that the
values for the youngest tree stand were more or less constant
and weakly negatively correlated with tree stand age, volume,
mean diameter, height, and basal area (Fig. 3; Table 5). The
most constant pattern was observed in BCEFs for branches.

3.4 Comparison of stand-level biomass models

Comparing stand-level biomass estimation methods, we
found the best accuracy of our volume-based (ME =
0.5 Mg ha−1) and height-based (ME = − 0.6 Mg ha−1) models,
as well as using the BCEF-based approach (ME =
1.1 Mg ha−1). Age-based and volume-based BEF models of
Teobaldelli et al. (2009) had lower quality, withME of 8.6 and

Fig. 1 Biomasses calculated by our general models (black dots) and
published models, compared with measurements of biomass. Line
indicates 1:1 proportion. Note that we showed only trees fitted to the

dimension range of functions used or which differed from their minimal
or maximal values by not more than in 20%
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33.1 Mg ha−1, respectively. The approach recommended by
IPCC provided strongly overestimated biomass, with ME of
− 86.8 Mg ha−1. This method deviated the most for stands
with the largest observed biomass (Fig. 4).

3.5 Carbon content

Mean carbon content in aboveground biomass ranged from
49.4% in the 8-year-old tree stand to 50.7% in the 40-year-
old tree stand, with an average of 50.0 ± 0.1% (Table 6). Mean
carbon content in stem wood was of 49.6 ± 0.1%, for stem
bark of 49.8 ± 0.3%, for branches of 50.6 ± 0.2%, and for fo-
liage of 51.9 ± 0.2%.

4 Discussion

4.1 Accuracy of the tree-level models

The tree-level models of A. alba in S Poland developed in our
study revealed good accuracy for most of the biomass compo-
nents studied. Generally, models from Spain (Montero et al.
2005; Ruiz-Peinado et al. 2011) and Italy (Gasparini et al.

2006; Tabacchi et al. 2011) overestimated biomass of A. alba
trees from our study. In the case of models provided by
Montero et al. (2005), overestimation may result from dividing
branch biomass into three diameter categories, described using
separate models. This separation would not allow additivity of
models, leading to overestimation of the branch biomass. One
of these categories are merchantable branches (i.e., with diam-
eter > 7 cm), which in our study were present only in trees older
than 80 years. Moreover, models from southern Europe de-
scribe different growth conditions, mainly from mountains
and highlands, which also affect biomass allocation to branches
(Jagodziński and Oleksyn 2009a). In contrast, models from
Denmark (Nord-Larsen and Nielsen 2015) underestimated bio-
mass ofA. alba trees. These observations are consistent with the
geographic pattern of biomass allocation and BCEF variability,
revealed by Schepaschenko et al. (2018).

4.2 Accuracy of stand-level biomass models

We found lower deviations between observed and predicted
stand level biomass in models provided by our study than in
those provided by Teobaldelli et al. (2009). This of course was
connected with usage of our dataset as a reference. However,

Fig. 2 Non-linear models describing relationships between tree stand characteristics and tree stand biomass components: total aboveground, branches,
foliage, and stem. Parameters of non-linear regression models are presented in Table 4
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Teobaldelli et al. (2009) provided models for Abies spp., with-
out using data for A. alba separately. For that reason, our
species-specific models were more reliable, as they contained
two species-specific components of variability: wood density
and biomass allocation pattern. The former was also included in
application of models provided by Teobaldelli et al. (2009);
thus, the ME of such models was relatively low. Lack of this
information in BCEFs provided by IPCC guidelines (Eggleston
et al. 2006) increased their uncertainty. Overestimation caused
by usage of coefficients provided by IPCC guidelines was es-
pecially high in the tree stands with the highest biomass. For
that reason, usage of these models may lead to overestimation
of forest biomass carbon pools (Jagodziński et al. 2018a), es-
pecially in countries where other methods of biomass assess-
ment are not well developed.

4.3 Influence of tree stand characteristics on biomass
estimation

Analyses of biomass changes with increases of tree stand char-
acteristics revealed fast biomass increments of foliage in the
youngest tree stands, stabilizing after 20 years. Fast increase of

foliage biomass in the early years of life followed by stabiliza-
tion may result from specificity of A. alba crown
architecture—this species has long and dense crowns
(Spathelf 2003; Dobrowolska et al. 2017). This may also result
from a quick decrease of leaf mass as a share of total biomass
in the early years of life (Mikšys et al. 2007; Poorter et al. 2012;
Uri et al. 2012). In contrast, increments of total aboveground
biomass and stem biomass were more or less linear. Patterns of
biomass accumulation through stand maturation were also
reflected in values of BCEFs—the highest BCEF values were
noted in the youngest tree stands and then BCEFs stabilized at
more or less constant values, similar to other tree species
(Lehtonen et al. 2004; Teobaldelli et al. 2009; Jagodziński
et al. 2018a).

Biomass wasmost highly correlated with variables describ-
ing tree stand dimensions, i.e., volume, diameter, and height.
However, it was weakly correlated with basal area. This may
be connected with the growth strategy of A. alba, forming tree
stands which are multi-storied or selection structure of stands
(Dobrowolska et al. 2017). This results in similar basal area of
stands with different age and stand dimensions. For the same
reasons, stand density was the worst predictor of biomass.

Table 4 Non-linear models describing relationships between forest stand characteristics (predictors) and tree stand biomass (Mg ha−1)

Component Predictor Equation a SE b SE RMSE R2 AIC AIC0

Aboveground Age 14 15.5976 10.4750 0.6230 0.1538 9.770 0.773 131.541 147.325

BA 16 338.4602 51.0512 − 4509.9619 1602.4894 12.021 0.658 126.535

N 14 2448.9150 1579.5938 − 0.3895 0.1055 8.350 0.695 135.095

D 16 299.9651 20.2692 − 1831.4091 314.6267 4.083 0.865 116.305

Hg 14 12.3859 6.4909 0.9005 0.1588 4.726 0.916 119.557

V 14 0.6978 0.4328 0.9397 0.0995 6.597 0.977 97.075

Branches Age 14 1.8046 1.5111 0.6331 0.1916 0.532 0.678 85.878 97.469

BA 16 35.6780 8.0444 − 362.9002 252.5116 3.615 0.459 85.882

N 14 353.6486 249.9720 − 0.4176 0.1163 0.465 0.672 86.097

D 14 2.5502 1.7724 0.6983 0.1989 2.812 0.784 75.800

Hg 14 1.2832 1.1028 0.9472 0.2600 0.374 0.806 79.783

V 14 0.0876 0.1719 0.9321 0.3148 0.439 0.783 75.851

Foliage Age 16 21.6134 1.9509 − 142.0926 41.9580 0.000 0.534 76.089 83.257

BA 14 3.0297 3.3855 0.5050 0.3065 3.758 0.728 65.275

N 14 31.4709 23.2029 − 0.0908 0.1109 0.047 0.075 84.317

D 16 20.0025 2.3108 − 26.5623 35.8690 5.006 0.635 68.532

Hg 16 19.4517 1.3691 − 13.5397 3.2128 0.000 0.640 73.005

V 16 20.0868 1.5910 − 354.2706 232.9451 3.980 0.692 66.667

Stem Age 14 8.8797 6.6859 0.6985 0.1714 9.334 0.786 126.840 143.324

BA 16 273.1988 46.3089 − 3842.5472 1453.6294 5.493 0.607 124.390

N 14 2450.7612 1709.8093 − 0.4286 0.1151 8.825 0.712 130.398

D 16 243.2335 17.8532 − 1615.2956 277.1247 3.093 0.854 113.513

Hg 14 5.6214 3.5196 1.0691 0.1887 4.331 0.920 115.081

V 14 0.1367 0.0742 1.1638 0.0868 3.711 0.989 85.550

Age stand age (years), BA basal area (m2 ha−1 ), D mean diameter (cm), Hg mean height weighted by tree basal area (m), N stand density (ind ha−1 ), V
total stem volume (m3 ha−1 )
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Fig. 3 Non-linear models describing relationships between tree stand characteristics and BCEFs for total aboveground, branches, foliage, and stem
biomass. Parameters of non-linear regression models are presented in Table 5

Table 5 Non-linear models describing relationships between forest stand characteristics (predictors) and biomass conversion and expansion factors
(BCEFs) (Mg m−3)

Component Predictor Equation a SE b SE c SE RMSE R2 AIC AIC0

Aboveground Age 16 0.42711 0.02002 3.23549 0.65357 – – < 0.0001 0.731 − 34.350 − 21.890
BA 16 0.35814 0.03994 4.91087 1.25372 – – < 0.0001 0.630 − 30.836
N 14 0.27545 0.06616 0.09000 0.03464 – – 0.0006 0.398 − 25.479
D 16 0.42125 0.02382 1.58348 0.36978 – – < 0.0001 0.671 − 32.112
Hg 16 0.42295 0.02304 1.36205 0.31094 – – < 0.0001 0.681 − 32.449
V 16 0.45594 0.01700 11.44751 2.48881 – – < 0.0001 0.702 − 33.191

Branches Age 16 0.02281 0.01345 2.09071 0.43905 – – < 0.0001 0.716 − 43.103 − 31.261
BA 14 10.54166 3.64572 − 1.42971 0.11097 – – 0.0015 0.928 − 58.246
N 14 0.00314 0.00378 0.44857 0.15488 – – 0.0089 0.426 − 35.370
D 16 0.01756 0.01501 1.05158 0.23307 – – < 0.0001 0.693 − 42.267
Hg 16 0.01577 0.01241 0.95407 0.16746 – – < 0.0001 0.783 − 46.063
V 16 0.03667 0.00579 8.55722 0.84732 – – < 0.0001 0.919 − 56.896

Foliage Age 14 4.04670 1.44364 − 1.11395 0.12012 – – 0.0070 0.919 − 51.740 − 26.114
BA 14 27.78346 19.40171 − 1.74710 0.23352 – – 0.0039 0.835 − 43.948
N 14 0.00027 0.00034 0.76792 0.15236 – – 0.0115 0.803 − 42.004
D 17 0.02525 0.01045 6.27813 4.30854 1.81029 0.37889 < 0.0001 0.960 − 57.554
Hg 14 1.66513 0.21970 − 1.15334 0.06266 – – 0.0004 0.975 − 64.697
V 14 4.46600 0.91985 − 0.74732 0.04530 – – 0.0038 0.965 − 60.987

Stem Age 16 0.39774 0.01469 − 1.51562 0.47955 – – < 0.0001 0.526 − 41.162 − 34.949
BA 16 0.43163 0.02630 − 2.35413 0.82543 – – < 0.0001 0.475 − 40.031
N 14 0.61201 0.10709 − 0.07956 0.02674 – – < 0.0001 0.513 − 40.859
D 16 0.40500 0.01445 − 0.82925 0.22430 – – < 0.0001 0.603 − 43.110
Hg 14 0.20618 0.03018 0.18514 0.04654 – – < 0.0001 0.673 − 45.231
V 14 0.15208 0.03364 0.14652 0.03664 – – < 0.0001 0.687 − 45.716

Age stand age (years), BA basal area (m2 ha−1 ), D mean diameter (cm), Hg mean height weighted by tree basal area (m), N stand density (ind ha−1 ), V
total stem volume (m3 ha−1 )
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Biomass was lowest in stands with the highest density,
while BCEFs were highest in those stands. During tree stand
development, initial density decreases while trees are grow-
ing, due to management thinning and self-thinning of the
stand. Stand density is a strong predictor of tree stand produc-
tivity and biomass allocation in Pinus sylvestris (Jagodziński
and Oleksyn 2009a,b). Our study confirmed this pattern for A.
alba. Also, Castedo-Dorado et al. (2012) found that stand

density was the weakest predictor of tree stand biomass of
six tree species, including three conifers: Pinus pinaster,
P. radiata, and P. sylvestris. In the case of A. alba, the strong
relationship between stand density and productivity may be
connected with more dense canopies of A. alba stands in con-
trast to sparse tree stands of L. decidua and Mediterranean
stands of Pinus spp.

4.4 Carbon content

Mean carbon content in aboveground biomass from our study
(50.00 ± 0.09%) did not differ from the value 0.5, usually
assumed as carbon content in plant tissues in most European
countries (e.g., Neumann et al. 2016), as well as in other parts
of the world (e.g., Lamlom and Savidge 2003). Our results are
also in line with IPCC guidelines (Eggleston et al. 2006),
providing a mean value of 51%, with a wide range of 47–
55%. However, it differed from the value provided by
Montero et al. (2005) for A. alba from Spain (50.6%).

4.5 Model limitations

Due to the low amount of data on A. alba biomass, models
developed in our study have some limitations. Due to geo-
graphic trends clearly visible in biases of allometric trajecto-
ries, our models might be suitable to Central European high-
lands and low mountains. This is connected with climatically
driven patterns of biomass allocation (Poorter et al. 2012),
shaping relationships between plant biomass and stand fea-
tures (Schepaschenko et al. 2018). Application of our models
is limited by height and diameter ranges—the tallest tree was
32.8m, while the species studied can reach heights up to 60m.
For that reason, our models would not be suitable in natural,
old-growth stands with A. alba. Moreover, we developed our

Table 6 Mean carbon content (%) in biomass components in each study plot

Stand age Branches Foliage Stem bark Stem wood

Min Mean SE Max Min Mean SE Max Min Mean SE Max Min Mean SE Max

8 47.1 49.3 0.3 50.2 48.3 50.4 0.4 51.6 44.9 47.0 0.2 48.5 46.8 48.2 0.2 49.3

13 48.8 49.3 0.2 49.9 49.9 51.5 0.3 52.5 46.2 48.7 0.2 51.1 49.3 50.2 0.1 50.7

22 49.0 49.6 0.2 50.3 50.7 51.6 0.2 52.6 48.2 49.3 0.1 50.7 49.4 50.1 0.1 51.6

40 49.6 51.1 0.3 52.6 51.5 52.2 0.1 52.7 49.2 50.8 0.2 52.6 49.9 50.5 0.1 51.5

41 50.8 51.1 0.1 51.7 51.7 52.4 0.1 52.9 48.2 49.8 0.2 52.4 47.5 49.7 0.1 50.5

57 49.9 51.2 0.3 52.2 51.7 52.1 0.1 52.6 49.6 51.1 0.2 52.8 48.6 49.4 0.1 50.1

68 50.5 51.2 0.2 52.0 52.0 52.6 0.2 53.1 48.3 50.5 0.2 51.9 48.9 49.6 0.1 50.3

78 49.3 50.3 0.2 50.8 50.8 52.4 0.3 53.4 48.2 50.5 0.2 51.7 48.6 49.4 0.1 50.7

82 49.9 50.8 0.2 51.4 51.0 52.0 0.2 52.9 49.4 50.5 0.1 51.6 49.2 49.6 0.1 50.2

93 49.9 50.9 0.3 52.0 52.3 52.7 0.2 53.8 49.7 50.8 0.1 51.9 48.9 49.7 0.1 51.8

107 49.8 50.9 0.3 52.1 50.8 51.8 0.2 52.2 48.6 50.1 0.2 51.4 47.8 49.8 0.1 50.6

115 50.1 51.5 0.3 53.1 50.2 51.4 0.2 52.3 47.5 50.4 0.2 52.9 47.7 49.3 0.1 50.1

Fig. 4 Comparison of differences between aboveground biomasses
calculated by models developed in this study, published models of
BCEFs (Teobaldelli et al. 2009) and BCEFs recommended by IPCC
guidelines (Eggleston et al. 2006), with observed biomasses (calculated
using plot-specific tree-level models). Line indicates 1:1 proportion
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study in monocultures while in natural conditions A. alba usu-
ally grows with an admixture of Picea abies and Fagus
sylvatica, and competition effects might also affect biomass
allocation and allometric relationships.

5 Conclusions

Using a chronosequence of A. alba tree stands, our study
filled a gap in knowledge about aboveground biomass
prediction for this species in Central Europe. We provided
a complete set of tree- and stand-level models, as well as
values of carbon content, which allow for better charac-
terization of forest carbon pools. We found that the best
predictor of biomass at the stand level was stand volume,
and the worst were tree stand basal area and stand density.
For the stands sampled, our models performed better than
other published models, allowing for more reliable bio-
mass estimation. At the stand level, we recommend usage
of biomass models instead of BCEFs, as such models are
less biased than BCEF models. We also showed the mag-
nitude to which tools more general in scope underestimate
or overestimate biomass at the stand level.
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