
RESEARCH PAPER

Validation of a CT knot detection algorithm on fresh Douglas-fir
(Pseudotsuga menziesii (Mirb.) Franco) logs

Bruna L. Longo1,2
& Franka Brüchert2 & Gero Becker1 & Udo H. Sauter2

Received: 4 April 2018 /Accepted: 21 February 2019 /Published online: 2 April 2019
# INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Abstract
& Key message A fully automated algorithm allowed knot detection and positioning on computed tomography (CT)
images of Douglas-fir logs. The detection of knot diameter and status could benefit from further improvements, i.e.,
testing other configurations and implementing texture measures. Manual measurement on CT images allows for tridi-
mensional assessment and greater attainable sampling, while manual measurement on discs provides additional color
and texture information.
& Context Computed tomography (CT) is a very successful tool to non-destructively acquire the internal knot structure of a log.
To enable large-scale applications, an algorithm that automatically detects knots is required. The accuracy of such algorithms
depends heavily on the species and image resolution.
& Aim This study validates a knot detection algorithm (Johansson et al. in Comput Electron Agric 96:238–45, 2013) on fresh
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) logs.
& Methods In this study, 282 knots were sampled from 15 logs, selected from six 78-year-old trees in southwest Germany. The
validation of the algorithm’s knot detection was performed via comparison against twomanual methods: on physical samples and
on CT images.
& Results The saturated sapwood negatively influences the overall knot detection, which causes underestimation of knot diameter
in this area or incomplete detection. The algorithm tended to overestimate knot diameter, longitudinal position, and knot length.
& Conclusion The algorithm provides the knot position with satisfactory accuracy. Other settings on contrast and considered
volume around a knot can be tested within the algorithm, as well as new development and implementation of texture measures in
the image analysis to improve the accuracy results for Douglas-fir in future investigations.

Keywords X-ray technology .Woodscanning .Saturatedsapwood .Methodaccuracy .Physical samples .Manualmeasurements

1 Introduction

Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is a tree
species recognized for its advantageous stem taper character-
istic (Cardoso and Pereira 2017), durability (Blohm et al.
2014; Highley 1995), superior mechanical properties, and
workability (Fahey et al. 1991). Such characteristics, in addi-
tion to the excellent growth potential under most European
climate conditions (Bastien et al. 2013; Remes and Zeidler
2014), justified the establishment and spread of the species’
plantations in Europe. Forest inventories in Europe indicate
that more than 52% of the Douglas-fir area is located in
France, followed by approximately 23% in Germany, and
around 5% in the UK (Bastien et al. 2013). Douglas-fir is
regarded as a promising introduced species due to its resil-
ience to climate change (Vitali et al. 2017), therefore being
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considered a plausible economic alternative to Norway spruce
(Picea abies (L.) Karst.) (Kohnle et al. 2012; Vitali et al.
2017). In Germany, such characteristics led to an increase of
the species’ planted area to about 19% (representing 1.7% of
the total German forest area in 2012), according to the Third
German National Forest Inventory (Thünen Institut 2014).

As a first step towards the optimal use and establishment of
an introduced species, the research around the adaptability,
impact, and production of Douglas-fir covering various as-
pects was undertaken in Europe. For instance, there have been
a number of studies on the response of Douglas-fir to different
silvicultural treatments (Hapla 1980; Hein et al. 2008b; Rais
et al. 2014), applying distinct modeling approaches in differ-
ent geographic regions (Hein et al. 2008a), and focusing on
roundwood (Daquitaine et al. 2002; Fischer 1994; Sauter
1992; Wobst 1995) and timber quality effects (Blohm et al.
2014; Hapla 1980; Rais et al. 2014; Remes and Zeidler 2014).

Roundwood quality is the focus of foresters when manag-
ing a stand. They prioritize actions towards the minimization
of features that might decrease the log value. For sawmillers
the roundwood quality is also important, as it might influence
the potential recovery from a log of a given size class (Bender
2006; Fischer 1994; Lowell et al. 2014). Such a quality is,
however, highly influenced by irregular structural features of
natural occurrence, perceived as defects from the wood tech-
nology point of view. In this context, the most negative effect
is the presence of knots.

A knot is the portion of a branch embedded in the stem that
usually originates at the stem pith. From there, they may pres-
ent different trajectories and size distributions, in a growth
process influenced by intricate spatiotemporal interactions,
considering the tree vigor and its environment (Duchateau
et al. 2015). Due to variations in grain angle in and around
knots (Longuetaud et al. 2012), they represent a discontinuity
in the uniform macroscopic wood matrix, generally leading to
a loss in timber bending and tension strengths. As a conse-
quence, knots can cause a considerable reduction in product
volume (Fahey et al. 1991) and value recovery from logs
(Barbour and Parry 2001; Gartner 2005), particularly when
considering industrial drying and grading in the production
process. With regard to knottiness, the European Standard
for round timber qualitative classification DIN EN1927-3
(2008), states that Douglas-fir logs should not present sound
knot diameters larger than 5 cm or dead knot diameters larger
than 4 cm to be graded as B-class. Distinct knot regions (i.e.,
sound and dead portions) influence the roundwood quality
differently, even though both lower the mechanical properties
(Lowell et al. 2014) and might also decrease the aesthetic
value of wood products (Nyrud et al. 2008).

Even if imprecise, information on internal defects before
sawing can improve the value of the resulting sawn timber
compared with a sawing process without such base data.
According to Todoroki (2003), an increase in value may vary

between 13% using imprecise data, and up to 26% when ap-
plying precise knowledge of the internal knot structure. The
use of such information to optimize log grading, as well as the
final product value, has been discussed by Berglund et al.
(2013), Fredriksson (2014), and Oja et al. (2010). In addition,
knot geometry data can also be employed to build knot
models, which aid in stand management decision making,
thus enabling the implementation of wood quality–oriented
strategies earlier in the wood supply chain. Another applica-
tion of knot models is to elucidate the knot development as
part of tree growth (Daquitaine et al. 2002; Duchateau et al.
2013; Osborne andMaguire 2016) and to expand the results to
the tree crown architecture, thus linking knot structure to
crown models.

In order to obtain data on the knot structure, Koehler (1936)
proposed a method in which a cross-cut is performed just
above the whorl and then cut again through the knot,
producing a surface where knot parameters can be manually
measured. Maguire and Hann (1987) describe a similar meth-
od, but instead of cutting longitudinally through the knot, this
procedure is performed almost transversally, considering the
knot angular orientation. As a manual reference method,
Breinig et al. (2012) cut the stem transversally through knots,
using laser lines to reach the best possible cut accuracy.

In general, conventional methods for knot measurement are
primarily destructive, time-consuming, and require extra at-
tention to technical details. As an alternative, the use of com-
puted tomography (CT) has been acknowledged, in research
institutes as well as in the industry, as a powerful method to
obtain information on the internal knot structure of a log (Oja
1997; Tong et al. 2013). Since the X-ray attenuation (i.e., the
difference between the emitted and received energy) of an
object is directly related to, among other factors, its density
(Freyburger et al. 2009; Lindgren 1991), the scanning of a log
will be processed into a gray-scale image, usually revealing
low (dark) and high (bright) density areas. The ability to dis-
tinguish knots inside a stem depends mainly on the resolution
of the image and the moisture content of the log. A review of
CT scanners (Schmoldt et al. 2000), as well as research on CT
scanning applied to stems, is given by Wei et al. (2011).

Different solutions have been developed to use CT images
in the most efficient way. Internal quality features that are
detectable to varying degrees in CT images include: moisture
content zones (Cherepanova and Hansson 2012; Osborne
et al. 2016), cracks (Andreu and Rinnhofer 2003;
Wehrhausen et al. 2012), rot areas (Bhandarkar et al. 1999),
and knots (Andreu and Rinnhofer 2003; Breinig et al. 2012;
Giudiceandrea et al. 2011; Johansson et al. 2013; Longuetaud
et al. 2012; Roussel et al. 2014). Longuetaud et al. (2012) also
present a review of existing methods to automatically acquire
the internal knot structure of a log based on CT images.

An algorithm developed for use with high-speed CT indus-
trial scanners robustly and accurately detected knots in Scots
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pine (Pinus sylvestris L.) and Norway spruce (Johansson et al.
2013). This algorithm is also one of the first capable of detect-
ing knots in both heartwood and sapwood regions. Given that
the knot detection quality depends mainly on the image reso-
lution and the settings used to detect knots, which vary from
species to species, the objective of this study was to test an
established knot detection algorithm (Johansson et al. 2013)
on CT images of freshly cut Douglas-fir logs. The validation
of the algorithm was performed by evaluating the knot detec-
tion rate in the sampled logs and the knot detection accuracy in
relation to the two most commonly used reference methods
(manual measurements on CT images and on physical
samples).

2 Material and methods

2.1 Log sampling

Logs were cut from six 78-year-old Douglas-fir trees growing
in the Forest District of Kirchzarten (8° 0′ 3″E, 47° 56′ 16″N),
southwest Germany. The trees were felled in April 2015 and
15 logs were selected from the merchantable length range
(minimum diameter of 7 cm) of these trees, sampling the
different positions within the tree (Fig. 1). The mean log di-
ameter ranged from 11 to 63 cm and the length varied from 4.1
to 5.2 m. The logs were transported to the Forest Research
Institute of Baden-Württemberg (FVA) and stored in the log
yard for 48 days until all the scans were concluded in
June 2015. Therefore, the state of the logs was considered
fresh at the time of the image acquisition.

2.2 Knot selection and measurement

The knots were selected based on CT images, in a process that
considered the knot status (sound or dead) and occurrence
(internodes or in a whorl), as well as occluded knots (see

Fig. 9 for an example from a pruned log). The sampling
targeted an even distribution of knots from the log length;
however, it did not follow any formalized randomization pro-
cedure. For knots in a whorl, the only restriction was to respect
a minimum of 30° distance between knots, to avoid selecting
knots too close to each other, which would result in difficulties
in preparing complete knots for the physical measurements.
Therefore, a maximum of four knots per whorl were sampled.
Overall, the database comprised 282 knots: 152 sound knots,
130 dead knots, 79 internode knots, 145 belonged to a whorl,
and 58 occluded knots. Occluded knots could be also classi-
fied as internode knots or in a whorl, but since they character-
ize a very particular occurrence in terms of CT detection, a
separate class was considered more appropriate.

The knot measurements were performed according to
three methods: an alternative and two reference methods.
The alternative method being validated was a knot detec-
tion algorithm based on CT images (referred to as BCT^),
an automatic and non-destructive procedure to quickly ob-
tain knot structure characteristics. Both reference methods
were susceptible to errors; however, manual measurement
on physical samples (referred to as BPhysical^) was con-
sidered very reliable, since it represents a direct and de-
structive method, and is considered a good approximation
to the quality control reality in sawmills. The second ref-
erence method consisted of manual measurements per-
formed on CT images (referred to as BManual^), a non-
destructive procedure that revealed how well the CT algo-
rithm detects knots in CT images compared to the human
eye. In addition, the comparison between both aforemen-
tioned references enabled the establishment of the uncer-
tainty level inherent to the CT image.

In this study, the comparison between pairs of methods was
performed by evaluating five descriptors of the knot structure.
Such descriptors were measured either at the knot level (an-
gular position, length, and dead knot border—DKB) or at the
knot measurement point level (diameter, longitudinal

Fig. 1 Diameter of the 15
selected logs. In log
identification, letters correspond
to trees and numbers represent the
ascending order of the log in the
tree (from bottom to top). For
each log, the butt, middle, and top
diameter measurement positions
are presented (distinguished by
grey shades)
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position), providing one or multiple observations per knot,
respectively.

2.2.1 Automated knot detection algorithm (CT)

The logs were scanned at the FVA, using the Microtec
CT.LOG scanner (Giudiceandrea et al. 2011), a unique proto-
type, developed especially for research purposes. The ma-
chine scanned the log throughout its length, producing a series
of transversal slices that, when organized in a row, form a
three-dimensional virtual log. Each slice had the transversal
resolution of 1.107 × 1.107 mm, and accounted for 5 mm of
the log length.

A positioning system and a reference point (stem pith) were
needed in order to successfully detect knots. First, the stem
pith was recognized along the log length, for which a modifi-
cation of the algorithm presented by Boukadida et al. (2012)
was used. In the sequence, the heartwood-sapwood, sapwood-
bark, and outer border were recognized by applying a smooth-
ing filter to remove the differences between earlywood and
latewood. The next step was the application of a threshold for
the different responses between the regions of interest.
Ultimately, interpolations of the borders were used to bridge
over the presence of knots. This process was performed based
on the knowledge of border recognition described by
Longuetaud et al. (2007), also considering the alterations men-
tioned by Baumgartner et al. (2010).

The knot detection algorithm tested was originally devel-
oped for Scots pine and Norway spruce by Johansson et al.
(2013). Since the present study focused on a different species
than those used while designing the algorithm, a test of filter
parameter configurations was necessary. Different combina-
tions of settings for the following filter parameters were tested:
radial filter (15 and 25), median filter (300 × 300 and 510 ×
510 mm), number of concentric surfaces—CSs (10 and 30),
and shrinkage index (20 and 40%). The best set of filter con-
figurations for Douglas-fir was reached by visually analyzing
the CT images and the results of the automatic detection (Fig.
2). Such inspection was performed for all 15 logs. The deci-
sion considered the higher knot detection rate (number of
correctly detected knots) in combination with visual accuracy
(how well the automatic generated ellipses fitted to the knots).
Unless the value of the filter parameter was mentioned below,
the parameters used in the present study were similar to the
ones applied by Johansson et al. (2013).

The algorithm started with the application of a radial filter
(of 25 mm) to smooth the grey response variability due to the
annual rings. From this point on, the algorithm procedures
were based on CSs, which are roughly cylindrical shells at a
given radial distance from the pith, approximately following
the pattern of the annual rings instead of a perfect circle. The
algorithm created ten CSs, from which at least five were lo-
cated within the heartwood area. Since this is a region with

more density contrast between knot and the surrounding
wood, it was therefore easier to detect knots. In each heart-
wood CS, a median filter of 300 × 300 mmwas used to obtain
background information. Then, a threshold was applied to
enhance the difference between high-density areas and the
background. Subsequently, ellipses were fitted to these lighter
response areas considering plausibility rules for angular ori-
entation and size. Shrinkage of the ellipse diameter in the
order of 40% was applied to compensate for an imprecise
ellipse enlargement during the threshold operation. Ellipses
in consecutive CSs and at a reasonable positioning from each
other were combined and formed a knot unit. Thus, using the
regression models presented in Table 1, each knot was param-
etrized and extrapolated to the sapwood area. A buffer area
(big enough to ascertain the knot existence in that space) was
created around the likely position of the knot in the sapwood
CSs. This area delimitated a sub-image that was searched for
size and position of a knot using morphological dilation
(Rosenfeld and Pfaltz 1966). The parameters of the aforemen-
tioned models were then updated and given as the final output
for each knot.

The performance assessment of the algorithm (with the
aforementioned set of filter configurations) was carried out
in two steps: (1) the evaluation of the detection rate, in which
the knot detection rate and false positives occurrences were
counted and (2) the evaluation of the detection accuracy, in
which knot descriptors (diameter, longitudinal position, angu-
lar position, length, and dead knot border—DKB) were com-
pared with those obtained from the reference methods.

The calculation of the knot descriptors was based on the
models presented in Table 1, using the output parameters (A to
I) from the automatic detection process. The descriptors knot
length and DKB were given directly by the parameters H and
I, respectively. Both variables are measures of the horizontal
distance from the pith to the point either where the knot ends
(length) or where the knot dies (DKB). The latter was specif-
ically defined as the point where the knot reaches its maxi-
mum diameter (Grönlund et al. 1995), meaning that from that
point onwards (towards the bark), it will no longer increase in
size, and it is therefore acknowledged as the border between
the sound and dead part of a knot.

Indirectly, it was possible to obtain the other knot de-
scriptors, such as diameter, angular position (Grönlund
et al. 1995), and lengthwise position (Andreu and
Rinnhofer 2003). The models presented in Table 1 con-
sidered the parameters given automatically by the algo-
rithm and the radial position, which was fixed at 10, 20,
40, 60 mm, and every 20 mm until the knot ends. The
equations were then applied, in order to generate the knot
descriptors for every desired radial position within a knot.
However, for the angular position, the only radial distance
input was the one corresponding to the knot length, thus
at the closest position to the log periphery.
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The diameter output (ϕ) referred in Table 1 was taken per-
pendicularly to the knot pith at the determined radial position. It
was primarily the measurement of an arc, corresponding to the
knot size in the radial direction. Even though the difference in
distance between an arc and the corresponding chord for nar-
row angles is rather small, in order to avoid overestimation, this
output was transformed to the chord (D), a straight-line seg-
ment between the two ends of the arc (see Fig. 3a), making it
more directly comparable with the other methods.

2.2.2 Manual measurements on CT images (Manual)

The procedure started from a CT-scanned log image being
filtered for pith and borders (heartwood/sapwood, sapwood/

bark, and bark/outside). The pith detection and border refine-
ment settings were identical to the ones used for the automated
detection. The pith detection was a crucial marker since it
defines, for instance, the angular accuracy, and consequently
the accuracy of any size measurement (i.e., knot diameter).
The borders were also important, not only to determine the
knot length, but also to delimit heartwood and sapwood, two
very different regions in terms of density response (for soft-
woods), especially when the log is scanned fresh.

In this method, the knot diameter output was given in both
vertical (longitudinal direction) and horizontal (tangential di-
rection) planes. When calculating the knot diameter ratio (ver-
tical/horizontal), a mean ratio of 1.553 (SD = ± 0.41, N =
1347) was observed, as well as a decreasing ratio with

Fig. 2 CT image of a log
showing a concentric surface
(CS) at 40 mm of distance from
the pith (a) and the same image
providing the resulting ellipses of
the automatic knot detection in
orange (b). The vertical and
horizontal axes are respectively
the longitudinal (0 to 5 m, in
slices) and angular (0 to 360°)
positions. Regarding colors, the
reader is referred to the digital
version of this article

Table 1 Models for knot parameterization

Knot descriptor Model Source

Longitudinal position (mm) z rð Þ ¼ C þ D
ffiffi

r
p þ Er Andreu and Rinnhofer (2003)

Diameter (rad) ϕ rð Þ ¼ Aþ B
ffiffi

r4
p

Grönlund et al. (1995)
Angular position (rad) ω(r) = F +G ln(r)

Length (mm) H

Dead knot border (mm) I

r represents the radial distance, in millimeters, initiating at the stem pith. Capital letters represent unique parameters calculated automatically for each
knot

Annals of Forest Science (2019) 76: 28 Page 5 of 16 28



increasing distance to the pith (Fig. 4). Such a pattern is
directly related to the knot inclination along the radial
gradient (Fig. 5). Depending on the knot inclination, the
difference between the methods can be exaggerated, since

they measure the same variable slightly differently (Fig.
3). Furthermore, the larger longitudinal size of the voxels,
when compared to their transversal size, should also be
considered, since it affects the accuracy of the

Fig. 3 Detail of knot diameter measurements from the CT automatic
detection (a), manual reference on CT images (b), and manual reference
on physical samples (c). Lines in orange and brown indicate respectively
the sound and dead parts of the knot automatic detection. White lines

display the original automatic output (dashed, ϕ), and the measure after
the transformation (full, D). Blue lines indicate the location of
measurement recorded manually on CT images. Regarding colors, the
reader is referred to the digital version of this article

Fig. 4 Distribution of knot diameter ratio (vertical/horizontal) measured manually on CT images along the log radius. The dashed line exemplifies a
round knot instance
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measurements. Therefore, in order to compare with the
other methods without incurring an overestimation of the
knot diameter, it was assumed that knots were perfectly
round, thus allowing the use of the horizontal diameter
(Fig. 3b2). The manual measurements were taken every
20 mm of the log radius, starting at 20 mm from the stem
pith. In this method, the DKB was visually identified,
based on the differentiation in grey levels along the knot
length, and between the knot and the surrounding wood.
The distance from stem pith to sapwood-bark border was
the maximal knot length recorded.

2.2.3 Manual measurements on physical samples (Physical)

The samples were obtained in the same manner as the whorl
method described by Koehler (1936), independently of the
type of knot. However, the sampling did not necessarily com-
prise all the knots in a whorl, and additional information from
the CT images, such as longitudinal and angular positions,
were considered prior to the cuts. Based on the full scan of
the logs, a secure interval in the longitudinal direction
that contained each selected knot was defined. These
intervals were used to cut the logs into shorter sections (thick
discs). The discs were then individually rescanned, aiming to
obtain a precise angular position to cut longitudinally through
the knot, thus generating the proper surface for measurement
(Fig. 6).

The measurements consisted of knot diameter (measured
always perpendicular to the direction of the knot at that point),
longitudinal position and status (sound/dead) at every radial

position (fixed at 10, 20, 40, 60 mm, in intervals of 20 mm)
through the total knot length. Additionally, the total length of
the knot and the distance from the stem pith to the dead point
(DKB) were recorded. The DKB was established by identify-
ing the point of maximum knot diameter (Grönlund et al.
1995), not necessarily coinciding with the evenly spaced mea-
surement points.

For technical reasons, it was assumed that the knots were
perfectly straight (i.e., no angular variation throughout the
knot length), although, in practice, such an assumption might
not always hold. Therefore, the angular position was
disregarded throughout the results in comparisons involving
this method. Given the difficulty to cut through a knot while
respecting its angular changes, all knots were carefully
inspected to ensure the maximal reliability of this method.
To this end, it was crucial that the knot pith was visible.
Thus, measurements that were not reliable after the sawing
process, either due to the knot pith absence or broken surfaces,
were excluded. The number of knots and point measurements
varied for each considered variable, since this exclusion was
performed targeting the validity of each variable individually.
Ultimately, datasets of different sizes (comprising distinct
numbers of knots) were generated for each variable, consider-
ing the pairing of values of the same knot or knot position in
each comparison. For instance, the points considered to eval-
uate knot diameter in the Physical vs. CT comparison were, at
least partly, distinct from the ones included in the Physical vs.
Manual comparison. An overview of the datasets is provided
in Table 2.

2.3 Data analysis

The first step in the evaluation of the algorithm was to analyze
the detection rate. Therefore, the images of all 15 logs were
visually inspected. The comparison between the CT-grey-
level image and the results obtained with the automatic knot
detection enabled the acquisition of two values: number of
detected knots and number of false positive instances.
Subsequently, the assessment of the knot detection accuracy
was done by comparing the automatically generated data from
the algorithm with results from the two reference methods
(Manual and Physical). Both reference methods were also
compared, to verify howwell the image allows the recognition
of a knot. Therefore, three comparisons were established (ref-
erence vs. alternative method): (1) Physical vs. CT; (2)
Manual vs. CT; (3) Physical vs. Manual. Due to more infor-
mation being available for assessment, for instance coloration
and texture, the physical method was considered as the refer-
ence in comparisons 1 and 3, while the Manual method con-
stitutes the reference in comparison 2.

Each comparison was described by the mean error and
standard deviation of the errors. It was not meaningful to an-
alyze the variable DKB, due to insufficient number of

Fig. 5 Illustration of the knot inclination influence on the vertical
measurement of knot diameter. The knot (delineated by wheat colored
lines) was exaggerated to show the contrast in size between
measurements taken perpendicularly (green lines) to the knot pith
(dashed line) and parallel (orange lines) to the stem pith. Regarding
colors, the reader is referred to the digital version of this article
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measurement points. Alternatively, the status classification of
each knot as sound or dead was investigated. A confusion
matrix was used to analyze the sound/dead status of the mea-
surement points. The other variables were analyzed using two
approaches: (1) the limits of agreement from Bland and
Altman (2003), which determines a tangible error range in
the variable’s unit and (2) the concordance correlation coeffi-
cient (Lin 1989), which provides an unbiased measure of con-
cordance between the data’s best-fit line and the reference line
(x = y). The software R 3.3.1 (R Core Team 2016) was used
for data management, and the epiR package (Stevenson et al.
2018) to perform Lin’s analysis.

3 Results

The algorithm detected 1784 out of 1899 knots, which had
been visually identified in the CT images of the 15 logs.
Among this total, there were also 28 knots falsely detected,
half of them concentrated in one top log. The observed num-
ber of knots per log varied between 79 (in a butt log, with a
minimum of 15 and amaximum of 24 knots/m of log) and 180
(in a top log, with a minimum of 36 and a maximum of
58 knots/m of log) in different trees. Maximum knot diameter
measured in the manual reference varied between 3.8 and
73.4 mm.

The descriptive results regarding all comparisons are pre-
sented in Table 3. Negative mean absolute errors (MAE) in-
dicate an underestimation by the CT in comparisons 1 and 2
and by the Manual method in comparison 3. The limits of
agreement of the errors (LAE) intervals delimitate the range
in which the mean error of the correspondent variable is

expected in 95% of the instances. The concordance values
(ρc) range from − 1 to 1, which express how far the best-fit
line is from the reference line x = y (closer to 1, stronger the
correlation), as well as its direction (positive and negative
values). This parameter can be further investigated by analyz-
ing both scale (v) and location (u) shift parameters (Lin 1989),
which indicate the contribution of each shift type in the data as
it deviates from 1 and 0, respectively. Additionally, the eval-
uation of the parameter Cb exposes how biased is the best-fit
line in comparison with the reference line x = y (closer to 1,
smaller the bias).

On average, the CT detection overestimates the variables
diameter, longitudinal position, and length, in contrast to both
reference methods. The concordance analysis revealed values
of ρc higher than 0.8 for knot diameter and angular position,
and higher than 0.9 for knot length and longitudinal position,
with rather small bias and shifts in both location and scale.
The knot diameter spread in each comparison is present-
ed in Fig. 7, in which the limits of agreement are also indi-
cated. The LAE varied between comparisons, with a knot
diameter accuracy range of 22.68 mm for comparison 1
(Physical vs. CT), 30.27 mm for comparison 2 (Manual vs.
CT), and 17.43 mm for comparison 3 (Physical vs. Manual).
With regard to the longitudinal position, comparison 1
(Physical vs. CT) had the larger LAE (Table 3), partly due to
the interference of the cuts in the physical method. The differ-
ence in angular position observed in comparison 2 between
Manual and CT varied approximately 7.6° (with 29° of LAE
range). Figure 8 shows the distribution of the error for knot
length for each comparison, in which the majority of occluded
knot lengths, as well as dead knot lengths, are overestimated
by the CT in both comparisons 1 and 2.

Fig. 6 Manual measurements on
physical samples. Black arrow:
clarifies the face of the cut;
vertical blue line: direction of the
stem pith; blue dashed lines:
reference lines perpendicular to
the stem pith; yellow dots: points
of measurement according to the
fixed radial positions; red dot:
extra point of measurement
representing the knot death point;
white lines: direction of knot
diameter measurement; yi and xi:
coordinates of each point; purple
lines: indicate the measurement of
knot length and dead knot border
(DKB); capital letters: indicate
whether the respective point
belongs to the dead (D) or sound
(S) part of a knot. Regarding
colors, the reader is referred to the
digital version of this article

28 Page 8 of 16 Annals of Forest Science (2019) 76: 28



The confusion matrix of the status of each knot, as well as
the correct classification rates (CCR) for each comparison, is
summarized in Table 4, in which the number of identically
sorted knots (matched between methods) is presented, both
in total and by status. In both comparisons with CT, the
CCR for dead knots was higher than that for sound knots.
However, when looking at the comparison between refer-
ences, we found the reverse to be true. The results indicate a
rather low overall match (31% and 18%) between the knot
status classification performed by the CT against the physical
and manual methods, respectively.

4 Discussion

The algorithm identified 93.9% of all knots in the selected
logs, which is within the range of 88–94% observed by
Johansson et al. (2013) when applying the same algorithm to

Norway spruce and Scots pine. Nonetheless, when comparing
the number of false positives, the present study reports 1.5%,
while the previously mentioned work reports about 1% of
overdetection. Fredriksson et al. (2017) split a mixed dataset
of partially dried jack pine (Pinus banksiana Lamb.) and
white spruce (Picea glauca (Moench) Voss.) into logs with
regular and irregular heartwood, and applied the same knot
detection algorithm. They obtained detection rates (false pos-
itives) of 87.3% (1.9%) and 71.2% (4.9%) for regular heart-
wood groups of jack pine and white spruce logs, respectively.
The knot detection rate corroborates the robustness behind the
construction of the algorithm (Johansson et al. 2013) and its
applicability potential to other softwood species (Fredriksson
et al. 2017), especially when the logs are fresh.

According to Altman (1991), the concordance between the
methods was Bexcellent,^ since all ρc values, and even their
lower confidence interval limits, were above 0.8. Nonetheless,
considering the scale suggested by McBride (2005), the

Table 2 Descriptive statistics of each analyzed variable, based on matching pairs in each comparison. Angular position was not acquired as a variable
from the physical method, hence the absence of values in comparisons 1 and 3

Knot descriptor Comparisons Min Max Mean SD N

Diameter (mm) 1 Physical 2.0 65.5 13.6 11.4 552
CT 1.5 54.4 16.0 10.2

2 Manual 2.8 73.4 22.4 14.1 1347
CT 2.5 62.6 23.7 12.2

3 Physical 2.0 65.5 16.8 12.4 494
Manual 2.8 57.4 16.3 11.6

Longitudinal position (mm) 1 Physical 40 4163 2006 1133 799
CT 39 4157 2007 1133

2 Manual 30 4157 2047 1112 1358
CT 37 4153 2049 1112

3 Physical 40 4163 1978 1148 743
Manual 35 4157 1975 1148

Angular position (deg) 1 Physical – – – – –
CT – – – –

2 Manual 1.0 358.0 186.6 101.5 282
CT 0.2 358.0 184.1 101.8

3 Physical – – – – –
Manual – – – –

Length (mm) 1 Physical 42.0 284.0 138.4 63.5 204
CT 28.1 282.0 143.5 62.2

2 Manual 45.8 284.7 138.8 62.7 282
CT 28.1 282.0 143.0 63.4

3 Physical 42.0 284.0 135.6 64.1 241
Manual 46.7 284.7 138.2 63.3

DKB (mm) 1 Physical 50.0 151.0 83.6 35.1 15
CT 32.2 171.7 85.9 36.9

2 Manual 31.0 210.5 94.5 63.1 13
CT 45.3 206.1 97.6 48.4

3 Physical 50.0 100.0 66.7 28.9 3
Manual 31.0 100.5 73.2 52.1

SD, standard deviation; N, sample size. The sample size considered either multiple measurement points per knot (diameter and longitudinal position) or
only one measurement per knot (angular position, length, and DKB); DKB, length from bole pith to the dead knot border
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classification for ρc values would be as follows: under 0.9,
Bpoor^; between 0.9 and 0.95, Bmoderate^; and above 0.99,
Balmost perfect^. However, the interpretation of these coeffi-
cients, such as Lin’s, varies among fields of study and should
be analyzed in each case. Thus, in our experiment, the con-
cordance was considered very good overall, given the aim of
the study (adjust the algorithm settings to another species) and
the associated errors.

The knot diameter results of comparison 3 (Manual vs.
Physical) indicate an inaccuracy of 4.4 mm of the manual
method (Table 3). Using manual measurements on CT images
as a reference method to validate their algorithms, Johansson
et al. (2013) found total diameter deviation values of 4.6 mm
for Scots pine and 5.1 mm for Norway spruce. Applying the
same methods, Fredriksson et al. (2017) observed an accuracy
in total diameter of 4.9 mm for regular and 6.2 mm for irreg-
ular heartwood groups of jack pine and white spruce logs. The
study used an image resolution of 0.605 × 0.605 × 1 mm in
contrast to 1.107 × 1.107 × 5 mm applied in the present study,
which may explain the observed difference in performance,
aside from the different analyzed species. Using another algo-
rithm (3DKnotDM software) to automatically detect knots in
medical CT images of dried silver fir (Abies alba Mill.) and
Norway spruce beams, Longuetaud et al. (2012) reported an
accuracy of maximal knot diameter in the order of 2.9 mm.
They report only the accuracy of the maximum knot diameter,
which might be biased given that (1) it may be located in the
sapwood area and (2) it is certainly not affected by the low
voxel density near the stem pith. Nonetheless, it indicates a
probable increase in accuracy due to dried samples and/or the

usage of a higher image resolution. Unfortunately, neither
condition reflects the real situation of a sawmill operation.
Using the same medical scanner, Roussel et al. (2014) imple-
mented a semi-automated tangential approach in the TEKA
algorithm. In this approach, CT images and an initial input
from the operator (radial line passing through the knot) are
needed to establish the tangential surfaces of detection for
each knot. The study analyzed, among other species,
Douglas-fir fresh logs. The authors reported a knot diameter
RMSE (root-mean-squared error) of 4.4 mm for the species,
based on 250 measurements (25 knots). These are good indic-
ative results, but problematic to implement in a sawmilling
environment due to the long computing time and the semi-
automated nature of the algorithm.

The majority of heartwood measurement points for knot
diameter lie within the 95% LAE and show a tendency of
overestimation in this area (Fig. 7ab), while sapwood points
present a wider spread, wherein the larger number of points
outside the LAE reveal a tendency of underestimation. In
comparison 1 (Physical vs. CT), such behavior was likely
influenced by measurement points from a few individual
knots, since all knot measurements above 40 mm of physical
reference diameter were underestimated by the algorithm.
These knots were responsible for the curved patterns illustrat-
ed in the right portion of Fig. 7a1. A similar pattern was also
observed by Johansson et al. (2013) for Norway spruce and
can be attributed to the low contrast between the knot and the
surrounding wood within the saturated sapwood, a problem
frequently raised in the literature (Breinig et al. 2012;
Fredriksson et al. 2017; Funt and Bryant 1987; Johansson

Table 3 Summary of error measures and concordance analysis of the knot descriptors

Knot descriptor Comparison N MAE SDE LAE ρc 95% CI v u Cb

Diameter (mm) 1 - Physical and CT 552 2.41 5.79 [− 08.9; 13.7] 0.837 [0.812; 0.860] 0.89 0.22 0.970

2 - Manual and CT 1347 1.34 7.72 [− 13.8; 16.5] 0.824 [0.807; 0.840] 0.86 0.10 0.984

3 - Physical and Manual 494 − 0.50 4.45 [− 09.2; 08.2] 0.931 [0.918; 0.942] 0.93 − 0.04 0.997

Longitudinal position (mm) 1 - Physical and CT 799 1.21 9.63 [− 17.7; 20.1] 1.000 [1.000; 1.000] 1.00 0.00 1.000

2 - Manual and CT 1358 2.29 7.64 [− 12.8; 17.2] 1.000 [1.000; 1.000] 1.00 0.00 1.000

3 - Physical and Manual 743 − 2.91 7.26 [− 17.1; 11.3] 1.000 [1.000; 1.000] 1.00 0.00 1.000

Angular position (deg) 1 - Physical and CT – – – – – – – – –

2 - Manual and CT 241 − 2.58 7.57 [− 17.4; 12.3] 0.899 [0.871; 0.920] 1.00 − 0.02 1.000

3 - Physical and Manual – – – – – – – – –

Length (mm) 1 - Physical and CT 204 5.10 22.44 [− 38.9; 49.1] 0.933 [0.913; 0.949] 0.98 0.08 0.996

2 - Manual and CT 239 4.18 23.20 [− 41.3; 49.6] 0.930 [0.911; 0.945] 1.01 0.07 0.998

3 - Physical and Manual 241 2.65 8.59 [− 14.2; 19.5] 0.990 [0.987; 0.992] 0.99 0.04 0.999

DKB (mm) 1 - Physical and CT 15 2.29 – – – – – – –

2 - Manual and CT 13 3.10 – – – – – – –

3 - Physical and Manual 3 6.56 – – – – – – –

N: sample size;MAE: mean absolute error; SDE: standard deviation of the error; LAE: 95% limits of agreement of the error (MAE ± 1.96 SDE); ρc: Lin’s
concordance correlation coefficient; 95% CI: confidence interval of ρc using Z-transformation; v: scale shift from a reference line (x = y), represented by
v = 1; u: location shift from a reference line (x = y), represented by u = 0; Cb: bias correction factor; DKB: length from bole pith to the dead knot border
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et al. 2013; Longuetaud et al. 2012; Wei et al. 2009). Despite
different approaches being developed to overcome this issue
(Johansson et al. 2013; Krähenbühl et al. 2016; Roussel et al.
2014), it remains not completely solved. In this context, the
effect of sapwood was clearly observed in two situations: (1)
when the knot detection ended in the middle of the sapwood
region, usually underestimating the knot diameter and (2)
when the knot detection stopped right before or at the
heartwood/sapwood border, normally resulting in a sound

classification. Thus, incomplete knot detection, as a conse-
quence of the wet sapwood response, is an issue that should
be considered in further improvements within the algorithm.

Given the log length scale (between 4 and 5 m), the accu-
racy in longitudinal knot position was satisfactory. Johansson
et al. (2013) observed an accuracy of 7.8 (Norway spruce) and
9.2 mm (Scots pine) for this variable, while Fredriksson et al.
(2017) reported 7.03 mm for a mix of jack pine and white
spruce logs with regular heartwood boundary. The probable

Fig. 7 Scatter plots of the knot
diameter variable. For each
comparison CT vs. physical (a),
CT vs. manual (b), andmanual vs.
physical (c), we present an
alternative-versus-reference plot
(1) and a Bland-Altman plot (2).
Black lines represent the y = x
relation on left plots and the mean
difference (full) and the 95%
limits of agreement (MAE ± 1.96
SDE; dashed) on right plots.
Colors distinguish heartwood
(red) and sapwood (black) points,
while symbols distinguish status
(cross: dead; triangle: sound).
Regarding colors, the reader is
referred to the digital version of
this article
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effect of the image longitudinal resolution on the accuracy of
manual measurement (especially for small knots) performed
on CT images is a point Longuetaud et al. (2012) discussed, as
they observed that a squared beam scanned with longitudinal
resolution of 1.25 mm presented better results regarding max-
imal knot diameter and knot length accuracy than six other
squared beams scanned with a longitudinal resolution of
3.75 mm. The accuracy of the longitudinal position of a mea-
surement point, as well as of the overall knot diameter and

consequently, the DKB, is likely influenced by the longitudi-
nal resolution of the images.

The results for angular position showed an error of 7.6°,
while analogous studies reported values of 5.1° for a mix of
jack pine and white spruce (Fredriksson et al. 2017), 2.3° for
Scots pine, and 1.9° for Norway spruce (Johansson et al.
2013). Although it is impossible to distinguish to which extent
the accuracy in angular position found in the present study is
derived from the image or the CT algorithm (absence of data

Fig. 8 Scatter plots of the knot
length variable. For each
comparison, CT vs. physical (a),
CT vs. manual (b), andmanual vs.
physical (c), we present an
alternative-versus-reference plot
(1) and a Bland-Altman plot (2).
Black lines represent the y = x
relation on left plots and the mean
difference and the 95% limits of
agreement (MAE ± 1.96 SDE;
dashed) on right plots. Colors
distinguish full (black) and
occluded (blue) knots, while
symbols distinguish status (cross:
dead; triangle: sound). Regarding
colors, the reader is referred to the
digital version of this article
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from comparison 3), it can be said that results may vary ac-
cording to the image resolution and species.

With regard to the knot length, we found SDE (standard
deviation of the error) values of 22.4 mm (Physical vs. CT)
and 23.2 mm (Manual vs. CT) for this variable. Error standard
deviations of 21 mm were attributed to the use of the same
algorithm to Scots pine and 29 mm to Norway spruce
(Johansson et al. 2013), while values of 18.1 and 24.3 mm
were found for regular and irregular heartwood (mix of jack
pine and white spruce) logs, respectively (Fredriksson et al.
2017). Studies applying other algorithms reported a wide
range of accuracy. For instance, Longuetaud et al. (2012)
found values of SDE between 0.7 and 3.9 mm for silver fir,
and between 2.1 and 3.8 mm for Norway spruce dried beams
(with sufficient contrast between knots and the surrounding
wood) using a medical scanner. Oja (1997) reported SDE

values of 15 and 34 mm for Norway spruce logs, in compar-
ison to knot length from the whorl and flitch methods (both
physical references), respectively. The comparison between
the reference methods (3) suggests that the image resolution
is mainly responsible for 8.6 mm of SDE in knot length
(Table 3). The wide range of deviation for the knot length
was driven mostly by dead knots (Fig. 8ab). The majority of
points with large deviation from the reference, in both com-
parisons 1 and 2, indicate an overestimation tendency by the
CT. Knot repercussion was identified, based on visual inves-
tigations, as the main cause of these deviations in occluded
knots. Here, knot repercussion denominates the occurrence of
an area of density higher than its surroundings in the radial
direction, appearing usually after an occluded knot ended.
Figure 9 shows an example of how this subsequent low con-
trast area interferes in the automated detection of an occluded
knot. These areas are likely part of the healing process of the
tree, in an attempt to adjust the wood matrix in the space that
will no longer be occupied by a knot. In terms of CT image,
they appear as a smoothed area adjacent to the end of the knot,
thus hardly distinguishable when only analyzing gray level
differences. Further testing on CT filter configurations is
therefore recommended to overcome such issues and improve
the accuracy results in knot length detection.

The image itself seems to affect the identification of the
DKB, evidenced by the total CCR in comparison 3
(Table 4). Concerning the comparisons against the CT, oc-
cluded knots might also have influenced the results, as
these knots were mainly detected as dead, when they were
in fact still sound. The problem seems to rely on the correct
detection of sound knots by the CT, which reflects a defi-
ciency by the algorithm in the identification of the maxi-
mum diameter point. However, according to Kershaw Jr.
et al. (1990), Douglas-fir knots might be sound for an av-
erage of 8 (± 4.7) years with no distinguishable increment
in diameter. Therefore, the classification of knot status
considering only the maximum diameter, although logical,

Table 4 Confusion matrices of knots’ status and the correct
classification rate of each comparison

Comparison 1 CT algorithm CCR (%)
Sound Dead Total

Physical Sound 18 66 84 (80%) 21

Dead 6 15 21 (20%) 71

Total 24 81 105 (100%) 31

Comparison 2 CT algorithm CCR (%)
Sound Dead Total

Manual Sound 31 193 224 (93%) 14

Dead 4 13 17 (7%) 76

Total 35 206 241 (100%) 18

Comparison 3 Manual CCR (%)
Sound Dead Total

Physical Sound 89 24 113 (91%) 79

Dead 8 3 11 (9%) 27

Total 97 27 124 (100%) 74

CCR (%): correct classification rate is the relation between the corrected
classified cases and the totality identified by the reference method, calcu-
lated for each class (sound, dead, and in total)

Fig. 9 Faulty knot detection due
to knot repercussion. The same
occluded knot is presented in the
radial (a) and cross-section (b)
views. Red lines represent
orientation lines: in (a), it refers to
the longitudinal (horizontal line)
and radial position (vertical line);
in (b), it refers to the angular
(straight line) and radial position
(circle). Orange and brown lines
delimitate respectively sound and
dead detected areas of a knot.
Regarding colors, the reader is
referred to the digital version of
this article
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might not be the optimal approach to establish the DKB for
this species.

Reference methods are not exempt from difficulties when
delineating the borders of a knot (see LAE values for
comparison 3 in Table 3). As also observed by Breinig et al.
(2012), sound knots in physical samples that do not present a
distinct border or clear differences in texture between knot and
the surrounding wood matrix are extremely challenging for
detection. Conversely, in manual measurements on CT im-
ages, smoothed surfaces that provide a similar response (low
contrast) around knots induce errors, either by considering the
smoothed area as part of the knot (overestimation) or due to
conservative delineation as a consequence of the uncertainty
raised by the smoothed area (underestimation)

5 Conclusions

This is the first study to test a fully automated knot detection
algorithm on a substantial number of Douglas-fir samples, in
comparison with two reference methods. The algorithm tested
is able to provide the position of knots in Douglas-fir with
satisfactory accuracy. However, when analyzing the knot di-
ameter performance, the results show room for improvement
in order to achieve an appropriate accuracy for future applica-
tion in sawmills. Further development in specific areas may
improve its performance, not only for the knot geometry ac-
curacy, but also for the detection of knot length and DKB. An
alternative to improve the algorithm accuracy would be to
adjust it to enhance the knot diameter measurement, as this
is a relevant feature as well as the basis to determine the DKB
under its current definition. Based on image examination, tex-
ture information seems to be an aspect that could be added in
distinct steps of the detection algorithm to improve its perfor-
mance. Still, exclusively considering the tools already imple-
mented, the intensification of concentric surfaces should re-
duce the radial spacing between points of data acquisition,
thus improving the parametrization accuracy of the models.
Hence a direct advance in, but not limited to, the knot length
and DKB is expected.

In terms of reference method, physical sampling, although
very time consuming and onerous in terms of material expen-
ditures, provides a good reference to validate not only the CT
detection but also the manual method. The difficulties faced
when measuring knots in physical samples emphasize the im-
portance of CTas an alternative reliable method for knot mea-
surement acquisition. However, manual measurements on CT
images are useful, given the amount of data able to be collect-
ed in the three-dimensional space, eliminating the uncertainty
of the cut to obtain a viable sample. Provided that its limita-
tions are considered or improved, the use of manual measure-
ments on CT images as a reference method can be recom-
mended to validate knot detection algorithms in further

investigations, standardizing the images as the basis of com-
parison in both methods. At this point, the aim is to establish
how well the image allows the recognition of specific struc-
tures. Any other source of variation would be theoretically
removed, and the remaining comparison would be between
the algorithm detection and the human eye. Nonetheless, it is
our understanding that a link to reality should be, at some
point, established for each species, either between physical
and manual methods, or directly between a physical method
and the automated CT detection, so that the application of
such algorithms reflects the physical knot structure.
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