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Abstract
& Key message A new system of additive tree biomass equations was developed for juvenile white birch plantations based
on tree diameter at breast height (DBH) and tree height (HT). Compared with previous equations developed for natural
white birch forests, the new system included one more biomass component and provided more accurate predictions.
& Context Accurate estimates of tree component and total biomass are necessary for evaluating alternative forest management
strategies for biomass feedstock, carbon sequestration, and products. Previous biomass equations developed for white birch trees
in natural stands provided substantially biased predictions for white birch plantations.
& Aims A new system of additive tree biomass equations was developed for juvenile white birch plantations in the northeastern
China.
&Methods With destructive biomass sampling data from 501 trees sampled fromwhite birch provenance and family trails at ages
7, 9, 10, and 13 in three provinces, a system of nonlinear additive tree biomass equations based on DBH and tree height was
developed using the nonlinear seemingly unrelated regressions (NSUR) approach.
& Results Compared with previously published equations developed for natural white birch forests, the new system provided
more accurate predictions of white birch tree component and aboveground and total biomass, especially of branch, foliage, and
root biomass.
& Conclusion The new system extended the applicability of biomass equations to white birch plantations in the northeastern
China.

Keywords Biomass additivity . Destructive sampling .White birch

1 Introduction

Accurate estimates of total tree biomass and tree component
biomass are necessary for evaluating alternative forest man-
agement strategies for biomass feedstock, carbon sequestra-
tion, and products (Castedo-Dorado et al. 2012; Zhao et al.
2015). Individual tree biomass equations are needed to esti-
mate biomass in foliage, branches, stems, and other tree com-
ponents (Affleck and Dieguez-Aranda 2016). A desirable fea-
ture of a system of equations is that the predictions for tree
components sum to the prediction for total tree biomass
(Parresol 1999). Additive biomass equations have been used
to estimate tree component biomass for some conifer tree spe-
cies (Bi et al. 2010; Zhao et al. 2015) and broad-leaved tree
species (Bi et al. 2004, 2015; Zheng et al. 2015). When esti-
mating a system of additive biomass equations, taking into
account the inherent correlation among the biomass compo-
nents has greater statistical efficiency (Parresol 1999, 2001).
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White birch (Betula platyphylla Suk.) is widely distributed
in the temperate broad-leaved forests of East Asia (Kuang
et al. 1979). It can grow in pure stands or in mixtures with
Acer, Larix, Picea, Tilia, and another species of Betula.White
birch is an important reforestation tree species and plays an
important ecological role as a pioneer species of secondary
broad-leaved forests of northern China (Zhang et al. 2012;
Wang et al. 2015). It is also one of the most important com-
mercial tree species for paper, furniture, and plywood produc-
tion in China (Li et al. 1995). White birch is the most exten-
sively distributed broad-leaved tree in northern and southwest-
ern forest areas of China because of its rapid growth and
adaptation to a wide variety of sites (Li et al. 1995). White
birch represents one of the largest standing volumes among
the hardwood species in the area (Fang et al. 2011). In Daxing′
anMountains, nearly one third of the forests are dominated by
white birch (Zeng et al. 2003). The natural birch forest area in
China has been gradually dwindling since the 1980s because
of pests, disease, and environmental damage. In response,
region-wide provenance and family trials were established
starting in 1991with the main goal of identifying fast-
growing seed sources to enhance white birch plantation pro-
ductivity (Zhu et al. 2001).

Additive biomass equation systems have been developed
for white birch trees in natural stands (Dong et al. 2013, 2015).
However, these equations may not be appropriate for estimat-
ing tree biomass grown in white birch plantations, which are
extensively distributed in the region. Tree biomass allocation
among different components may also differ between planta-
tion forests and natural forests, because management treat-
ments such as thinning, pruning, fertilization, and planting
specific genotypes selected for high yield can affect the accu-
mulation and partitioning of biomass among tree components
(Albaugh et al. 2009).

In this study, we have done extensive destructive sampling
to collect biomass data on individual trees and developed a
new system of additive biomass equations for white birch
trees growing in plantations. The new system fulfills the
additivity property, takes into account inherent correlations
among tree biomass equations, and overcomes the
heteroscedasticity problem. The predictive performance of
the new system was compared with the biomass equations
developed by Dong et al. (2013, 2015) for white birch trees
in natural forests.

2 Materials and methods

2.1 Study sites and experiment design

A total of 501 trees were sampled from white birth plan-
tations on three sites (HLJ, JL, and LN) in Northeastern
China. Detail information about geographic coordinates,
climate variables, and experimental sites can be found in
Table 1 and Fig. 1. Three plantations are on the HLJ site
located in Maoer mountain, Heilongjiang province. The
first one was a 13-year-old provenance trial consisting
of 16 provenances: 12, 3, and 1 from northeastern-, cen-
tral-, and northwestern China, respectively. The trees from
the different provenances were planted in a randomized
complete block design of 4 blocks and 6 tree-row plots.
The planting density was 1.5 m × 1.5 m. The second plan-
tation was a 9-year-old half-sib family trial with 60 half-
sib families that were planted in a randomized complete
block design of 4 blocks and 10 tree- 2 row plots,
respectively.Their female parents were from 10 prove-
nances (DFH, FL, HR, HN, LS, MES, QY, WYL, XBH,
and XJ). The planting density was 2 m × 2 m. The third
plantation was a 7-year-old full-sib family trial with 20
full-sib families that were planted in a randomized com-
plete block design of 4 blocks and 10 tree- 2 row plots,
respectively. Their parents were from MES, XBH, and
Finland (not shown in Fig. 1).The planting density was
2 m × 2 m. The JL site, in Jilin province, consisted of a
single 10-year-old half-sib family trial plantation with 9
half-sib families that were planted in a randomized com-
plete block design of 4 blocks and 10 tree- 2 rows plots.
Their female parents were from 5 provenances (DFH, HR,
MERS, XBH, LS). The planting density was 2 m × 2 m.
The LN site was located in Caohekou, Liaoning province.
The plantation was a single 13-year-old provenance trial
plantation with 16 provenances (12 from northeastern, 3
from central-, and 1 from northwestern China) planted in
a randomized complete block design of 4 blocks and 6
tree-row plots. The planting density was 1.5 m × 0.75 m.

2.2 Sampling and biomass measurements

On the HLJ site, 106 trees were destructively sampled from
stands of the provenance trials in August 2011, 175 trees were

Table 1 Geographic coordinates, temperature, and precipitation at the sites

Site Latitude
(°)

Longitude
(°)

Annual average
temperature (°C)

Precipitation
(mm)

Number of trees
sampled

HLJ 45.42 127.63 2.58 556.41 341

JL 43.66 126.66 4.30 835.89 26

LN 40.85 123.92 5.92 674.00 134
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sampled from half-sib families, and 60 trees sampled from
full-sib families in August 2012. On the JL site, 26 trees were
sampled from stands of half-sib families in August 2012; on
the LN site, 134 trees were sampled from stands of the prov-
enance trials in August 2011. Two sample trees per prove-
nance per block, one sample tree per half-sib family per block,
and one sample tree per full-sib family per block were ran-
domly selected. Destructive biomass sampling was not con-
ducted on some stands due to poor survivals.

Biomass measurements were conducted following the
procedures of Wang et al. (2015). Aboveground biomass
was divided into stem wood, stem bark, branch, and leaf
components. The stem (including stem wood and stem
bark) was divided into 1 m long sections. The fresh mass
of each stem section was recorded. A 5-cm disc subsam-
ple was cut from the middle of each section. The fresh
mass of bark and wood from the 5 cm disk were recorded
for determining the ratio of fresh mass of bark and wood
of the stem. The total fresh mass of all tree branches
(including leaves) of each tree were measured and record-
ed. The branches of each tree were divided into three
crown positions (lower, middle, upper) and one third of
the branches of each tree sub-sampled for determining the
ratio of leaf to branch. Then, subsamples were randomly

taken from mixed branches (about 500 g/tree) and leaves
(about 500 g/tree) of canopy crown positions of each tree.
The entire roots were dug out manually and carefully with
shovels. The total fresh mass of roots were recorded.
Subsamples of fresh roots were randomly sampled (about
700 g/tree). All samples were oven-dried at 70 °C until
constant mass and the ratio of dry to fresh mass were
calculated. Dry biomass of each tree component was cal-
culated by multiplying its fresh mass by the respective
dry/fresh mass ratio.

Summary statistics for DBH, total height, and compo-
nent biomass of all sample trees are shown in Table 2.
The relationships of stem wood, stem bark, branch, leaf,
and root biomass with tree DBH and height are shown in
Fig. 2.

2.3 Model description

A system of seven equations with additive error terms, cross-
equation constraints on the structure parameters, and cross-
equation correlation for five three tree biomass components
(stem wood, bark, branch, leaf, and root), tree aboveground,
total tree biomass with additivity was used:

Fig. 1 Geographic locations of
white birch provenances and
experimental sites

Table 2 Summary statistics of tree height (HT), diameter at breast height (DBH), and biomass for the sampled trees (n = 501)

HT
(m)

DBH
(cm)

Stem bark
(kg)

Stem wood
(kg)

Leaf
(kg)

Branch
(kg)

Aboveground
(kg)

Roots
(kg)

Total biomass
(kg)

Mean 9.45 8.05 1.77 8.70 1.05 2.61 14.13 5.43 19.56

SD 2.00 1.80 1.10 5.11 0.80 1.75 7.69 3.34 9.66

Max 14.00 14.20 8.66 30.24 6.50 11.77 47.92 20.27 61.52

Min 4.50 3.40 0.21 0.88 0.02 0.04 1.63 0.14 1.96
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Stem : Y 1 ¼ f 1 X1;β1ð Þ þ ε1
Bark : Y 2 ¼ f 2 X2;β2ð Þ þ ε2
Branch : Y 3 ¼ f 3 X3;β3ð Þ þ ε3
Leaf : Y 4 ¼ f 4 X4;β4ð Þ þ ε4
Root : Y 5 ¼ f 5 X5;β5ð Þ þ ε5
Above : Y 6 ¼ f 1 X1;β1ð Þ þ f 2 X2;β2ð Þ þ f 3 X3;β3ð Þ

þ f 4 X4;β4ð Þ þ ε6
Total : Y 7 ¼ f 1 X1;β1ð Þ þ f 2 X2;β2ð Þ þ f 3 X3;β3ð Þ

þ f 4 X4;β4ð Þ þ f 5 X5;β5ð Þ þ ε7

ð1Þ

where, Yi represents the vector of stem wood, stem bark, branch,
foliage, root, above ground biomass, and total tree biomass, re-
spectively; fl(Xl,βl) is a nonlinear function for tree biomass com-
ponent (l= 1,…, 5) for stem wood, bark, branch, leaf, and roots,
respectively); εi is the n × 1 vector of residuals for the i

th equation
(i= 1,…, 7), and n is the number of observations (trees).

Observations from different trees are generally taken to be
independent. Assume εi∼N 0;σ2

i ψi

� �
, where ψi is a (n × n)

diagonal matrix. Heteroscedasticity in the ith equation is
decribed by ψi of which the diagonal elements are not all
identical.

Let Vi ¼ σi

ffiffiffiffiffiffiffiffi
ψ−1

i

q
and V ¼

V1 0 … 0
0 V2 … 0
… … … …
0 0 … V7

2
664

3
775

7n�7nð Þ

.

Inherent correlations among biomass components mea-
sured on the same tree are described by the correlations matrix
among biomass equations:

ρ ¼
1 ρ12 … ρ17
ρ21 1 … ρ27
… … … …
ρ71 ρ72 … 1

2
664

3
775:

Fig. 2 Relationship between stem
wood, stem bark, branch, leaf,
aboveground, root, and total
biomass of the sampled trees and
tree diameter at breast height
(DBH) and height
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Let C = ρ⊗ In, where ⊗ is the Kronecker product; R =
VCV. Now, the distribution for the residual terms
ε = (ε1, ε2,…, ε7)

′ is assumed to follow ε ∼N(0,R).
Tree component biomass can be modeled as a power func-

tion of tree dimensions as:

f l Xl;βlð Þ ¼ βl0DBH
βl1HTβl2 ð2Þ

where Xj is tree DBH, total tree height (HT), and
βl = (βl0, βl1, βl2). Each component equation can contain its
own independent variables.

The system of equations was fitted using the four-step
fitting method (Zhao et al. 2015) with nonlinear seemingly
unrelated regression (NSUR) and using the SAS/ETS®
MODEL Procedure (SAS Institute Inc. 2011). This approach
guarantees additivity in biomass equations, accounts for the
inherent correlation among the biomass equations, and ad-
dresses heteroscedasticity by having a unique weighting func-
tion for each equation.

2.4 Model assessment and evaluation

Four fit statistics were obtained for each equation and used to
evaluate the goodness of fit for the biomass prediction system:
mean residual (E), mean of the absolute value of residuals
(MABE), root mean square error (RMSE), and the coefficient
of determination (R2). Mathematical expressions of these
criteria are:

Ei ¼
∑
n

j¼1
Y ij−Ŷ ij
� �

n
ð3Þ

MABEi ¼
∑
n

j¼1
jY ij−Ŷ ijj

n
ð4Þ

RMSEi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

j¼1
Y ij−Ŷ ij
� �2

n

vuuut ð5Þ

R2
i ¼ 1−

∑
n

j¼1
Y ij−Ŷ̂ ij
� �2

∑
n

j¼1
Y ij−Y i

� �2 ð6Þ

where Y ij and Ŷ ij are the jth observed and predicted values of
biomass for the ith component, and Y i is the mean of n ob-
served values for the same component.

In this study, the biomass equation system was fitted to the
entire data set (N = 501 trees). Model validation was accom-
plished by the leave-one-out (LOO) cross-validation tech-
nique, in which the model system was fitted using all-but-
one tree (leaving one tree out), and then, the fitted model
system was used to predict the values of all component and

total tree biomass for that left-out tree. The summary statistics
were calculated using the same formulas (3, 4, 5, and 6).

The predictive performance of the new model system was
compared graphically with the previously published equations
for white birch trees in natural forests (Dong et al. 2013,
2015). The biomass estimates from the equations of Dong
et al. (2013, 2015) were also assessed with the same criteria
as the new biomass equations, using formulas (3, 4, 5, and 6).

Data availability The datasets generated and/or analyzed dur-
ing the current study are available from the corresponding
author.

3 Results

3.1 Biomass equations based on DBH and HT

The fitted biomass equation system is shown below. The pa-
rameters acting as powers of DBH and HT were highly sig-
nificant in each biomass equation (Table 3).

Wood : Ŷ 1 ¼ β̂̂10DBH
^β̂11HT

^β̂12

Bark : Ŷ 2 ¼ β̂20DBH
^β21HT

^β22

Branch : Ŷ 3 ¼ β̂30DBH
^β31HT

^β32

Leaf : Ŷ 4 ¼ β̂40DBH
^β41HT

^β42

Roots : Ŷ 5 ¼ β̂50DBH
^β51HT

^β52

Above : Ŷ 6 ¼ Ŷ 1 þ Ŷ 2 þ Ŷ 3 þ Ŷ 4

Total : Ŷ 7 ¼ Ŷ 1 þ Ŷ 2 þ Ŷ 3 þ Ŷ 4 þ Ŷ 5

ð7Þ

The coefficients of DBH were positive in each biomass
component, while the coefficients associated with HTwere
positive in stem wood and stem bark, and negative in
branch, leaf, and root components (Table 3). The positive
coefficients of DBH and HT suggested their positive rela-
tionship with stem wood and bark biomass. This implies
that, for the same DBH, tree stem wood and bark biomass
increased with increasing tree height. The positive coeffi-
cient of DBH and the negative coefficient of HT in branch,
leaf, and root components implied that their biomass in-
creased with increasing DBH, but for the same DBH,
branch, leaf, and root biomass decreased with increasing
tree height.

The system of biomass equations fitted well for stem
wood, bark, aboveground biomass and total tree biomass,
but fitted poorly for branch, leaf, and root biomass
(Table 4). The weighting functions involved either DBH
or HT or both, depending on the component biomass
equation, suggesting the necessity of different weighting
functions for each biomass equation (Table 4). The resid-
ual variances were stabilized with weight functions
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(Fig. 3). There were high correlations among most of the
biomass equations, as shown in the following correlation
matrix:

Stem Bark Branch Leaf Above Root Total
Stem
Bark
Branch
Leaf
Above
Root
Total

1 0:378 0:198 0:066 0:816 0:096 0:607
1 0:025 0:128 0:474 −0:169 0:221

1 0:404 0:637 0:370 0:662
1 0:459 0:070 0:361

1 0:207 0:802
1 0:739

1

0
BBBBBBBB@

1
CCCCCCCCA

3.2 Biomass model validation and comparison

The leave-one-out cross-validation statistics indicated that the
additive biomass equation system (7) slightly underestimated
stem bark (0.3%), branch (1.1%), leaf (0.9%), and total bio-
mass (1.4%), underestimated root (6.5%), and slightly

overestimated stem wood (1.3%) and total aboveground bio-
mass (0.5%) (Table 5).

Comparing the actual component biomass with the bio-
mass predicted by the newly developed equation system as
well as with the equations developed by Dong et al. (2013,
2015) showed that the new equation system predicted all bio-
mass components better than the previous equations
(Table 6,Fig. 4). The new equations substantially improved
the estimation of component and total biomass. The
equations of Dong et al. (2013, 2015) substantially
overestimated stem wood, aboveground, and total biomass.

4 Discussion and conclusions

We developed a set of biomass equations for trees growing in
white birch plantations. Compared with previous equations
developed for natural white birch forests, the new system of
equations included one more biomass component—stem bark
component—and provided more accurate predictions of
branch, foliage, and root biomass. The new system of
equations was particularly accurate for predicting stem
wood, total aboveground, and total tree biomass in white
birch plantations. Biomass equations developed by Dong
et al. (2013, 2015) for trees in natural white birch forests are
not suitable for estimating component biomass and total bio-
mass of trees in white birch plantations (Table 6 and Fig. 4).
Natural forests and plantations are different in many ways
including stand density and the level of competition from
adjacent trees so the pattern of biomass partitioning should
also differ (Satoo and Madgwick 1982).

The new equations were developed with a large variety of
genotypes across a wide geographical area and a wide range of

Table 3 Parameter estimates and their asymptotic standard error and p values for the additive biomass equation system (7)

Biomass component Variable Parameter Asymptotic estimate Asymptotic standard error p value

Stem wood β̂10 0.0268 0.0025 < 0.0001

DBH β̂11 1.3737 0.0450 < 0.0001

HT β̂12 1.2711 0.0524 < 0.0001

Stem bark β̂20 0.0082 0.0011 < 0.0001

DBH β̂21 1.1628 0.0797 < 0.0001

HT β̂22 1.2844 0.0793 < 0.0001

Branch β̂30 0.1073 0.0183 < 0.0001

DBH β̂31 2.4173 0.1109 < 0.0001

HT β̂32 − 0.8511 0.1052 < 0.0001

Leaf β̂40 0.0665 0.0154 < 0.0001

DBH β̂41 1.6816 0.1573 < 0.0001

HT β̂42 − 0.3455 0.1631 0.0346

Root β̂50 0.3562 0.0513 < 0.0001

DBH β̂51 2.2847 0.1029 < 0.0001

HT β̂52 − 0.9573 0.0988 < 0.0001

Table 4 Weight functions and fit statistics for each biomass component
in the additive biomass equation system (7)

Biomass equation Weight function E MABE RMSE R2

Stem wood DBH4.252 − 0.120 1.298 1.918 0.859

Stem bark HT3.882 0.002 0.396 0.582 0.718

Branch DBH3.554 0.029 0.884 1.253 0.484

Leaf DBH1.322HT1.295 0.010 0.489 0.700 0.241

Aboveground DBH2.731HT1.333 − 0.079 2.133 3.007 0.847

Roots DBH2.715HT−1.768 0.353 1.980 2.630 0.380

Total DBH2.971 0.273 3.251 4.319 0.800
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growth rates. Planting materials came from 16 provinces from
northeastern to northwestern China and included the proge-
nies of 60 half-sib families and 20 full-sib families obtained by
crossing, even a parent of full-sib families was from Finland.
The new equations were developed with tree biomass data
from juvenile white birch plantations (7, 9, 10, and 13 years
old). The previous equations were developed with tree data

Fig. 3 Pearson residual plots for
each biomass component in the
equation system fitted using
NSUR method and different
weight functions for each system
equation with its own weight
function

Table 5 Leave-one-out (LOO) cross-validation results for each biomass
component in the additive biomass equation system (7)

Biomass equation E MABE RMSE R2

Stem wood − 0.115 1.307 1.933 0.857

Stem bark 0.005 0.401 0.588 0.712

Branch 0.029 0.889 1.261 0.477

Leaf 0.010 0.492 0.704 0.231

Aboveground − 0.072 2.146 3.028 0.845

Roots 0.355 1.997 2.650 0.370

Total 0.283 3.280 4.355 0.797

Table 6 Statistics for predicting the component biomass of white birch
trees from the newly developed equations (NM), the equations developed
by Dong et al. (2013) (D13) and Dong et al. (2015) (D15)

Biomass component Model E MABE RMSE R2

Stemwood NM − 0.117 1.474 2.190 0.870
D13 − 3.816 4.060 5.080 0.302
D15 − 3.359 3.648 4.643 0.416

Branch NM 0.029 0.884 1.253 0.484
D13 0.588 1.138 1.573 0.188
D15 0.338 0.979 1.357 0.396

Leaf NM 0.010 0.489 0.700 0.242
D13 0.686 0.700 0.986 − 0.505
D15 0.416 0.519 0.804 0.000

Aboveground NM − 0.079 2.133 3.007 0.847
D13 − 2.541 3.453 4.715 0.624
D15 − 2.605 3.454 4.719 0.623

Roots NM 0.353 1.980 2.630 0.380
D13 0.930 2.716 3.507 − 0.100
D15 − 0.575 2.459 3.200 0.085

Total NM 0.273 3.251 4.319 0.800
D13 − 1.611 4.779 6.419 0.559
D15 − 3.180 4.939 6.815 0.503
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from natural forests of unknown ages (Dong et al. 2013,
2015). The average DBH of sampled trees used in previous
studies was in the DBH range used in the current study. Tree
DBHs in this study ranged from 3.4 to 14.2 cm, while tree
DBHs in previous studies ranged from 8.0 to 33.1 cm (Dong
et al. 2013) or from 5.4 to 33.1 cm (Dong et al. 2015). Models
built to predict growth for smaller trees and juvenile stands are
not as common as those for older stands (Vaughn 2007). Due
to the lack of biomass equations for small diameter trees, the
carbon stored in this component of temperate forests has been
often ignored (Daryaei and Sohrabi 2016). Tree size has a
strong effect on the biomass partitioning patterns (Mensah
et al. 2016). Modeling juvenile growth of trees is important
for a better understanding of the whole process of stand de-
velopment and helping to schedule appropriate silvicultural
treatments for young stands (Zhao et al. 2015).

The model structure as in Eq. 1 was used to ensure the
additivity property of nonlinear biomass models. Most impor-
tantly, the system was fitted with the weighted NSUR and
using a large dataset. Gerbing and Anderson (1985) investi-
gated the effects of several variables and found that sample
size had the largest effect on the variance in parameter

estimates. In the previous studies, Dong et al. (2013) used
66 white birch trees and Dong et al. (2015) used 98 white
birch trees. Biomass dataset used in our current study
consisted of 501 white birch trees. Larger sample size can
reduce parameter estimation uncertainty. Heteroscedasticity
almost always exists in biomass models, as our results show.
It can inflate the standard error of the estimate of the param-
eters. In this study, we addressed this problem by having a
unique weighting function for each biomass equation and
would achieve minimum variance estimates and reliable pre-
diction intervals. The correlation matrix among biomass equa-
tions showed that the equations do have correlated errors. So
the NSUR used in the current study to take the cross-equation
error correlation in account would result in more precise esti-
mate of the parameters than separate estimation of equations
in the system.

The new equations substantially improved the estimation
of branch, foliage, and root biomass. However, both the new
and previous system of tree biomass equations for white birch
which are based on DBH and HT, did not estimate branch,
foliage, and root biomass well. Zhao et al. (2015) reported that
more detailed crown size measurements including crown

Fig. 4 Comparison of stem wood, leaves, branch, aboveground, root, and total biomass predictions for the new equation system (NM) and the equation
systems of Dong et al. (2013) (D13) and Dong et al. (2015) (D15)
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length, crown width, and diameter at the base of live crown
could improve crown biomass prediction. In future work, ad-
ditional crown information will be collected and integrated
into the system of biomass equations to improve the prediction
of branch, foliage, and root biomass.

The total biomass (or subtotal biomass) was obtained by
adding component biomass together. Its variance should be a
function of the component biomass function and cross-
correlation parameters (Affleck and Dieguez-Aranda 2016).
In our model system, however, the total (or subtotal) biomass
equation was treated as like component equations, specifying
one additional variance function and additional cross-
correlation parameters. It should be noted that the residual
variance of the total biomass estimated in the way we did
could likely be biased. Although this bias is not a big deal
for most applications, it is worth while to study further.
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