
ORIGINAL PAPER

European Forest Types: toward an automated classification

Francesca Giannetti1 & Anna Barbati2 & Leone Davide Mancini2 & Davide Travaglini1 & Annemarie Bastrup-Birk3 &

Roberto Canullo4
& Susanna Nocentini1 & Gherardo Chirici1

Received: 22 March 2017 /Accepted: 13 November 2017 /Published online: 3 January 2018
# INRA and Springer-Verlag France SAS, part of Springer Nature 2017

Abstract
& Key message The outcome of the present study leads to the application of a spatially explicit rule-based expert system
(RBES) algorithm aimed at automatically classifying forest areas according to the European Forest Types (EFT) system
of nomenclature at pan-European scale level. With the RBES, the EFT system of nomenclature can be now easily
implemented for objective, replicable, and automatic classification of field plots for forest inventories or spatial units
(pixels or polygons) for thematic mapping.
& Context Forest Types classification systems are aimed at stratifying forest habitats. Since 2006, a common scheme for
classifying European forests into 14 categories and 78 types (European Forest Types, EFT) exists.
&Aims This work presents an innovativemethod and automated classification system that, in an objective and replicable way, can
accurately classify a given forest habitat according to the EFT system of nomenclature.
& Methods A rule-based expert system (RBES) was adopted as a transparent approach after comparison with the well-known
Random Forest (RF) classification system. The experiment was carried out based on the information acquired in the field in 2010
ICP level I plots in 17 European countries. The accuracy of the automated classification is evaluated by comparison with an
independent classification of the ICP plots into EFTcarried out during the BioSoil project field survey. Finally, the RBES automated
classifier was tested also for a pixel-based classification of a pan-European distribution map of beech-dominated forests.
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& Results The RBES successfully classified 94% of the plots, against a 92% obtained with RF. When applied to the mapped
domain, the accuracy obtained with the RBES for the beech forest map classification was equal to 95%.
& Conclusion The RBES algorithm successfully automatically classified field plots and map pixels on the basis of the EFT
system of nomenclature. The EFT system of nomenclature can be now easily and objectively implemented in operative trans-
national European forest monitoring programs.
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1 Introduction

Widespread challenges related to sustainable forestry and for-
est management, conservation and restoration of habitats, bio-
diversity maintenance, land management and monitoring, and
climate change have generated a global need for classification
of natural habitats and ecosystems (Vaz et al. 2015; Flanagan
et al. 2015; Buffa and Villani 2012; Dengler et al. 2009: Song
et al. 2005). Ecological or habitat classification is targeted
primarily to the creation of a “common language” (Flanagan
et al. 2015; Barbati et al. 2014, Mc Roberts et al. 2011;
Shumchenia and King 2010) that can be used to describe,
assess, monitor, and manage ecological communities.

A classification is needed to describe the diversity of forest
ecosystems, to analyze their change over long time series, span-
ning over a full range of spatial and geographic scales, and pro-
viding knowledge of reference conditions and current states of
ecosystems to make decisions about conservation and resource
management (Faber-Langendoen et al. 2014). Vegetation classi-
fication systems are based on a set of criteria, including physiog-
nomy (growth forms, structure) and floristics (compositional
similarity and characteristic species combinations), in conjunc-
tion with ecological characteristics, including site factors, distur-
bance, bioclimate, and biogeography (Faber-Langendoen
et al. 2014; Barbati et al. 2014; Chytrý 2012; EEA 2006).

More specifically, a “forest type classification scheme” is
aimed at stratifying a large forest area (e.g., stocked forest
land) into smaller and more homogeneous units to facilitate
the analysis, interpretation, and reporting of forest data
(Barbati et al. 2014; Mc Roberts et al. 2011).

In this regard, the increasing availability of large forest plot
datasets all over the world (Ewald 2003) could be the basis for
a well-founded supra-regional vegetation classification
(Dengler et al. 2009). Several authors have proposed different
approaches that allow the consistent classification of such data
(Bruelheide 2000; Chytrý et al. 2002; Dengler et al. 2009;
Knollovà et al. 2005; Illyés et al. 2007). The vegetation clas-
sification over large geographical areas and whole continents
is nowadays a realistic aim (Dengler et al. 2009; Rodwell et al.
2002; Peet et al. 2001).

The revision of the European Nature Information System
(EUNIS) terrestrial habitat classification, based on
georeferenced vegetation plot data, has recently led to the iden-
tification of 37 distinct forest habitat types (EUNIS level 3),

considering stocked forest land only (EEA 2015a, 2015b).
The EUNIS classification provides a pan-European reference
for documenting, monitoring, and assessing the quality of hab-
itats at the European level (http://eunis.eea.europa.eu/). On the
other hand, the EUNIS forest types are difficult to use in
monitoring or inventories as reference classification due to,
e.g., a high number of classes and different spatial coverage.

The European Forest Types (EFT) classification system has
proven to be operational and easier to use to facilitate under-
standing, interpretation, and communication of data on indi-
cators describing the status and trends of forests, and forest
management in Europe. The EFTwere proposed (EEA 2006;
Barbati et al. 2007) as a reference scheme for reporting on
sustainable forest management (SFM) indicators, including
those related to the assessment of biodiversity, according to
ecologically homogeneous strata at pan-European level (EEA
2006; Forest Europe 2011; Mc Roberts et al. 2011). A recent
revision of the EFT classification allows classifying stocked
forest land of the pan-European region into 14 categories and
78 types (Barbati et al. 2016; Caudullo et al. 2016). The 14
categories represent groups of ecologically distinct forest
communities dominated by specific assemblages of tree spe-
cies, either native to Europe (categories 1–13) or introduced/
alien (category 14). The exact definition of boundaries be-
tween classes is a common problem in nomenclature schemes
adopted in vegetation classification (Mucina 1997). In the
EFT scheme, a set of classification rules is provided with the
nomenclature, in order to allow the user to assign in the field
forest plots to categories and types (Barbati et al. 2006). The
set of classification rules is based on (i) the main factors (bio-
geographical, climatic, elevation, edaphic conditions) that de-
termine the latitudinal/altitudinal zonation of European forest
vegetation or, otherwise, the appearance of azonal communi-
ties (hydrological regimes); (ii) the identification of dominant
(single or group) of tree species, based on basal area/crown
cover information.

The 78 types are designed to further describe the vari-
ety of forest communities covered by each category, and
the breaking points between different types are defined in
terms of species compositions. The European Atlas of
Forest Tree Species recently documented by a tree species
matrix the list of dominant or secondary trees species that
characterize each class of the EFT nomenclature (Pividori
et al. 2016).
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We refer to Barbati et al. (2014) for a detailed description of
the main characteristics of each category and type; neverthe-
less, key ecological and compositional features of the 14 cat-
egories are briefly summarized in Annex 1.

EFTwere extensively used in several research projects, for
example, for documenting the presence of mixed-species
stands in European forests (Bravo-Oviedo et al. 2014), quan-
tifying fuel flammability of forest vegetation (Corona et al.
2014), and defining post-fire management measures in forest
of burned areas (Barbati et al. 2010).

In the State of European Forests 2011 (SOEF 2011)
(FOREST EUROPE 2011), EFT were operationally imple-
mented in a pilot project to report on some of the SFM quan-
titative indicators: forest area and its variation, growing stock
volume, and deadwood (Barbati et al. 2011). Twenty-eight
countries reported the indicators stratified according to the
14 EFT categories. These countries represent approximately
83% of the EU forest area (excluding the Russian Federation).
The EFT allowed to report the pan-European SFM indicators
according to ecologically sound units to frame indicators
values. However, EFT-based reporting has not been imple-
mented in the latest State of European Forests (SOEF 2015;
FOREST EUROPE 2015). The SOEF 2015, in fact, applies a
very simplified forest type classification and only for reporting
on forest area (predominantly coniferous, predominantly
broadleaved and mixed forests) and growing stock (broad-
leaves and conifers). By consequence, the aggregation of in-
dicator values into broadly defined species groups imply re-
ducing the information conveyed, especially in the countries
characterized by a forest area with high variability in ecolog-
ical conditions and level of naturalness. For instance, this can
lead some countries to aggregate SFM indicators of non-
native coniferous plantations (e.g., Sitka spruce, Douglas fir)
with those of native conifer stands (e.g., Scot pine, fir, spruce).
Likewise, in the countries with a wide bioclimatic variability
(e.g., Italy, France, and Spain), the indicators of coniferous
forests of the Alpine biogeographical region are averagedwith
those of the Mediterranean ones. In addition, the three forest
type classes adopted by SOEF 2015 (FOREST EUROPE
2015) are not helpful in monitoring differential phenomena
of gains and losses in forest area, e.g., climate change-related.
That is, a stable value of broadleaved dominated forest area
may actually hide gains and losses in the forest area covered
by drought-sensitive and drought-tolerant forest types (e.g., a
decline and substitution of beech forest by thermophilous de-
ciduous species).

Though the motive for the decision of reporting SOEF
indicators by these broadly defined forest types is not re-
ported by any official document, it is reasonable to assume
that the need of reducing the reporting burden for national
correspondents represents a key factor. In fact, experts re-
sponsible for compiling country-level information for the
SOEF process, in personal communications, complained

about the lack of clear quantitative criteria to unambiguous-
ly assign sampling units (e.g., National Forest Inventories
plots) to the EFT classes. For this reason, it appears partic-
ularly useful to develop a straightforward method for the
objective classification of European forests according to the
EFT system of nomenclature.

Classification of a forest area according to a given forest
type scheme should be usually accomplished by field crew
during a field survey (Westfall 2009). However, this step is
subjective and relies on the personal experience of the person-
nel involved (Hédel 2007; Westfall 2009). Consequently,
when large monitoring programs are carried out by different
field crews, the information collected in the field can be af-
fected by inconsistency, due to the fact that different crews
may classify the same forest area according to different forest
types (Westfall 2009).

Remote sensing techniques and Geographic Information
Systems (GIS) support the production and availability of
digital maps of environmental variables (Ioannis et al.
2006) such as biogeographical regions (EEA 2016), cli-
mate data (Hijmans et al. 2005), global bioclimatic classi-
fication systems (Rivas-Martínez et al. 2004), orography,
geology, soils (Panagos et al. 2011), water bodies (EEA
2013a), wetlands (EEA 2013b), and tree species distribu-
tion (San-Miguel-Ayanz et al. 2016). This information
opens up for new possibilities to develop automated vege-
tation classification models (Millington et al. 2002), to
map the presence and abundance of a given species
(Duveneck et al. 2015), community presence (Ackers
et al. 2015; Zimmermann and Kienast 1999), community
structure and composition (Ohman and Gregory 2002;
Adamo et al. 2015), or forest types (Beard et al. 2013).

Formalized classifications systems which attempt to derive
vegetation maps at the continental scale level are evolving in
recent years (Jiménez-Alfaro et al. 2014), since they are cru-
cial for supporting nature conservation actions and forest plan-
ning in the European Union (Douda et al. 2016).

Several methods were applied to test for the automated
classification of vegetation and forest habitats on the basis of
data mining or artificial intelligence approaches in a GIS en-
vironment (Adamo et al. 2015; Openshaw and Openshaw
1997). Automated classification methods most commonly
consist of induction rules, decision trees, random forest,
rule-based expert system (RBES) (Pérez-Ortiz et al. 2016;
Capelo et al. 2007; Cook et al. 1996; Andrew 1996), artificial
neural networks (Wang et al. 2005), genetic algorithms (Chen
and Yao 2008), and support vector machines (Torbick et al.
2007). Among these, RBES, also known as knowledge-based
systems (Andrew 1996; Capelo et al. 2007; Pérez-Ortiz et al.
2016), is one of the most widely applied approaches for veg-
etation classifications since they solve the problems by rules
derived from human expert knowledge (Grunwald 2009;
Hayes-Roth 1985).

Annals of Forest Science (2018) 75: 6 Page 3 of 14 6



An expert system can be defined as “a hierarchy of rules, or
a decision tree that describes the conditions under which a set
of low level constituent information (user-defined variables,
raster imagery, vector coverages, spatial models, external
program and simple scalars) gets abstracted into a set of high
level information classes” (Bingyuan et al. 2014). Conventional
RBES uses human expert knowledge to solve real-world prob-
lems that normally would require human intelligence.

Several scientists demonstrated the potential of RBES ap-
plied to spatial data to improve the accuracy of landscape and
ecological classifications (Gao et al. 2004). RBES offers a
way to codify information and use it to make predictions
(Czajkowski et al. 2007) based on basic axioms of logical
set theory usually consisting of if-then rules (Robinove
1986). Further, it offers important advantages in terms of sim-
plicity and computational efficiency (Robinove 1986).

The aim of this study was to develop and test a spatially
explicit algorithm that automatically classifies a given for-
est habitat according to the EFT nomenclature (Barbati
et al. 2014). Two different non-parametric classification
approaches were tested: (i) a rule-based expert system
(RBES) classification algorithm and (ii) a Random Forests
(RF) classification tree.

The two systems were tested to classify by EFT categories
2010 level I plots from the Forest Focus/International
Cooperative program on assessment and monitoring of air
pollution effects on forest (ICP Forests), based on data col-
lected in the field in the framework of the BioSoil-
Biodiversity project (JRC 2011). After having analyzed the
results achieved, the automated classifier that performed better
(the RBES) was then tested for a pixel-based classification of
a raster pan-European distribution map of beech-dominated
forests into the two corresponding EFT categories (6—beech
forest and 7—mountainous beech forest).

2 Materials and methods

2.1 Study area

The two tested classification algorithms, RBES and RF, have
been developed to classify stocked forest land of the pan-
European region according to the EFT classification. The
available sample data to test the classifiers cover 17 EU coun-
tries where ICP Forests Level I data on forest structural vari-
ables have been collected in the framework of the BioSoil
Forest Biodiversity Demonstration project (JRC 2011):
Austria, Belgium, Czech Republic, Denmark, Estonia,
France, Finland, Germany, Ireland, Italy, Latvia, Poland,
Slovak Republic, Slovenia, Spain, Sweden, and UK. These
countries on the basis of the SOEF 2015 (with the exclusion
of the Russian Federation) represent 52% of the European area
and 62% of the European forest area (Forest Europe 2015).

2.2 Data

2.2.1 ICP level I biosoil biodiversity plots

The two systems were tested on 2010 level I plots acquired
in the field between 2005 and 2008 from the Forest Focus/
International Cooperative program on assessment and
monitoring of air pollution effects on the forest (ICP
Forests) collected in the field in the framework of the
BioSoil-Biodiversity project. As input data, we used the
basal area per tree species and the best available wall-to-
wall pan-European digital maps of several environmental
variables.

Raw data were obtained and pre-elaborated in the frame-
work of the official activities of the UNECE ICP Forests
Network (Working Group on Forest Biodiversity 2007). The
BioSoil plot is a circle with an area of 2000 m2 (radius of
25.24 m) (Puletti et al. 2017). The database includes informa-
tion on a number of structural and compositional variables
(Bastrup-Birk et al. 2007; Hiederer and Durrant 2010). For
testing the RBES algorithm, we used the following data: geo-
graphic position of the plots (x and y coordinates), diameter at
breast height (1.30 m) (DBH), and species of each callipered
tree. A total of 105 forest tree species was found in the field in
the 2010 plots.

In the BioSoil project, each plot in the field was assigned to
an EFTcategory according to the 14 categories documented in
EEA (2006). For the purposes of this study, the information
collected in the field is considered error free and is used as
reference truth to quantify the accuracy of the classification
algorithms.

2.2.2 Current beech forest distribution map

The current beech forest distribution map was created by
the JRC at 1-km resolution in the framework of the
European Atlas of Forest Tree Species (San-Miguel-
Ayanz et al. 2016). The map was used to test the automat-
ed classification at pixel level. The map relies on statistical
interpolation of field observations and remotely sensed
information, performed with the Constrained Spatial
Multi-Frequency Analysis (C-SMFA). Further details are
provided by de Rigo et al. (2016). To test the classification
system, we used the pixels where the relative probability
of presence of beech is ≥ 50% (i.e., pixels of the map with
a value ≥ 0.5) in order to derive a map for beech-
dominated forest areas.

2.2.3 Digital maps

Six digital thematic maps were used in this study as input
geodatasets for the automated classifiers.
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The map of biogeographic regions of Europe, prepared in
scale 1:10,000,000 by the EEA (EEA 2015a, 2015b), which
contains the official delineations of nine regions. Themap was
developed for the Habitats Directive (92/43/EEC) including
the design of the Natura 2000 and EMERALD networks re-
lated to the implementation of the Convention on the
Conservation of European Wildlife and Natural Habitats
(Bern Convention) (Council of Europe 1979). The
Bioclimatic Map of Europe (Rivas-Martínez et al. 2004), at a
1:16,000,000 scale, identifies the thermoclimatic belts of
Europe in 5 regions, 9 subregions, 34 provinces, and 88
subprovinces (Rivas-Martínez et al. 2004). The Natural
Vegetation map of Europe, in a scale of 1:10,000,000 (Bohn
et al 1994), was used to map the potential range of distribution
of oligotrophic soils where acidophilous oakwoods can occur
(class F1, see rule 5 hereinafter described).

From the Copernicus Land Monitoring Services project at
the European Environment Agency (EEA) (http://land.
copernicus.eu/pan-european/high-resolution-layers), we used
two high-resolution layers, both available as raster boolean
maps having a geometric resolution of 20 m: (a) wetlands
and (b) permanent waterbodies. Finally, we used the pan-
European Digital Elevation Model (DEM) with an original
spatial resolution of 1 arc sec available at EEA (2010).

2.2.4 Non-native tree species database

We used the list of tree species identified as alien at country
level by the project DAISIE—Delivering Alien Invasive
Species Inventories for Europe (http://www.europe-aliens.
org/). The 105 tree species surveyed in ICP plots were
accordingly reclassified as non-native (if included in the
DAISIE list) or native (if not included in the DAISIE list) in
the 17 investigated countries.

2.2.5 Methodology

For each plot, we calculated the percent basal area of each tree
species surveyed out of the total basal area of the plot and, on
the basis of the geographic location of the center of the plots,
we extracted the information from the six digital maps.

2.2.6 Rule-based expert system EFT algorithm

According to Barbati et al. (2014), a species is considered
dominant when its basal area per plot represented at least
50% of the total plot basal area. Species that represented less
than 5% of the total plot basal area were not considered. The
RBES algorithm is a system of conditional (if-then) rules
which recursively partitions the data set into smaller subdivi-
sions on the basis of a set of rules defined at each branch of the
decision tree.

Rule 1: we classified in forest category 14 (introduced and
alien tree species forest) all the plots where the dom-
inant species was not native at the country level,
according to the DAISIE database.

Rule 2: forest categories 11–12 correspond to azonal forest
communities characterized by specific hydrological
regimes. We assigned to category 12 (floodplain
forests) the plots within a 1-km buffer created from
the COPERNICUS permanent waterbodies high-
resolution layer (EEA 2013a, 2013b), and in catego-
ry 11 (mire and swamp forest), the plots falling with-
in areas mapped by the COPERNICUS wetland
high-resolution layer (EEA 2013a, 2013b).

Rule 3: forest categories 1, 2, and 3 are defined on the
basis of the biogeographical regions and species
composition. The geographic boundaries of the
Boreal and of the Alpine biogeographical regions,
required for the classification of categories 1 (bo-
real forest) and 3 (Alpine coniferous forest) re-
spectively are taken from the map of biogeo-
graphic regions of Europe (EEA 2015a, 2015b).
The limit of the hemiboreal area where category 2
(nemoral coniferous and mixed broadleaved co-
niferous forest) is distributed is instead delineated
from the unit “temperate hemiboreal bioclimate”
of the Bioclimatic Map of Europe (Rivas-
Martínez et al. 2004).

Rule 4: forest categories 6 and 7 are beech-dominated com-
munities with a different altitudinal zonation. In
Mediterranean and Alpine biogeographic regions,
the plots with altitude less than 650 m a.s.l. were
assigned to category 6, the others to category 7; in
Continental, Atlantic, Pannonian, Hemiboreal, and
Boreal regions, the altitude threshold for category 6
was set to 350 m.

Rule 5: plots were assigned to category 4 (acidophilous oak
and oak-birch forest) on the basis of species compo-
sition and spatially congruence with geographical
distribution of acidophilous oakwoods (F1 class) de-
lineated in the Natural Vegetation map of Europe
(Bohn 1994).

Rule 6: to classify the remaining categories 5 (mesophytic
deciduous forest), 8 (thermophilous deciduous for-
est), 9 (broadleaved evergreen forest), and 13 (non-
riverine alder, birch, or aspen forest), we used the
information on the tree species composition only.

The information available in the matrix of European Forest
Types’ dominant tree species published in the European Atlas
of Forest Tree Species (Pividori et al. 2016) was used for
identifying dominant trees to classify the plots. The system
was implemented in an R code, using the packages raster
(Hijmans 2015), shape (Soetaert 2014), and spatial.tools
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(Greenberg 2014). The overall decision tree used in the RBES
is available as Annex 2 to this contribution.

2.2.7 Random Forest classification tree

RF classification tree is a non-parametric “ensemble learning”
algorithm based on a machine learning approach (Breiman
2001). Classification trees create a set of rules for binary
partitioning input dataset in regions (called nodes) which are
asmuch homogeneous as possible on the basis of the available
predicting variables (Breiman et al. 1984). RF is an enhance-
ment of traditional decision trees because it consists of a large
number of trees, and the final classification is determined as
the majority of the results obtained by the trees. In this study,
we used RF as it is implemented in R-cran RandomForest
package on the basis of 500 trees (Liaw and Wiener 2002).
The code permits to assess the total accuracy of the classifica-
tion with a bootstrapping approach and the importance of each
specific predictor through the Mean Decrease Gini coefficient
(Liaw and Wiener 2002).

2.2.8 Accuracy assessment

The accuracy of the two classification approaches was eval-
uated against the EFT classification at category level
assigned in the field. To do so, we first created a confusion
matrix comparing the 2010 plots in terms of field-based and

algorithm attributions to EFT categories. On the basis of the
confusion matrix, we calculated the overall accuracy as the
percent of plots, where the two classifications agree out of a
total of 2010 plots and the kappa index of agreement (KIA)
(Cohen 1960); for each category, we also calculated omis-
sion (EO) and commission (EC) errors and the user and
producer accuracy.

We followed the same approach also to evaluate the accura-
cy of the beechmap produced for the two EFTcategories (6 and
7). In this later case, we compared the result of the classification
for the pixels relative to the position of the 2010 ICP plots.

Data availability The R code of the algorithm is available from
the corresponding author upon request.

3 Results

3.1 ICP classification

The overall accuracy of the EFTclassifications was high, 0.94
and 0.90, and the KIA 0.64 and 0.60 for RBES and RF, re-
spectively (Tables 1 and 2, Fig. 1).

The errors of omission of the RBES algorithm ranged be-
tween 0.09 (category 10) and 0.219 (category 11), while the
errors of commission ranged between 0 (categories 9) and
0.34 (category 14) (Table 1).

Table 1 The confusion matrix is calculated by comparing the EFT category assigned to forest plots in the field with the EFT category returned by the
RBES EFT algorithm. Overall accuracy = 0.94, KIA = 0.64 (see Annex 1 for categories description) In Italics the number of plot where the EFTs
classification obtained by RF classification is congruent with the ones attributed in the Field by crew.

RBES Field classification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total User accuracy

1 574 1 1 3 579 0.99

2 195 1 1 1 1 1 1 201 0.97

3 212 4 1 1 1 1 2 222 0.95

4 16 1 2 1 20 0.80

5 2 2 54 1 4 1 1 65 0.83

6 4 1 5 140 1 2 153 0.92

7 1 4 1 6 326 5 9 352 0.93

8 1 2 128 2 12 145 0.88

9 55 1 56 0.98

10 10 10 1.00

11 1 4 1 32 2 1 41 0.78

12 1 1 30 32 0.94

13 1 1 1 1 1 22 27 0.81

14 4 1 3 4 2 1 92 107 0.86

Total 582 200 219 24 67 156 332 143 55 11 35 39 24 123 2010

Producer
accuracy

0.99 0.98 0.97 0.67 0.81 0.90 0.98 0.90 1.00 0.91 0.91 0.77 0.92 0.75

In Italics the number of plot where the EFTs classification obtained by RF classification is congruent with the ones attributed in the Field by crew
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The errors of omission of RF classification tree ranged
between 0 (category 10, 11, and 12) and 0.138 (category 6),
while the error of commission ranged between 0 (category 9)
and 4.0 (category 11) (Table 2).

Using the species composition only in the RF algorithm,
the overall accuracy dropped to 0.62, thus indicating that in-
formation from the geospatial dataset is critically relevant for
the EFT classification. The ranking order of these predictors
evaluated on the basis of the indicator Mean Decrease gini
(MDG) was the following: latitude (MDG= 253.73); biore-
gions (MDG= 212.51); elevation (MDG= 115.42); longitude
(MDG = 97.13); soils (MDG = 14.00); proximity to river
(MDG= 9.10); and presence of wetland (MDG= 1.34)

Per-class user’s accuracies (UA), values higher than 0.85
were reached in most EFT; the lowest UA value was 0.78
for category 11. Producer’s reliabilities are significantly
higher in RBES than in RF (ranging between 0.2 and 0.4)
for some EFT (10 to 13 classes). Per-class producer’s accu-
racy ranges from good (~ 0.7 for class 4) to perfect (class 9)
in RBES, and from very low (~ 0.2 for class 11 and 12) to
perfect (class 9) in RF.

3.2 Beech map classification

Since the RBES algorithm produced slightly better results, we
used it to produce a classification of the current distribution of
beech forests in the EFT categories 6 - beech forest and 7-
mountain beech forest (Fig. 2).

The overall accuracy of the map evaluated on the basis of
the ICP forest plots classified in the field was equal to 0.93
(Table 3). In (Fig. 1) it is reported the EFTs classification
obtained by RBES of the ICP Forest plots.

4 Discussion

Both RBES and RF classification algorithms produced very
satisfactory results in the automated classification of the
European Forest Types categories. The RBES, compared to
the RF approach, is preferable for two main reasons: (1) be-
cause RBES is a totally transparent approach that can be easily
replicated with different input data from field surveys or the-
matic maps; (2) because the RBES in our test demonstrated a
better performance, in terms of producer accuracy.

The two classification approaches produced similar results
for categories 1, 2, 3, 4, and 9. RF produced better results for
categories 4, 5, 6, 8, and 14 while the RBES performed better
for categories 7, 10, 11, 12, and 13. Analyzing in detail the
source of errors in the misclassification of categories 4, 5, 6,
and 8, we found that in 63% of these plots the classification in
the field was affected by some inconsistency between domi-
nant species, as quantified by basal area data, and the EFT
category identified in the field. Two possible explanations
can be hypothesized. First, clear rules linking tree species com-
position to forest categories, as presented in Pividori et al.
(2016), were not available at the time when the BioSoil project

Table 2 The confusion matrix is calculated by comparing the EFT category assigned to forest plots in the field with the EFT category returned by the
RF classification tree. Overall accuracy = 0.92, KIA = 0.60 (see Annex 1 for category description)

RF Field classification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total User accuracy

1 579 26 23 7 4 639 0.91

2 196 2 1 2 7 1 1 3 1 4 218 0.90

3 210 2 3 3 2 1 3 224 0.94

4 17 1 1 19 0.89

5 58 1 1 60 0.97

6 3 1 5 145 10 1 165 0.88

7 3 8 1 6 312 1 3 334 0.93

8 1 139 1 1 142 0.98

9 55 1 1 57 0.96

10 8 8 1.00

11 7 7 1.00

12 8 8 1.00

13 3 1 15 19 0.79

14 1 3 106 110 0.96

Total 582 200 219 24 67 156 332 143 55 11 35 39 24 123 2010

Producer accuracy 0.99 0.98 0.96 0.71 0.87 0.93 0.94 0.97 1.00 0.73 0.20 0.21 0.63 0.86

In Italics the number of plot where the EFTs classification obtained by RF classification is congruent with the ones attributed in the Field by crew
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Fig. 1 ICP plots classified into the categories of the European Forest Types in the 17 considered countries by the RBES algorithm (see Annex 1 for the
description of EFT categories)

6 Page 8 of 14 Annals of Forest Science (2018) 75: 6



was carried out. Thus, in these cases, the inconsistency can be
attributed to the subjective evaluation of the field crew.
Secondly, if it happens that the field plot is located in a small
stand, surrounded by a wider forest type with a different com-
position, the plot is attributed to the largely represented forest
category dominated by forest trees other than those observed in

the plot. In this case, the source of error derives from an am-
biguity between field survey and forest classification scales.

The RBES classification errors in category 14 are instead to
be attributed to a change in the definition of this specific category,
occurring as a consequence of the EFTmodifications introduced
by Barbati et al. (2014). More specifically, plantations of native

Fig. 2 Beech map classified in two EFT categories (6—beech forest and 7—mountainous beech forest)

Table 3 The confusion matrix is
calculated by comparing the EFT
category of the plot assigned in
the field with the EFT category
returned by the RBES algorithm

Beech map PLOT Total User accuracy Omission error

6 7 Other categories

6 124 12 32 168 0.73 0.27

7 4 289 28 321 0.90 0.10

Outside beech map 28 31 1462 1521 0.96 0.04

Total 156 332 1522 2010

Producer accuracy 0.79 0.87 0.96 Overall accuracy 0.93

Commission error 0.21 0.13 0.04

Annals of Forest Science (2018) 75: 6 Page 9 of 14 6



species were included in category 14 during the BioSoil project,
while the revised EFT (Barbati et al. 2014) includes in this cat-
egory forest stands dominated by non-native species.

The rest of the errors introduced by the RBES algorithm are
most probably due to the limited spatial resolution of thematic
maps used, which cannot capture the small-scale variability of
forest habitats that instead were detected during the field survey.
This is especially true for category 12. The buffer around
waterbodies of 1 km is in fact most probably too wide, but it
was the minimum possible value to be consistent with the pixel
size of the analysis which is imposed by the trees species map
resolution (1 km× 1 km) currently available at European level
(San-Miguel-Ayanz et al. 2016).

When the RBES system is applied to stratify into EFT other
forest type-basedmaps, as in the case of the beechmap provided
by the JRC (de Rigo et al. 2016), we found an excellent accu-
racy (OA 0.93) when comparing pixel-based classification with
the ground survey carried out in the ICP level I plots. In this
case, classification errors are mainly due to the coarse resolution
of the beechmap if compared to the field survey unit dimension.

Our findings ultimately demonstrate that the RBES system
can be easily applied to objectively classify forest inventory plots
by EFT. The information needed on stand variables is in fact
routinely collected in European forest inventories: (i) basal area
(derived by callipered DBH), (ii) trees species, and (iii) geo-
graphic location of the plot, and based on plot position, informa-
tion on other environmental variables can be automatically ex-
tracted from thematic maps.

Such an automated RBES system could be routinely applied
in the classification of all European forest inventory plots which
is the operation needed to obtain European forest statistics based
on EFTcategories, overcoming the limited informative power of
the current SOEF 2015 report which is instead based on the
adoption of only three broad species groups (conifers, broad-
leaves, mixed forests) (FOREST EUROPE 2015).

5 Conclusions

The outcome of the present study leads to the application of a
spatially explicit RBES algorithm which is able to automatical-
ly classify a stocked forest area according to the EFT system of
nomenclature at pan-European scale level. This system is a
decision tree based on two main information sources: (1) the
basal area per tree species and (2) the geographic position
which is used to query several different thematic pan-
European digital thematic maps. In order to better understand
the potentiality of the RBES approach, we carried out a com-
parison with the well-known data mining RF algorithm.

The comparison was based on the data collected in 2010
ICP Forests Level I plots surveyed in the framework of the
BioSoil Forest Biodiversity Demonstration project. The re-
sults obtained with the RBES approach in terms of overall

accuracy (94%) and KIA (0.62) were very satisfactory and
better than those obtained with RF. All the variables we used
in the classifications are relevant. On the basis of the MDG
analysis carried out in the RF approach, we found that without
the use of geographic variables (those variables coming from
maps and not from the field work), the overall accuracy of the
classification decreases by 30%. The maps currently available
at pan-European level have limited resolution, for the discrim-
ination of local site environmental variability; it is thus highly
recommended that in the future high-resolution layers also for
bioclimatic variables could become available.

The RBES system was able to classify all the plots in a way
that was consistent, to a large extent, with the field-based classi-
fication performed by the crews. The automated classification
could be easily applicable to the data collected in the NFIs in
Europe, for example, to stratify in a harmonized way NFI
datasets into EFT and process-associated forest type-based
SFM indicators to be reported in the framework of Forest
Europe reporting (SOEF).

The RBES system, available in a complete form as the clas-
sification diagram in Annex 1 to this contribution, can be poten-
tially applied across different spatial scales. As we demonstrated
for the beech forests, the algorithm can be used to derive EFT
maps, at least when digital raster maps with the percent presence
of the forest species (in terms of basal area or forest cover) are
available. Moreover, multipurpose large-scale inventories would
benefit from the integration of the European forest types, in terms
of increased capability to assess mechanisms that influence
changes of the forest systems and the provision of forest ecosys-
tems (Corona 2016).

The rule-based expert system here presented can signifi-
cantly contribute to the large-scale deployment of the EFT
classification in forest monitoring initiatives in Europe. We
also hope that in the future more accurate and detailed pan-
European digital maps related to forest and environmental
variables would become available to improve the quality of
the classification and, therefore, the perspectives of future op-
erational use of this system.
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Annex 1

Table 4 Themost recent version of the system of nomenclature of the European Forest Types at category level (14 categories) from Barbati et al. (2014)

EFT
category

Name Definition

1 Boreal forest Extensive boreal, species-poor forests, dominated by Picea abies and Pinus sylvestris. Deciduous
trees including birches (Betula spp.), aspen (Populus tremula), rowan (Sorbus aucuparia), and
willows (Salix spp.) tend to occur as early colonizers

2 Hemiboreal and nemoral
coniferous and mixed
broadleaved-coniferous
forest

Latitudinal mixed forests located in between the boreal and nemoral (or temperate) forest zones with
similar characteristics to EFT 1, but a slightly higher tree species diversity, including also
temperate deciduous trees like Tilia cordata, Fraxinus excelsior, Ulmus glabra, and Quercus
robur. Includes also pure and mixed forests in the nemoral forest zone dominated by coniferous
species native within the borders of individual FOREST EUROPE member states like Pinus
sylvestris, pines of the Pinus nigra group, Pinus pinaster, Picea abies, and Abies alba

3 Alpine forest High-altitude forest belts of central and southern European mountain ranges, covered by Picea abies,
Abies alba, Pinus sylvestris, Pinus nigra, Larix decidua, Pinus cembra, and Pinus mugo. Includes
also the mountain forest dominated by birch of the boreal region

4 Acidophilous oak and
oak-birch forest

Scattered occurrence associated with less fertile oligotrophic soils of the nemoral forest zone; the tree
species composition is poor and dominated by acidophilous oaks (Q. robur, Q. petraea) and birch
(Betula pendula).

5 Mesophytic deciduous forest Related to medium rich soils of the nemoral forest zone; forest composition is mixed and made up of a
relatively large number of broadleaved deciduous trees: Carpinus betulus, Quercus petraea,
Quercus robur, Fraxinus, Acer and Tilia cordata.

6 Beech forest Widely distributed lowland to submountainous beech forest. Beech, Fagus sylvatica, and F. orientalis
(Balkan) dominate, locally important is Betula pendula.

7 Mountainous beech forest Mixed broadleaved deciduous and coniferous vegetation belt in the main European mountain ranges.
Species composition differs from EFT 6, including Picea abies, Abies alba, Betula pendula, and
mesophytic deciduous tree species. Includes also mountain fir dominated stands.

8 Thermophilous deciduous
forest

Deciduous and semi-deciduous forests mainly of the Mediterranean region dominated by
thermophilous species, mainly of Quercus; Acer, Ostrya, Fraxinus, and Carpinus species are
frequent as associated secondary trees. Includes also Castanea sativa-dominated forest

9 Broadleaved evergreen forest Broadleaved evergreen forests of the Mediterranean and Macaronesian regions dominated by
sclerophyllous or lauriphyllous trees, mainly Quercus species.

10 Coniferous forests
of the Mediterranean

Anatolian and Macaronesian regions. Varied group of coniferous forests in Mediterranean, Anatolian,
and Macaronesian regions, from the coast to high mountains. Dry and often poorly developed soils
limit tree growth. Several tree species, including a number of endemics of Pinus, Abies, and
Juniperus species.

11 Mire and swamp forest Wetland forests on peaty soils widely distributed in the boreal region. Water and nutrient regimes
determine the dominant tree species: Pinus sylvestris, Picea abies, or Alnus glutinosa

12 Floodplain forest Riparian and riverine species-rich forests characterized by different assemblages of species of Alnus,
Betula, Populus, Salix, Fraxinus, and Ulmus.

13 Non-riverine alder,
birch or aspen forest

Pioneer forests dominated by Alnus, Betula, or Populus.

14 Introduced tree species forest Forests dominated by introduced tree species (sensu Pan-European indicator 4.4), occurring on a
wide range of site conditions which otherwise would develop forests of above categories.
Introduced tree species can be identified at regional (recommended) or national level and
comprise tree species that are not native to Europe (e.g., Eucalyptus spp., Robinia pseudoacacia,
Acacia dealbata, Ailanthus altissima, Prunus serotina, Quercus rubra, Fraxinus alba,
Picea sitchensis, Pinus contorta, Pinus banksiana, Pseudotsuga menziesii, Tsuga heterophylla);
tree species native to Europe, but not naturally occurring within the borders of individual
FOREST EUROPE member states; tree species native only in some regions of an individual
FOREST EUROPE country
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