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Abstract
& Key message LiDAR data (low-density data, 0.5 pulses
m−2) represent an excellent management resource as they
can be used to estimate forest stand characteristics in
short-rotation willow coppice (SRWC) with reason-
able accuracy. The technology is also a useful, prac-
tical tool for carrying out inventories in these types
of stands.
& Context This study evaluated the use of very low-density
airborne LiDAR (light detection and ranging) data (0.5 pulses

m−2), which can be accessed free of charge, in an SRWC
established in degraded mining land.
& Aims This work aimed to determine the utility of low-
density LiDAR data for estimating main forest structural attri-
butes and biomass productivity and for comparing the esti-
mates with field measurements carried out in an SRWC
planted in marginal land.
& Methods The SRWC was established following a random-
ized complete block design with three clones, planted at two
densities and with three fertilization levels. Use of para-
metric (multiple regression) and non-parametric (classi-
fication and regression trees, CART) fitting techniques
yielded models with good predictive power and reliability.
Both fitting methods were used for comprehensive analysis
of the data and provide complementary information.
& Results The results of multiple regression analysis indicated
close relationships (Rfit

2 = 0.63–0.97) between LiDAR-
derived metrics and the field measured data for the variables
studied (H, D20, D130, FW, and DW). High R2 values were
obtained for models fitted using the CART technique
(R2 = 0.73–0.94).
& Conclusion Low-density LiDAR data can be used to model
structural attributes and biomass yield in SRWC with reason-
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able accuracy. The models developed can be used to improve
and optimize follow-up decisions about the management of
these crops.

Keywords Willow .Mining land . Energy crops . SRC .

Airborne laser scanning . LiDAR

1 Introduction

The prospects of successfully achieving and maintaining sus-
tainable energy production worldwide depend on the in-
creased use of renewable resources in general and biomass
in particular (Edenhofer et al. 2011). One of the best ways of
ensuring the long-term availability of biomass for producing
renewable energy is to establish and grow new perennial en-
ergy crops, which can also add value to marginal land (Rosso
et al. 2013) or can be used for bioremediation purposes.

Biomass plantations are an attractive source of renewable
energy (González-Ferreiro et al. 2013) and also have many
other advantages. Some of the reasons why crops are grown
for bioenergy purposes include the recovery of economic ac-
tivities in rural areas, provision of a neutral CO2 balance, and
restoration of degraded land.

Depending on the final destination (heat and/or electricity),
three types of biomass can be produced: oilseed, alcohol, and
lignocellulose (IDAE 2007). Crops that produce lignocellu-
losic biomass (fiber crops) can be used to produce both heat
and electricity and can be grown as short-rotation coppice
(SRC). Producing these so-called energy crops is considered
one of the most energy-efficient methods of carbon conver-
sion, as growing the crops is considered an efficient means of
reducing greenhouse gas emissions (Styles and Jones 2007).

Short-rotation plantations can be established on various
types of land, including marginal land (Broeckx et al. 2012).
Zurba et al. (2013) recommended planting SRC on marginal
land and brownfields, in parallel with other sustainable land
management options. Planting SRC on this type of land may
also contribute in the long term to improving soil quality and
biodiversity, protecting groundwater and preventing soil ero-
sion (Kuzovkina and Quigley 2005; Zurba et al. 2013). The
use of Salicaceae (Salix and Populus spp.) provides several
advantages: the ease of propagating plants from cuttings (low
production cost and easy to establish), the wide range of im-
proved genetic material available, production of high biomass
yields in a short time, and vigorous coppicing regrowth after
cutting (Keoleian and Volk 2005). Taking into account the wide
adaptability of members of the genus Salix to extreme condi-
tions and to nutrient-impoverished and polluted soils
(Kuzovkina and Quigley 2005), SRCwillow can be established
on marginal land or in soils that are not suitable for agricultural
exploitation (Jama and Nowak 2012). Indeed, short-rotation

willow coppice (SRWC), together with Populus spp.,
Eucalyptus spp., and Robinia pseudoacacia L, is one of the
most promising bioenergy cropping systems for use in temper-
ate regions of Europe (Venturi et al. 1999) as well as in Canada
and the USA (Tahvanainen and Rytko 1999; Weih 2004).

The region of Asturias (north-western Spain) was a major
coal-producing region during the past century. Although coal
mining continues to be one of the most important sources of
employment in the region (Paredes-Sánchez et al. 2016;
Suárez-Antuña 2005), the sector is currently in recession,
and large areas of mining land have been abandoned. The
mining company Grupo Hunosa currently owns up to
700 ha of former mining land that is suitable for machine-
based establishment of forest energy crops. This is currently
considered the best option for use of this land, despite the
difficulties in establishing energy crops (unfavorable soil
structure/properties in these degraded areas). To date, the only
trials involving SRC energy crops in Asturias are those asso-
ciated with research projects (7 ha). At present, a commercial
plantation (for bioenergy purposes) is being established in
20 ha of abandoned mine land of similar characteristics to
those considered in the present study.

In 2008, an experimental trial with willow energy crops
was established in abandoned mining land in Asturias. The
aims of this experimental trial were to obtain information
about structural attributes and biomass production in an
SRWC crop established in a restored coal mining area and to
evaluate the effects of clone, fertilization, and planting density
on crop yield. For this purpose, detailed and comprehensive
field inventories were conducted in order to obtain as much
information as possible about the development of the energy
crop. Forest inventories were used to estimate multiple param-
eters at plot level, including structure and biomass production.

For some decades now, remote sensing has enabled
information about forest biomass (particularly in exten-
sive forest areas) to be obtained at a wide range of
spatial and temporal scales, thus greatly reducing costs
and the amount of fieldwork required (Montealegre
Gracia et al. 2015). The correlation between the spectral
response of vegetation and structural attributes or bio-
mass production has been investigated in numerous
studies in which active sensors were used (Estornell
et al. 2011; González-Ferreiro et al. 2012; Næsset
2002; Næsset and Gobakken 2008).

The interest shown by the aforementioned company in
developing and applying new procedures and the possibil-
ity of obtaining data (forest structure and other forest var-
iables) from airborne sensors provides a valuable opportu-
nity to quantify the resources obtained directly from SRC.
This represents a breakthrough in this field, as carrying out
the field inventories necessary for adequate planning and
monitoring of the forest energy plantations (characterized
by high tree densities of 5000–20,000 plants ha−1, high
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number of shoots per stool, etc.) is tedious and time
consuming.

The use of free light detection and ranging (LiDAR)-de-
rived data provides certain advantages such as smaller estima-
tion errors, a reduction in the duration of field inventories and
the ability to cover larger areas of land.

LIDAR is one of the most important technologies developed
in this field in recent years. This technique is already being used
successfully to evaluate total forest area, improving the accuracy
of forest inventories and reducing the cost and time spent on
these (Eid et al. 2004; González-Ferreiro et al. 2012; Wehr and
Lohr 1999). LiDAR is an active remote sensing system based
on the use of a laser sensor and the application of various tech-
niques to determine the distance from a laser transmitter to an
object Sánchez Martínez et al. (2011). This distance is
established by measuring the time delay between emission of
a signal and detection of its reflection (Tanarro 2010). Themeth-
od is therefore a combination of three different technologies:
laser telemetry, the global positioning system (GPS), and inertial
measurement units (IMUs). The laser beam, emitted at a fre-
quency of thousands of energy pulses per second toward the
earth, creates a dense strip of 3D points (Manue 2007). This
3D point cloud is based on accurate measurement by a plane-
mounted pulse sensor, which calculates the distance separating
it from the earth’s surface and objects existing on it (Magdaleno-
Mas and Martínez-Romero 2006). As the position and orienta-
tion of the sensor are known for each pulse emitted, each return
signal has unique three-dimensional coordinates. LiDAR data
have been captured for the entire Spanish territory under the
National Aerial Orthophotography Plan (PNOA). Data were
collected during 2012 in the region of Asturias.

LiDAR technology has been used successfully to charac-
terize numerous types of forest stands (Hayashi et al. 2014;
Lefsky et al. 2002;Means et al. 1999;Means andAcker 2000;
Næsset et al. 2004). However, in forest inventories, the tech-
nique has been found to underestimate height (Clark et al.
2004; Næsset 1997; Zimble et al. 2003), and some authors
(Falkowski et al. 2006)have suggested thathigherdensitydata
(6–8 pulsesm−2) are required for forestmonitoring. However,
other studies have shown that a low pulse density is sufficient
for establishing strong correlations with the main attributes
measured in forest inventories (Hawbaker et al. 2010; Means
and Acker 2000; Thomas et al. 2006). Although studies
based on the use of low-density discrete-return LiDAR
to determine forest structure have been reported (Coops
et al. 2007; Hall et al. 2005), to date only basal area
has been estimated in short-rotation coppice (SRC)
(Seidel and Ammer 2014). Nonetheless, the structure
of SRCs facilitates the application of LiDAR technology
as these are dense, rather uniform stands with little or
no accompanying vegetation. These features favor good
correlations between variables measured in forest inven-
tories and those measured using LiDAR technology.

The main objective of this study was to assess the useful-
ness of low-resolution discrete return LiDAR (0.5 pulses m−2)
data to estimate structural attributes and biomass production
with the aim of facilitating management of an SRC plantation.
For the purposes of this study, we developed statistical models
that relate the information provided by the LiDAR to the data
obtained in detailed field inventories conducted in the study
area (Montealegre Gracia et al. 2015). The methods were
evaluated by complementary techniques: parametric multiple
linear regression, which enabled us to develop predictive
models, evaluated by Rfit

2 and RMSE in order to indicate
the accuracy of the fits, and non-parametric classification
and regression trees (CART), which provided more detailed,
descriptive information about the variables. The main aims of
the study were (i) to estimate the forest structure and the pro-
ductivity of SRWC and (ii) to apply and compare the use of
different types of model fitting methods (multiple linear re-
gression and CART).

2 Material and methods

2.1 Study area

2.1.1 Location of the study area

The experimental trial included three commercial willow
clones and covered an area of ≃ 2 ha in the region of
Asturias (north-western Spain) (Fig. 1). The Salix energy crop
trial was established inMay 2008 in restored land surrounding
an abandoned opencast coal mine, denominated Mozquita
(ETRS89 UTM 30 N, N: 4,794,443, E: 280,981). The study
area is characterized by an average annual temperature of
13 °C and an average annual precipitation of 1,115 mm, of
which 345 mm falls during the growing season (May–
September). The climate is oceanic with high annual precipi-
tation and, although summer precipitation is relatively low in
some areas, physiological drought does not occur in any part
of the region, which is located entirely within the European
Biogeographic Atlantic Region (EEA 2011).

The clay loam substrate (with a high presence of coarse
elements, approximately 30%) was dumped and ameliorated
in 2003. Soil formation is at an early stage and the soil struc-
ture is still unstable. The steep slopes of the terrain minimize
groundwater effects. The physiography of the plots was char-
acterized by a mean slope of 19% and an elevation ranging
from 508 to 597 m above sea level.

2.1.2 Experimental design

In the winter of 2008, the surface was subsoiled, plowed to a
depth of 30–40 cm, and harrowed before the willow cuttings
were planted. Three commercially available willow clones
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were chosen for the study because of their adaptability to
extreme soil conditions (e.g., nutrient poor and polluted soils)
(Kuzovkina and Quigley 2005) and because they display good
structural attributes and yield capacities for biomass produc-
tion in SRC (Keoleian and Volk 2005). The cuttings were
planted according to a double row planting design, leaving a
distance of 0.75m between each set of double rows, a distance
of 1.5 m to the next set of double rows, and a distance between
plants of 0.9 m (10,000 plants ha−1) or 0.6 m (15,000 plants
ha−1) to provide two stocking levels (Fig. 2).

The experiment was established following a randomized
complete block design (three blocks), in which three qualita-
tive factors were considered for analysis: clone (three levels),
planting density (two levels), and fertilization treatment (three
levels), as outlined in Table 1.

Finally, the basic design was repeated in three blocks, with
a total of 54 square plots each with an area of 400 m2

(20 × 20 m) and constituted by 9 double rows with 22 or 33
cuttings per row (depending on the stocking density).
Irrigation and pest/disease control were not performed during
the cultivation period throughout the study area.

2.2 Field data collection

The experimental plots were measured in the autumn of
2012 according to the protocol described by the UK
Forest Research (Forest Research 2003) for collecting data
in short-rotation willow plantations (first rotation, stand
age 5 years). Several variables were measured after the

vegetative period with the aim of assessing the perfor-
mance of each clone. Measurements were made in rectan-
gular subplots of 27 m2 (9 × 3 m for density N1) and 18 m2

(6 × 3 m for density N2) located in the center of each plot,
to avoid the edge effect. A total of 40 stools (live or dead)
were measured in each of the 54 subplots in this study.
Within each of the subplots, shoot diameters were mea-
sured 20 and 130 cm aboveground level (D20 and D130)
with a digital caliper, and the total mean heights (H) were
measured with a Vertex III hypsometer. The survival rate
was also recorded at the end of each vegetative season.
Before the trial, crops were harvested (in autumn 2012;
stand age 5 years) and 5 stools were randomly selected in
each of the abovementioned subplots and subsequently cut.

Fig. 1 Distribution of the
sampling plots used for
estimation of structural attributes
and biomass yield. The
photographic insert shows the
experimental layout of the three
commercial willow clones under
study (green, Bjor clone; red,
Inger clone; and blue, Olof clone)

Fig. 2 Diagram of the planting designs used in the trial
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A total of 270 stools were harvested manually with pruning
shears (Electrocoup F3010) or a chainsaw. The fresh
weight (FW) of each stool was measured with an electronic
balance (precision ± 10 g). A representative subsample
(300–500 g) of each stool was taken to the laboratory and
weighed immediately with a precision balance (precision
± 1 g). The subsample was subsequently dried to constant
weight at 70 °C: the dry weight (DW) was recorded and the
dry biomass of the plot was calculated by multiplying the
FW by the ratio of dry to fresh weight of the subsample.

The mean values and standard deviations for these
variables are shown in Table 2. The biomass and struc-
tural attributes differed depending on the treatment ap-
plied (F0, F1, and F2) (Table 1), thus explaining the
high standard deviations. The trial involved a dense
plantation (10,000 and 15,000 plants ha−1) with a very
homogeneous stand structure in each plot and scarcely
any companion vegetation. The plot location data (four
vertices) were collected with GPS submeter precision
(Trimble Geoexplorer 2008 series).

2.3 LiDAR procedure

2.3.1 LiDAR data

The LiDAR data (Table 3) were acquired in July 2012 with
ALS60 (Leica) and LMS-Q680 (Riegl) sensors. The beam
divergence was 0.3 mrad and the pulsing frequency, 45 kHz;
the scan frequency was 70 Hz, and the maximum scan angle,
50°. The first and last return pulses were recorded. Flights
were conducted across the whole study area, and one flight
was conducted for each strip, yielding an average measure-
ment density of about 0.5 pulses m−2. The LiDAR data pro-
vided by the PNOA (official web page, 2016) included infor-
mation about return type (first and last); X, Y, and Z coordi-
nates; and intensity of the returned pulse by the sensor.

2.3.2 Extraction of LiDAR variables

For the low-density data acquired (0.5 pulses m−2), FUSION
software (McGaughey 2010) was used to filter, interpolate,

Table 1 Main characteristics of
the experimental design Characteristic Trial

Total area 2.3 ha

Experimental design Randomized complete blocks

Number of replicates 3

Species Salix spp.

Clones tested Bjor (B), Inger (I) and Olof (O)

Origin of clones Sweden

Progenitor B: Salix schwerinii × Salix viminalis

I: Salix trianta × Salix viminalis

O: Salix viminalis × (Salix schwerinii × Salix viminalis)

Plant density/spacing
between cuttings

N1 = 10,000/0.9 N2 = 15,000/0.6 (plants·ha−1/m)

Treatment F0 F1 F2

Fertilization None 300 kg ha−1 N-P-K 6:20:12 600 kg ha−1 N-P-K 6:20:12

Herbicide None Application of glyphosate (4 l/ha) Application of glyphosate (4 l/ha)

Table 2 Mean values and
standard deviations of the test
variables (H, D20, D130, FW, and
DW) for the three clones (data
corresponding to a field inventory
carried out in 2012)

Clone Treatment H (m) D20 (cm) D130 (cm) FW (t ha−1) DW (t ha−1)

Bjor F0

F1

F2

1.4 ± 0.4

2.4 ± 1.2

2.9 ± 0.5

1.1 ± 0.3

1.8 ± 0.9

2.2 ± 0.5

0.6 ± 0.2

1.2 ± 0.5

1.4 ± 0.4

1.8 ± 0.6

8.1 ± 6.6

10.9 ± 3.5

0.76 ± 0.4

4.45 ± 3.7

5.88 ± 2.1

Inger F0

F1

F2

1.7 ± 0.7

2.7 ± 0.8

2.7 ± 0.7

1.4 ± 0.6

1.9 ± 0.3

2.0 ± 0.4

1.0 ± 0.5

1.2 ± 0.3

1.3 ± 0.3

4.9 ± 3.7

17.1 ± 7.7

14.7 ± 8.3

2.54 ± 1.9

9.32 ± 4.4

8.23 ± 5.0

Olof F0

F1

F2

2.7 ± 0.7

5.7 ± 0.5

5.5 ± 1.4

1.7 ± 0.3

3.2 ± 0.3

3.0 ± 0.7

1.3 ± 0.2

2.4 ± 0.2

2.3 ± 0.6

6.4 ± 4.5

34.8 ± 11.9

33.2 ± 10.8

3.60 ± 2.6

19.71 ± 6.7

18.88 ± 6.9
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and generate the digital terrain model (DTM)/digital crown
model (DCM) and also to compute the following variables
related to the metrics of heights and return intensity distribu-
tions within the limits of the 54 field plots: mean, maximum
and minimum values, mode, standard deviation, variance, in-
terquartile distance, coefficients of skewness and kurtosis, av-
erage absolute deviation, and percentiles. The proportion of
returns (%) above a specific height threshold was also estimat-
ed in order to separate tree crop canopy returns from other
vegetation.

The following steps were carried out with several process-
ing programs (algorithms) implemented in the Fusion LiDAR
Toolkit (McGaughey 2010).

– GROUNDFILTER. Ground returns were extracted from
the LiDAR point cloud by using the GroundFilter tool,
which implements a filtering algorithm adapted from
Kraus and Pfeifer (1998) based on linear prediction
(Kraus and Mikhail 1972).

– GRIDSURFACE CREATE. These returns were used to
generate a DTM (1 m2 resolution) grid with the
GridSurfaceCreate tool, which computes the elevation
of each grid cell by using the average elevation of all
points within the cell; if the cell does not contain ground
return points, its elevation is generated by interpolation
from the neighboring cells. The metrics were generated
for the exact size of each 20 × 20 m plot.

– CLIPDATA. The normalized LiDAR point cloud was ob-
tained by subtraction of the ellipsoidal height of the DTM
from the Z coordinate of each LiDAR return with the
ClipData tool; this tool was used also to exclude returns
below a normalized height of 0.5 m, considered as not be-
longing to tree crowns (e.g., hits on shrubs, rocks and logs).

– POLYCLIPDATA. ThenormalizedLiDARpointcloudwas
clippedwith the limitsofeach fieldplot—whichwerestored
as polygons in vector format—by using the PolyClipData
tool; one independent file was created per plot.

– CLOUDMETRICS. The metrics of heights and return in-
tensity distributions of the 54 clipped and normalized
point clouds were computed with the CloudMetrics tool.

Table 4 shows the complete set of metrics and the corre-
sponding abbreviations used in this study.

2.4 Statistical analysis

Several statistical methods can be used in remote sensing
prediction studies. In this study, parametric and non-
parametric fitting methods were used to predict the main
structural attributes and biomass production variables
from LiDAR data and field measurements. Both fitting
methods were used for comprehensive analysis of the data
and because they provide important complementary
information.

Table 3 Specifications of the LiDAR flight. Source: PNOA

Parameter Specification

Pixel dimension 0.25 m

Point density 0.5 pulses m−2

Geodetic reference system ETRS89

Map projection UTM

Pulse rate 45 kHz

Areas covered 1:5000

Sensors ALS60 (Leica); LMS-Q680 (Riegl)

Table 4 Statistics extracted from the heights and intensities of LiDAR
flights and used as independent variables for the regression models

Description Abbreviation

All returns above 1.00 All returns above 1.0

All returns above mode All returns above mode

Canopy relief ratio Canopy relief ratio

Elevation kurtosis Elev kurt

Elevation L1 Elev L1

Elevation minimun Elev minimun

Elevation mean Elev mean

Elevation stddev Elev stddev

Elevation 30th percentile Elev P30

Elevation 40th percentile Elev P40

Elevation 50th percentile Elev P50

Elevation 60th percentile Elev P60

Elevation 70th percentile Elev P70

Elevation 75th percentile Elev P75

Elevation skewness Elev skewness

Elevation variance Elev variance

Int sttdev Int sttdev

Intensity kurtosis Int kurt

Intensity L4 Int L4

Intensity of 5th percentile Int P05

Intensity of 10th percentile Int P10

Intensity of 25th percentile Int P25

Intensity of 30th percentile Int P30

First return above mode First return above mode

Percentage all returns above 1.00 % all returns above 1.0

Percentage all returns above mean % all returns above mean

Percentage first returns above 1.00 % first returns above 1.0

Return 1 count above 0.50 Return 1 count above 0.50

Total return count Total return count

Total first returns Total first returns

Total returns count above 0.50 Total returns count above 0.50
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2.4.1 Parametric methods

Multiple linear regression (MLR) was used to model the rela-
tionships between field measurements (H, D20, D130, FW, and
DW) and the LiDAR variables in order to produce general
models (for all clones together) and models classified by clone
(Bjor, Inger, and Olof).

Candidate predictor variables were required to have an en-
tering F-statistic with a significance level of 0.05 or less for
inclusion in the model, and no predictor was left in the model
with a partial F-statistic with a significance level greater than
0.05. Dependent variables derived from field data and predict-
ed in regressions were mean height (H), basal diameter (D20),
diameter at breast height (D130), fresh weight (FW), and dry
weight (DW).

Comparison of the model estimates was based on the fol-
lowing two statistics: the adjusted coefficient of determination
(Rfit

2) and the root mean square error (RMSE). The Rfit
2 com-

pares the descriptive power of regression models that include
the diverse numbers of predictors, and RMSE is a quadratic
scoring rule that measures the average magnitude of the error
(the square root of the average of squared differences between
predicted and actual observations), which was calculated to
provide additional information. Finally, residual plots were
checked in order to validate the model fit. The variance infla-
tion factor (VIF) was also taken into account. This factor
quantified the severity of multicollinearity in ordinary least
squares regression analysis and also provided an index that
measured the extent to which the variation in an estimated
regression coefficient increased due to collinearity. Only
models in which all parameters were significant at the 5%
level and with a VIF < 5 were included, thus ensuring that
predictions were not highly correlated (Belsley et al. 2005;
Mandeville 2008).

In this study, all of the data were used to construct the
general and clone-specific models, as according to Myers
(1990, p. 170) and Hirsch (1991), final estimation of model
parameters using the entire dataset is more precise thanwhen a
model is fitted using only one portion of the data, especially
with relatively small sample numbers.

2.4.2 Non-parametric method

In a preliminary analysis carried out to determine the most
appropriate non-parametric statistical method, random forest
(RF) and classification and regression trees (CART) were
compared. The CARTmethodwas chosen because it provided
better fits to the data, with larger R2 values and lower RMSE,
than yielded by RF (see Online Resource 4). It is also a good
exploratory technique that aims to determine classification
and prediction rules.

The main advantages of the CART method are as follows
(Gordon 2013; Timofeev 2004): (i) it does not require

specification of any functional form, (ii) it does not require
variables to be selected in advance, (iii) it can easily handle
outliers, (iv) it does not require the assumptions of statistical
models and is computationally fast, (v) it is flexible and can
deal with missing data, (vi) it works better than RF with rela-
tively small databases, and (vii) it is easy to interpret (unlike
random forest).

The objective of CART is usually to classify a dataset into
several groups by use of a rule that displays the groups in the
form of a binary tree (Breiman et al. 1984), which is deter-
mined by a procedure known as recursive partitioning. In this
study, the CART method was used to classify the variables
considered (H, D20, D130, FW, and DW) in relation to the
LiDAR data available.

Each tree branch is described by the value of one descrip-
tor, chosen so that all objects in a daughter group have more
similar response variable values. The split for continuous var-
iables is defined by xi < aj, where xi is the selected descriptor
or explanatory variable, and aj is its split value. To choose the
most appropriate descriptor xi and value of aj, CART uses an
algorithm in which all descriptors and all split values are con-
sidered, selecting those giving the best reduction in impurity
between the mother group (tp) and the daughter groups (tL and
tR) (Deconinck et al. 2005). This process is repeated for each
daughter group until the maximal tree height is reached.
Mathematically, this is expressed as follows:

Δi s; tp
� � ¼ i tp

� �
−pLi tLð Þ−pRi tRð Þ ð1Þ

where it is the impurity, s the candidate split value, and pL and
pR are the fractions of the objects in respectively the left and
right daughter groups.

The impurity is defined as the total sum of squares of the
deviations of the individual responses from the mean response
of the group and is expressed as follows:

i tð Þ ¼ ∑
n

yn−y tð Þ
� �2

ð2Þ

where i(t) is the impurity of group t, yn is the value of the
response variable for object xn, and y tð Þ is the mean of the
response variable in group t.

CART methods are not required to conform to probability
distribution restrictions, and there is no assumption of linearity
or any need to pre-specify a probability distribution for the
errors (Bell 1999).

Complexity and robustness are competing characteristics
that must be considered simultaneously during construction
of statistical models. The more complex a model is, the less
reliable it will be for purposes of prediction. To prevent this
from occurring, stopping rules must be applied during elabo-
ration and the development of a decision tree to prevent the
model from becoming overly complex. Common parameters
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used in stopping rules include (a) the minimum number of
observations in a leaf, (b) the minimum number of observa-
tions in a node prior to splitting, and (c) the depth (i.e., number
of levels) of any leaf from the root node (Song and Lu 2015).
On this occasion, no pruning was necessary because a maxi-
mum of 2 levels was considered for tree depth (or a maximum
of 6 nodes). The risk estimate, which is a measure of the
within-node variance, was used as an indicator of model per-
formance (IBM Corp. Released 2015).

3 Results

We used two well-defined and complementary parametric and
non-parametric fitting procedures to analyze and estimate the
best response. In this case, the structural attributes (H, D20,
and D130) and biomass yield variables (FW and DW) were
strongly and positively correlated (R2 > 0.87, additional data
are given in Online Resource 5).

The main results obtained with both fitting methods are
shown in Tables 5, 6, and 7. All the dependent variables (H,
D20, D130, FW, and DW) were analyzed and interpreted at trial
level and separately for each clone (see Table 7 for data on the
Olof clone and additional data are given in Online Resources 1
and 2 for data on the Bjor and Inger clones). The parameter
estimates and goodness-of-fit statistics for the best parametric
model (multiple linear regression) are summarized in Table 5.
Finally, the best non-parametric (CART) models are included
in Table 6 (trial level) and Table 7 (Olof clone). The scatter
plots generated byMLR and CART (Online Resource 3) show
the generally close relationship between the predicted values
and the field measured values.

3.1 Parametric methods

At trial level, the models for the structural attributes (H, D20,
and D130) provided good fits, with more than 76% of the
variance explained, and the LiDAR variables with greatest
influence were those related to elevation percentile, total
returns, and the first returns on 0.5. The highest R2 value
was obtained for the mean height variable (Rfit

2 = 89%,
Table 5). When modeling the biomass variables (FW and
DW), the Rfit

2 values were higher than 75% (Table 5), and
in both cases, the most influential variables in the model were
elevation percentile and percentage of all returns above mean.

Regarding the fit for the models for each clone, the Bjor
clone model provided the best results with H and D20 (91 and
97%, respectively; Table 5). However, the Olof clone model
produced the highest Rfit

2 using D130 (95%; Table 5). In the
case of the biomass variables (FW and DW), the amount of
variance explained was sometimes lower, with Rfit

2 values
above 66%. The Bjor clone model produced the highest Rfit

2

values (90%) for both the FW and DW variables (Table 5).

The homogeneity of variance was evaluated using SPSS
graphs obtained with ZRESID and ZPRED (standardized pre-
dicted values and standardized residuals) commands. Plots of
residuals against predicted values showed no evidence of het-
erogeneous variance and no systematic pattern. The results
indicated the absence of atypical or scattered sample data
and, furthermore, bell-shaped histograms indicated that all
datasets were normally distributed.

3.2 Non-parametric methods

The proportion of variance explained by the mean height
variable-dependent model for the whole trial produced an R2

value of 84.6%. In this case, the most important LiDAR var-
iable was the mean elevation. It is important to highlight the
influence of this variable on the other structural attributes and
production variables, apart fromD20, with the most significant
independent variable related to the elevation of the percentiles,
namely the variable Elev. P60 (Table 6).

The independent variables that best define the decision
trees (CART) per clone weremore varied. The fitting provided
good results for all three clones studied. For the Olof clone,
which yielded the highest values for structural attributes and
biomass production in the field, the fit was good, with
R2 > 92% for all study variables (Table 7). However, in plots
with lower values for mean height, diameter, and biomass, i.e.,
plots with the Bjor and Inger clones, the independent explan-
atory variables were those related to different percentiles of
elevation and % returns (Online Resources 1 and 2). In the
CART analysis for each clone, we observed that, with some
exceptions, most of the models produced a second level of
classification, with variables related to elevation and %
returns.

Once the fitting was completed, we were able to verify that
the LiDAR variables associated with mean elevation and ele-
vation percentile (tree height) were the most important in the
fitting process, as these were included in all models produced
by the parametric and non-parametric fitting methods used.

4 Discussion

The parametric and non-parametric model fitting conducted in
this study has revealed acceptable results that indicate the
usefulness of LiDAR data for estimating structural attributes
and biomass production in forest energy crops grown on de-
graded mining land.

The data collected in the field inventory and LiDAR data
(available for free) captured in the same period were highly
correlated. One of the objectives of the study was to determine
differences in the performance of the different models studied
(H, D20, D130, FW, and DW) at trial level (without differenti-
ating clones) and separately for each clone.
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Table 5 Results of multiple regression showing the best models obtained for H, D20, D130, FW, and DW, for each trial and each clone

Dependent
variable

Factor Model
type

Independent variable Parameter
estimate

Std.
Error

RMSE R2 Rfit
2

(%)

H (m) Trial Multiple (Constant)
Elev P50
Total return count
Return 1 count above 0.50

3.496
0.810
− 0.009
0.006

0.771
0.076
0.002
0.002

0.54 0.90 89.00

Bjor clone Multiple (Constant)
% all returns above 1.00
Return 1 count above 0.50
Elev skewness
Elev variance

1.116
0.324
− 0.059
− 1.159
0.712

0.176
0.035
0.009
0.207
2.222

0.29 0.93 91.00a

Inger clone Multiple (Constant)
% first returns above 1.00

1.360
0.041

0.210
0.07

0.51 0.70 68.00

Olof clone Multiple (Constant)
Elev P50
Int P05

− 9.161
1.234
0.900

3.847
0.123
0.350

0.60 0.88 87.00

D20 (cm) Trial Multiple (Constant)
Elev P50
Total return count
Return 1 count above 0.50

2.262
0.336
− 0.004
0.003

0.567
0.056
0.001
0.001

0.40 0.76 75.00

Bjor clone Multiple (Constant)
ElevP25
Total return count
Elev P01
Canopy relief ratio
First returns above 1.00
Lnt mode

4.569
0.574
− 0.011
− 1.617
3.111
0.010
−0.046

0.343
0.097
0.001
0.266
0.439
0.002
0.019

0.12 0.98 97.00a

Inger clone Multiple (Constant)
Elev P60

0.247
0.856

0.290
0.158

0.30 0.65 63.00

Olof clone Multiple (Constant)
Elev P50
Int P10
Int P30
Int P25

− 3.436
0,546
0.501
−0.570
0.467

1.253
0.045
0.172
0.176
0.179

0.24 0.93 91.00

D130 (cm) Trial Multiple (Constant)
Elev P30
Return 1 count above 0.50
Total return count

1.315
0.375
0.002
− 0.002

0.418
0.047
0.001
0.001

0.29 0.82 81.00

Bjor clone Multiple (Constant)
Total first returns
Elev P50
Canopy relief ratio

0.521
− 0.006
1.007
1.191

0.168
0.001
0.126
0.540

0.17 0.91 89.00

Inger clone Multiple (Constant)
Elev mean
Total first returns
Int skewness

2.052
0.449
− 0.006
0.215

0.561
0.131
0.001
0.094

0.19 0.81 77.00

Olof clone Multiple (Constant)
Elev P50
Int P10
Int P30
Elev P40
Int P10

− 33.601
1.418
0.579
− 0.258
− 1.027
3.077

12.788
0.329
0.104
0.069
0.351
1.319

0.14 0.96 95.00a

FW (t ha−1) Trial Multiple (Constant)
Elev P60%
all returns above mean

− 4.894
4.682
0.596

1.954
0.859
0.122

6.64 0.76 75.00

Bjor clone Multiple (Constant)
% all returns above 1.0
First returns above 1.0
Elev skewness
Elev L4

2.777
2.326
− 0.522
− 3.992
9.128

0.819
0.366
0.111
0.920
3.725

1.84 0.92 90.00a

Inger clone Multiple (Constant)
(All returns above mode) / (Total first returns) × 100
Int kurt

− 1.355
0.489
1.092

2.170
0.066
0.374

4.03 0.79 77.00
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The results indicate that free LiDAR data can be used to
estimate the variables with acceptable precision (Rfit

2 > 63%
inmultiple regression and R2 > 73.5% for CARTanalysis) and
that satisfactory results were obtained, despite the low density
of LiDAR points. At the trial level, although MLR produced
higher R2 values than CART, except for the D20 and FW fits,
the values were generally very similar. However, when the fits
were carried out taking into account the clone level (i.e., a
more uniform sample), the CART method produced larger
R2 values (except for D130 in Inger and Olof and H and D20

inBjor). Finally, CARTandMLR producedverysimilarRMSE
values at trial level, but CART generally yielded smaller RSME
values at the clone level (except forBjor andOlof cloneswithD20

andD130, respectively). Thegoodness-of-fit levels yielded by the
models are comparable to those obtained in other studies using
LiDAR to characterize forest attributes (Dalponte et al. 2011;
García-Gutierrez et al. 2014; Seidel andAmmer 2014).

The MLR and CART scatter plots (additional data are
given in Online Resource 3) show that both methods provided
acceptably good fits to the data. However, for the structural
variables (H, D20, D130), the models developed produced bet-
ter predictions than for biomass variables (FW and DW), in
that the data were more widely dispersed.

On the other hand, to verify and compare the models, for
both parametric and non-parametric methods, a newly collect-
ed dataset (additional inventory) should be used for validation
(Hirsch 1991; Kozak and Kozak 2003; Myers 1990) because
the only universally acceptable method for validating a model
and assessing its goodness of fit after model selection is to use
an independent sample (Lever et al. 2016). However, indepen-
dent validation was not possible in this study, as application of
a validation method requires more data and the CARTmethod

thus becomes more unstable (Gordon 2013), especially as
regards the models developed for each clone. Nonetheless,
the models fitted in this study can be considered sufficiently
robust for estimating structural attributes and productivity of
SRWC. In this case, the CART analysis of the relationships
between field-measured variables and LiDAR data produced
reasonable results. Moreover, the errors were acceptable, con-
sidering the high degree of variability between the trial plots.

The trial level models produced by the MLR method show
that the most important variables, for trial and clone, were
those related to elevation and returns, as also shown by the
CART method. However, the models generated by MLR for
each clone were defined by more diverse LiDAR variables,
which also included (apart from those already mentioned)
variables related to intensity (see Table 5).

Good fits were obtained for the structural attributes studied,
mean height (H) and both diameters (D20 and D130), probably
because these are closely related to the LiDAR-derived eleva-
tion variables (tree height). However, good-fit models were
also obtained for FWand particularly DW biomass, as expect-
ed, because these variables are strongly correlated with struc-
tural variables (see Online Resource 5). Some variables such
as mean elevation (Elev mean) and elevation percentile (Elev
%) were included in most of the models. The data for the trial
plots planted with the Olof clone were uniformly distributed,
and the independent variable that provided the best predic-
tions was the mean elevation (Elev mean).

The mean height variable was closely correlated with the
LiDAR variables associated with the height of the trees (i.e.,
elevation) and with the returns, as also observed by
MontealegreGracia et al. (2015) in a study of aPinus halapensis
Mill plantation in Spain. Another study in plantations of

Table 5 (continued)

Dependent
variable

Factor Model
type

Independent variable Parameter
estimate

Std.
Error

RMSE R2 Rfit
2

(%)

Olof clone Multiple (Constant)
Elev P75
Int P90
Elev P70
Int L4

− 67.239
100.216
1.827
− 89.366
− 22.947

12.760
25.310
0.496
25.076
8.855

6.35 0.88 85.00

DW (t ha−1) Trial Multiple (Constant)
Elev. P50%
all returns above mean

− 2.921
2.817
0.355

1.043
0.493
0.067

3.67 0.78 77.00

Bjor clone Multiple (Constant)
% all returns above 1.0
First returns above 1.0
Elev skewness
Elev kurt

0.210
1.248
− 0.289
− 2.615
0.751

0.615
0.217
0.064
0.597
0.296

1.05 0.92 90.00a

Inger clone Multiple (Constant)
(All returns above mode) / (Total first returns) × 100
Int kurt

− 1.184
0.283
0.633

1.190
0.036
0.205

2.21 0.81 79.00

Olof clone Multiple (Constant)
Elev P75

− 8.093
4.917

3.975
0.835

5.42 0.68 66.00

a Best fit at the trial level and per clone for each study variable. The RMSE units are the same as the variable units
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Pinus radiata D.Don in northern Spain (González-Ferreiro et al.
2012) indicated that mean height can be accurately modeled
from low-density laser data (0.5 pulses m−2), yielding an R2

value of 0.75 (in comparison with R2 values of 0.70–0.93 ob-
tained by parametric methods and R2 values of 0.85–0.94 by
non-parametric (CART) methods in the present study). In a
study of an olive plantation in Spain, with low-density data
(0.5 pulses m−2), good results were also obtained for height
(R2 = 0.67) (Estornell et al. 2014).

The results obtained for the models of the diameter variables
(D20 and D130) were better than expected, taking into account
the reports in the relevant scientific literature. Thus, the models
used to estimate diameters performed similarly to those reported
by Gonçalves-Seco et al. (2011) for Eucalyptus globulus Labill
plantations in Spain (R2 = 0.71) and byDalponte et al. (2011) for
a mixed stand (R2 = 0.63). Similar findings were also reported
by Graham (2008) for the D130 model and a pine plantation
(R2 = 0.82). However, in the same study, a much lower R2 value
was obtained for a natural pine stand (R2 = 0.20). In a study
conducted by Estornell et al. (2014) in a plantation of small trees
(olives) in the Mediterranean area of Spain, with low-density
LiDARdata (0.5 pulsesm−2), the findings indicated goodmodel
performance (R2 = 0.70) for estimating volume, which is direct-
ly related to diameter. The findings thus seem similar to those of
the present study.

Several studies carried out worldwide with low-point-
density data have reported similar results to those obtained
in the present study. For example, a study carried out in
Europe to evaluate the aboveground biomass in boreal forest
zone with an average point density of between 0.7 and 1.2 m−

2 reported an R2 value of 0.88 (Næsset and Gobakken 2008).
A study carried out in Canada using low-density data (0.5
pulses m−2) obtained an excellent fit for the biomass, with
an overall R2 of 0.93 (Treitz et al. 2010). Li et al. (2008) also
observed a significant relationship between field-based above-
ground biomass estimates based on field and LiDAR
measurements for the three study sites, located in the USA
and Canada and in which different forest species were used.
However, a study by Næsset (2011) in small areas of forest
land in Norway where the main tree species were Norway
spruce (P. abies (L.) Karst.) and Scots pine (P. sylvestris L.)
showed that these species are subject to substantial inherent
canopy height variation, leading to highly variable predictions
for estimate aboveground biomass in young forests
(Magnussen and Boudewyn 1998).

In the present study, no comparison was made for different
LiDAR point densities because of the scarcity of the LiDAR
data. Previous studies did not find any evidence indicating that
a reduction in point density affects the model accuracy, and
Treitz et al. (2010) considered that data captured at 0.5 pulses
m−2 may be an excellent source of information for forest man-
agement. The same was also concluded by González-Ferreiro
et al. (2013), who showed that low-intensity LiDAR data (0.5

pulses m−2) can be used without significant loss of informa-
tion. This suggests that data captured at 0.5 pulses m−2 yields
good estimates, without excessive loss of model quality.

According to the findings reported by García et al. (2010),
the intensity variables are more strongly related to biomass
than to mean height, as also shown in the present study.
Likewise, González-Ferreiro et al. (2013) found that the inde-
pendent variables associated with the return intensity and re-
lated canopy measurements can add some valuable informa-
tion for predicting biomass in eucalyptus plantations in north-
ern Spain (R2 = 0.75; 4 pulses m−2). LiDAR studies carried out
in small areas have shown that the height percentiles are usu-
ally closely correlated with biomass (González-Ferreiro et al.
2012); in the present study, the elevation percentiles (tree
height) were found to be the most important LiDAR variables
to include in multiple linear regression models for estimating
biomass (FWand DW) at trial level. The results of a study by
Zhao et al. (2009) showed that the models can accurately
predict forest biomass and that the predictive performance
was consistent across a range of scales, with R2 ranging
from 0.80 to 0.95 across all fitted models. However, in a
study conducted by Van Aardt et al. (2006) in a coniferous
plantation, the R2 values for volume (0.66) and aboveground
biomass (0.59) were low, which was attributed to variability in
the volume. Condés et al. (2013) noted that better fits can be
achieved with multiple linear regression models by inclusion
of a larger number of variables. This was also observed in the
present study, and the R2 value increased as the number of
independent variables that make up the model increased,
e.g., in the multiple linear regression, the best result was ob-
tained for D20 and the Bjor clone, with six variables included
in the model (R2 = 0.98).

Different studies in conifer plantations worldwide also in-
dicate that height can be accurately modeled from medium-
and low-density laser data. In the abovementioned study on
P. radiata, González-Ferreiro et al. (2012) indicated differ-
ences in the model fit for height for different data point den-
sities (0.5 and 4 pulses m−2), although the difference in the
goodness of fit was only 8%. Thus, although better fits are
obtained by using higher point densities, the extra costs in-
volved may not be justified by the final result.

In addition to the importance of reducing the cost of the
inventory, the LiDAR information obtained is very useful for
forest management purposes. Several studies indicate that the
use of LiDAR data generates more accurate inventories that
traditional inventory methods based on field measurements
(Maltamo et al. 2004; Næsset 2002). The combined use of
LiDAR technology and advanced statistical techniques has
led to a number of different studies exploring their potential
for producing accurate results in forest biomass research (Cho
et al. 2012; Gleason and Im 2012; Lefsky et al. 2001, 2005;
Weishampel et al. 1996; Wulder 1998). In this respect, selec-
tion of a suitable statistical approach is essential considering
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that the models will be used for predictive purposes. Besides
being easy to use and interpret, the non-parametric method
(CART) includes classification rules and is thus a very useful
tool for LiDAR-based inventories.

As mentioned earlier, the methods used in this study enable
more accurate inventories to be carried out and at a fraction of
the cost than possible by traditional methods (assuming the
timely availability of suitable data) (Means and Acker 2000).
The forest variables estimated from the LiDAR data in this
study are of great interest to the timber industry and represent
information that is expensive to collect in the field. The results
indicate the good relationship between LiDAR data and the
various forest variables considered. This is of great value in
forest management, providing a tool to determine the best time
for harvesting the energy crop, as well as for monitoring and
managing plots (Lim et al. 2003).

The resultsobtained in this study, in termsof themodels fitted,
indicate that forest energy crops can be accuratelymodeled from
low-intensity laser data and that the models are similar to those
reported in the international scientific literature.

5 Conclusions

The study findings show that low density LiDAR data (0.5
pulses m−2) can be used to construct models to estimate the
main variables (structural attributes and biomass yield) of in-
terest in the management of short-rotation (willow) energy
crops. According to the moderate to highly accurate estimates
obtained, the models developed on the basis of LiDAR data
can be used to produce good predictions and estimates for an
SRC crop, and would serve as a management tool for improv-
ing and optimizing follow-up decisions related to a commer-
cial crop. In view of the results obtained, acquisition or pur-
chase of low-density LiDAR information to facilitate themon-
itoring of the energy plantations can be considered from a
commercial point of view. The parametric and non-
parametric statistical methods tested in the present study
(MLR and CART) provided complementary and robust infor-
mation for predicting stand variables in an SRC energy crop
from low-density LiDAR data (0.5 pulses m−2) and therefore
can be considered suitable for developing models for accurate
estimation of forest variables. The predictive power of both
methods was generally high (particularly when limited data
were available for fitting), althoughMLR models are easier to
interpret and apply.
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