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Abstract
& Key message The timing to conduct new forest invento-
ries should be based on the requirements of the decision
maker. Importance should be placed on the objectives of
the decision maker and his/her risk preferences related to
those objectives.
& Context The appropriate use of pertinent and available in-
formation is paramount in any decision-making process.
Within forestry, a new forest inventory is typically conducted
prior to creating a forest management plan. The acquisition of
new forest inventory data is justified by the simple statement
of “good decisions require good data.”
& Aims By integrating potential risk preferences, we examine
the specific needs to collect new forest information.
& Methods Through a two-stage stochastic programming with
recourse model, we evaluate the specific timing to conduct a
holding level forest inventory. A Monte Carlo simulation was
used to integrate both inventory and growth model errors,
resulting in a large number of potential scenarios process to

be used as data for the stochastic program. To allow for re-
course, an algorithm to sort the simulations to represent pos-
sible updated forest inventories, using the same data was
developed.
& Results Risk neutral decision makers should delay obtaining
new forest information when compared to risk averse decision
makers.
& Conclusion New inventory data may only need to be col-
lected rather infrequently; however, the exact timing depends
on the forest owner’s objectives and risk preferences.

Keywords Stochastic programming . Even-flow forestry .

Risk, uncertainty . Recourse options

1 Introduction

Within the decision-making process, importance is placed on
the accuracy of pertinent information, which is used as a basis
for the decision. The assumption is that better data quality will
lead to better decisions. However, to check this assumption
the economic value of the information should be analyzed
(Lawrence 1999): if the benefits obtainable from new data
exceed the costs, new data should be acquired; otherwise,
the decision should be made with available data. In a forestry
context, the value of better quality data has been analyzed
through cost-plus-loss analysis (e.g., Eid 2000; Borders et al.
2008; Mäkinen et al. 2010). The primary premise behind these
analyses is that the timing of the forest operation should be
optimal; thus, accrued losses are due to conducting forest
management prescriptions either too early or too late.
Determining the optimal timing of operations requires perfect
information, which may not be possible to ascertain.

Rather than only evaluating losses from not obtaining per-
fect information, stochastic programming (Birge and
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Louveaux 2011; King and Wallace 2012) enables an analysis
to evaluate the value of including uncertainty in the optimiza-
tion process. Using the terms from Knight (1921) a differen-
tiation between risk and uncertainty can be made, where risk
has a known probability of occurrence and uncertainty does
not. Forest management operates under uncertainty; however,
through empirical testing, the probability of the uncertainty
can be estimated. In a forestry context, stochastic program-
ming has been used to schedule forest harvesting and road
building decisions (Alonso-Ayuso et al. 2011; Andalaft et al.
2003), to planning the management response to forest fires
(Boychuk andMartell 1996; Ntaimo et al. 2012), and to adjust
to changes in timber prices (Piazza and Pagnoncelli 2014;
Rios et al. 2016). For forest management planning, estimates
of uncertainty can be evaluated through empirical data on
inventory errors, and through time series data on growth mod-
el errors. Since inventory methods are never error free, the
decision to conduct an inventory is a question of when to
update the inventory to improve the quality of the data, rather
than the decision to obtain perfect information. The other un-
certainties (such as silvicultural and harvesting costs, timber
prices or interest rate) can also be included, if estimates are
available.

The appropriate level of data quality is the level where the
value of the objectives of the decision maker (DM) minus the
inventory cost can be maximized (e.g., Kangas 2010). To
conduct mathematical optimization, the desires of the DM
are formalized through the objective function. Through a sto-
chastic programming approach, Kangas et al. (2014, 2015)
examine a case where the DM can select if a particular stand
needs to be measured and when the stand should be measured
with an assumption that each stand can be measured separate-
ly. From those results, it is clear that the current and potential
resources from the forest and the objectives of the DM affect
the optimal measurement effort. For example, if the DM
wishes to maximize NPV and the forest structure is heavily
weighted towards very old or very young stands, the need to
conduct a new inventory could be fairly low. Thus, the forest
structure and preferences of the forest owner(s) impact the
timing of optimal measurements.

The growth model errors also have impact on the quality of
forest information. Pietilä et al. (2010) analyzed the optimal
inventory interval in the presence of growth prediction errors,
while Mäkinen et al. (2012) analyzed the impact of both in-
ventory and growth prediction errors at the holding level using
a cost-plus loss approach. Ståhl et al. (1994) used Bayesian
theory to evaluate the optimal timing of data collection. The
approaches account for the costs of the inventory of the hold-
ing and the losses due to making suboptimal decisions be-
cause of growth prediction errors. In these cases, it was as-
sumed that the preferences of the forest owner solely depend
on the NPV of the holding. The forest management prefer-
ences of the DM were not accounted for (e.g., a desire for an

even flow of income, promotion of hunting opportunities), nor
was the risk attitude of the DM accounted for. Thus, analysis
of the optimal inventory interval for the whole holding, ac-
counting for the preferences of the DM is still missing.

The uncertainties due to the forest inventory can be ac-
knowledged through stochastic programming. In stochastic
programming, the term “recourse” means taking intelligent
actions when dealing with uncertainty. For fixed recourse,
the objective function is to minimize unwanted surpluses or
deficits by selecting a single set of decisions. It means we
maximize the objective function while minimizing the penal-
ized effects of exceeding thresholds of losses. For recourse,
the acquisition of new information can cause the set of deci-
sions to change, dependent on the new information. The re-
course is to decide how to reduce unwanted surpluses or def-
icits with the new inventory information. In a forest inventory
setting, if we add the possibility of additional measurements to
the problem, the new measurements are a means to mitigate
the risks (Kangas et al. 2014, 2015).

Solving stochastic programming problems is often done
through the use of a discrete version of the stochastic problem
(King and Wallace 2012). A discrete version of the stochastic
problem simplifies the problem through the use of a set of
scenarios, or possible futures, to represent the distribution of
the estimated uncertainty. Each scenario represents one possi-
ble initial inventory state and a corresponding possibility for
future growth. To represent the uncertainty of the initial inven-
tory state, modifications can be made to the basal area and
height of the stands. We use these variables as they are the
input variables for the growth and yield models, and these
models determine which variables are of interest (Kangas
2010). To represent growth model errors, one possible method
is to match the observed empirical variation to that generated
by the models (Haara and Leskinen 2009). By using both
methods of representing errors, it is possible to obtain a rep-
resentative set of scenarios which can be used to approximate
the stochastic problem.

Risk management is an issue of individual preferences,
where the DM must select how to balance the risk with their
other objectives. Risk management is common in financial
planning, where the balance between maximizing return while
minimizing potential for losses is assessed. Risk is often
interpreted as deviations away from a specific target
(International Organization for Standardization, ISO Guide
73 2009); however, downside risk measures may be preferred.
This is due to typical preferences of avoiding losses. The most
common downside risk measures are the downside mean
semideviation (Krzemienowski and Ogryczak 2005), the val-
ue at risk (VaR; Duffie and Pan 1997) and the conditional
value at risk (CVaR; Rockafellar and Uryasev 2000).

This study models the forest inventory timing problem
using a two-stage stochastic programming with recourse. We
show how conducting the new inventory improves the quality
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of decisions and reduces the risks of poor incomes. We then
illustrate how differences in preferences will impact the opti-
mal timing of the next forest inventory using a small forest
holding as an example.

2 Methods

2.1 Stochastic programming model

As a demonstration, we transform the deterministic even-flow
harvesting problem to a stochastic framework. In a determin-
istic framework, the objective would be to maximize NPV
with periodic constraints to ensure a nondeclining flow of
resources from the forest. Transforming the problem to a sto-
chastic framework requires additional information on how to
manage the violations of these constraints. For this demon-
stration, we propose the use of CVaR of not achieving a spe-
cific threshold of income from harvesting operations for each
period. We selected CVaR as it is a coherent risk measure
(Artzner et al. 1999) and can be easily optimized
(Rockafellar and Uryasev (2000). In this case, the DM desires
to obtain incomes for each period, and thus, each periodic
CVaR is a separate criterion for the DM. A similar problem
has been formulated using a two-stage stochastic program
with fixed recourse (Eyvindson and Cheng 2016); the focus
here is to add an option for recourse (through updating forest
information) based on the DM risk preferences. The focus of
objective function is to balance between maximizing forest
holding level NPV and minimizing the CVaR of not meeting
the periodic flow requirement. There is an explicit trade-off
between these objectives; obtaining the maximum NPV re-
quires variable amounts harvesting actions during different
periods, while obtaining a specific periodic flow implies
conducting rather even amounts of harvesting during each of
the periods.

Let x jkf be a decision to conduct a set of silvicultural actions
for schedule k∈K, of stand j∈ J, for scenario set f∈F. Here,
sets J,K, and F are representative of the stands, schedules, and
the sets of scenarios reflecting an updated forest inventory.

Furthermore, let Nt
f

� �
f ∈F

(where F is an index set) be an

exclusive partition of scenarios (represented as a set of sched-
u les for each s tand) in N for each t ime per iod
(i.e., Nt

f 1
∩ Nt

f 2
¼ ∅for all f 1≠ f 2 and ∪ f ∈FNt

f ¼ N ). The

index sets Nt
f mathematically models the information so that

in each time period (t), there are F sets of scenarios which each
represent an updated inventory. For each set (i.e.,N 1

3, the third
representation of an updated inventory at period 1), the varia-
tion represents the errors from the updated inventory. The
variation between the sets at a specific time (i.e., the variation

between all of the F sets inN1
f ) represents the variation due to

the growth model errors. The decision variable wt∈ {0, 1}
represents the choice of an updated inventory (0 = do not
measure, 1 = measure) on the holding at period t.

The objective function of the recourse problem (RP) is then

maxRP ¼ ∑
#N

n¼1

pnNPVn

max E NPVð Þð Þ−λ ∑
T

t¼1

CVaRt

max CVaRð Þ ð1Þ

Subject to

NPVn ¼ ∑
T

t¼1

Int−wth

1þ rð Þ t*D−uð Þ þ
PVn

1þ rð Þ T*Dð Þ ; for all n∈N ð2Þ

Lnt ¼ Int−wth−bt½ �þ; for all n∈N ; t∈T ð3Þ

CVaRt ¼ 1− ∑
t

p¼1
wp

 !
* Zt þ 1

1−αð Þ#N
∑
n∈N

Lnt−Zft½ �þ
� �

þ ∑
t

p¼1
wp

 !
∑
F

f¼1
Zft þ 1

1−αð Þ#Nd
f

∑
n∈Nd

f

Lnt−Zft½ �þ
0
@

1
A

.
#F; for all t∈T

ð4Þ

∑
k¼1

K j

xjkf −xjkg
� �

sjktq
� �

− ∑
t

p¼1
wp*R≤0; for all f ∈F; g∈F; j∈J ; t

¼ 1;…; T ; q∈Q; f ≠g
ð5Þ

∑
k¼1

K j

xjkg−xjkf
� �

sjktq
� �

− ∑
t

p¼1
wp*R≤0; for all f ∈F; g∈F; j∈J ; t

¼ 1;…; T ; q∈Q; f ≠g
ð6Þ

∑
k¼1

K j

xjkf ≤1; for all j∈J ; f ∈F ð7Þ

Int ¼ ∑
J

j¼1
∑
k¼1

K j

xjkf cjknt; for all t∈T ; f ∈F; n∈Nd
f ; k∈K ð8Þ

PVn ¼ ∑
J

j¼1
∑
k¼1

K j

PVnjkTxjkf ; for all f ∈F; n∈Nd
f ; k∈K ð9Þ

∑
T

t¼1
wt ≤1 ð10Þ

d ¼ ∑
T

t¼1
wt*t ð11Þ

xjkf ; ∈ 0; 1½ �;wt∈ 0; 1f g for all t∈T ; f ∈F; j∈J ; k∈K ð12Þ

where p n is the probability of scenario n occurring,NPVnis the
net present value for scenario n, λ is a risk parameter, used to
balance the importance of managing the risk, CVaRt is the
conditional value at risk for period t, Int is the income associ-
ated with scenario n during period t, h is the cost associated
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with conducting an inventory, r is the discount rate, u is timing
of the management action, D is the duration of each period;
PVnjkT is the productive value associated with scenario n,
stand j, schedule k at the end of the planning horizon; Lnt is
the loss associated with scenario n at period t, bt is the income
target for period t, Zt is the value at risk at period t, Zft is the
value at risk for subset f at period t, α is the confidence level
for the value at risk, sjktq corresponds to the specific treatment
qwhich was planned to be carried out in stand j for schedule k
during period t, R is a very large positive number, cjknt is the
income provided from stand j by conducting schedule k, and d
is the period during which the next inventory is to occur.

The productive value was predicted using the models of
Pukkala (2005), using a set of forest variables as explanatory
variables. Depending on the interest rate, risk preferences and
target for income selected, the possibility to conduct a similar
amount of even-flow harvesting for periods past the planning
horizon may differ significantly. If this is a key concern, an
end volume constraint could be added to the model.

Equation 4 calculates the CVaR for a period t, the first
portion of the constraint calculates the CVaR for those cases
where new inventory has not been conducted before period t,
while the second portion calculates the CVaR for the cases
where the new inventory has been conducted. Constraints 5
and 6 act as a form of nonanticipavity constraints; this means
that if no additional inventory is conducted prior to the
conducting operations, then all of the decisions must remain
the same between the subsets. Constraint 10 allows only one
new inventory to be conducted during the planning horizon;
this was done to ease the problem formulation. To assist in
reading the model, Table 1 summarizes the variables, sets, and
parameters of the models.

At the core, this model contains the key concepts and struc-
tures of the deterministic model I of Johnson and Scheurman
(1977). Model I formulation requires that a set of schedules (a
set of silvicultural activities) be developed for each stand, and
the problem is then to select the most appropriate schedule for
each stand, according to the preferences of the DM. The key
difference between this model and Johnson and Scheurman’s
model I is that the schedule for a particular stand can be ad-
justed, if a new inventory has been conducted. Additionally, in
order to change the schedules of a stand, the two schedules
must have the same set of silvicultural activities up to the
moment the change occurs (constraints 5 and 6).

The problem developed is a two-stage stochastic program-
ming problem formulation with recourse. The first stage al-
lows for maximizing the NPV and minimizing the weighted
CVaR to the period where a new forest inventory is to be
conducted. The second stage allows for adjustments to the
management plan after obtaining new information, so to best
achieve the preferences of the DM. In this case, the second
stage happens whenever the new inventory is conducted and
the first stage can cover one or more periods. If no new

Table 1 A list of the notation used throughout the paper

Symbol Definition

Sets

F The index set of scenarios which represent an updated forest
inventory

J The set of stands which represents the forest holding

G The index set used to sort the stands according to an updated
forest inventory

K The set of possible silvicultural actions

Mj The set of all iterations to represent the total stand level
uncertainty for stand j at time period t

M j
gt

The set of iterations to represent the stand level uncertainty
following an updated forest inventory (g) for stand j at time
period t

N The entire set of scenarios used to represent the total forest-level
uncertainty

Nt
f

The set of scenarios used to represent the forest level
uncertainty following an updated forest inventory ( f ) at time
period t

T The set of time periods under consideration

Q The set of potential silvicultural activities

Variables

cjknt Income provided from stand j by conducting schedule k for
scenario n at period t

CVaRt Conditional value at risk for period t

E Expectation value

Int Income for scenario n at period t

Lnt Losses for scenario n at period t

NPVn Net present value for scenario n

pn Probability of scenario n occurring

PVnjkT Productive value for scenario n at stand jmanaged according to
schedule k at the end period

RP The objective value for the recourse problem

sjktq Silvicultural treatment q planned to be carried out in stand j for
schedule k during period t

wt Choice to conduct an updated inventory (binary: 0—do not
measure, 1—measure)

xjkf proportion of stand j managed according to schedule k, for
inventory f

d The period when the next inventory occurs

Zt Value at risk for period t

Zft Value at risk for period t, for inventory f

Parameters

bt Target income for period t

D Duration of the time period

h Cost of conducting an updated inventory

r Interest rate

R A large positive number

u Timing of the operations during the period

α Confidence level for the value at risk

λ Risk coefficient
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inventory is conducted, the problem only considers the fixed
recourse. For this case, moving to a second stage is an active
decision.

The second stage problem is represented by the subset of
scenarios, where each of them represents a potential updated
inventory. To represent the problem, the subsets need to have a
level of error which could be expected after conducting new
forest inventories. For this application, when only growth
model errors and inventory errors are considered, each subset
must have an error relative to only inventory errors, while the
entire set contains both growth model and inventory errors. To
provide a comparison, the two-stage stochastic program with
fixed recourse can be solved. To change the problem formu-
lation so that all harvesting decisions must be the same for all
periods (constraining the recourse problem to a fixed recourse
problem), Eq. 10 is changed to

∑
T

t¼1
wt ¼ 0 ð13Þ

This shift requires that no new inventory will be conducted.

2.2 Data organization

To limit the size of the scenario tree, and reduce the problem of
size, the same error scenarios are used repeatedly for each time
period. For a predefined number of realizations, the stand will
be simulated to include both growth and inventory errors.
These are then sorted into G subsets of realizations, within
which the relative errors reflected the errors after conducting
the new inventory. For each possible timing of the inventory, a
separate sorting was carried out. Figure 1 provides an example
of the results of sorting the basal area (BA).

The aim of this algorithm is to sort the set of simulated
realizations of the stand characteristics in each stand into sub-
sets which reflect how a new inventory may resolve some of
the uncertainty. As the stand grows in time, this sorting is
carried out for each period where a new inventory can be
carried out. However, after the inventory is carried out, the
same sorting is applied to the end of the planning horizon.

1. For all j∈ J, let Mj be a set of all simulated instances i,
i∈ I for stand j.

2. Select the number of subsets that the sorting process will
create (#G).

3. For each stand j, create empty setsM j
gt where g∈G , t∈T;

a. For each t, do the following steps:

i. Calculate the average 1
I ∑

I
i¼1x and standard de-

viation of the variables of interest from Mj at
time t.

ii. For each g, determine a specific target average and
bounds for the variables of interest. The target av-
erage should relate to the average of the set Mj at
time t, and the bounds should reflect the errors pro-
duced by the inventory method to be used.

iii. For each element i in Mj, evaluate if the variables
of interest fall within the all targets ± the bounds
set for a random g in G, if it does and

#M j
gt <

#M j

#G , add the element i into the set M j
gt,

else select a new g and repeat until all potential
subsets have been evaluated.

iv. For each element i in M j∖ ⋃g∈GM j
gt

� �
, evaluate if

the variables of interest fall within at least one tar-
get ± the bound set for a random g in G, if it does

and#M j
gt <

#M j

#G , add the element into the setM j
gt,

else select a new g and repeat until all potential

Fig. 1 A graphical representation of how the sorting generates subsets
for the second stage. For visual clarity, only the basal area is examined
and three subsets (grayscale lines) are created: a no sorting is conducted,
and the planning is conducted without updating; b an inventory is
conducted after period 2; c an inventory is conducted after period 4
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subsets have been evaluated. If the element still has
not been placed into a set, select a random g in G,

and if #M j
gt <

#M j

#G , add the element into the

setM j
gt.

4. Once the stand level sorting has been completed, we can
generate forest-level inventory scenarios at each period t.

A forest-level inventory scenario is Nt
f

� �
is a collection

of stand-level sets so that Nt
f ¼ ∪ j∈ JM

j
gt, where for each

j, g is a random element from the set G. The total number
of forest-level scenarios can be set according to desired
solution quality and computational limits.

5. This set of scenarios within a group g represents the situ-
ation immediately after the new inventory. If the inventory
is carried out at period t, the scenario includes values for
periods t + 1, …, T with increasing errors. The variation
between the g groups represents the growth model error
up till the new inventory.

The forest-level scenarios are created systematically; ensur-

ing that in each set of forest-level scenarios Nt
f

� �
, a realiza-

tion of stand from the same sorted subset is selected. In this
way, we ensure that for each set of forest-level scenarios, the
timing of the inventory can be evaluated.

2.3 Materials

To demonstrate the method, a small (47.3 ha, consisting
of 41 stands) privately held forest holding in North
Karelia, Finland, will be used. The forest holding consists
primarily of Scots pine (Pinus sylvestris L.) with minority
components of both Norway spruce (Picea abies (L.)
Karst) and birch (Betula pendula and Betula pubescens).
The age class distribution is fairly even while the diameter
distribution at 1.3-m height has a large percentage of
small diameter (0–5 cm) and large diameter (20–25 cm)
trees. The planning horizon spans 30 years, which is bro-
ken down into six 5-year periods.

For each stand, a total of 900 instances were simu-
lated using a Monte Carlo process using the SIMO for-
est simulator (Rasinmäki et al. 2009). The inventory
errors were assumed to have a normal distribution, with
no bias and a relative standard error of 20%. The inclu-
sion of the growth model errors occurred as a process
over time. The models simulating the growth model
errors can be found in phase II of the Materials and
Methods section in Pietilä et al. (2010). They separated
the growth prediction error into intra-stand error (fol-
lowing a first-order autoregressive process—AR(1))
and inter-stand error (which was constant over the rota-
tion period for each stand). These errors are correlated

and this correlation was accounted for in the simula-
tions. The absolute root mean square error for the BA
was 1.3 and 2.2 m2 ha−1 and for height was 1.6 and
2.3 m after 5 and 10 years, respectively (Pietilä et al.
2010). Since we use the same model, the errors can be
expected to be in the same range.

Using the sorting algorithm described in the “Methods”
section, nine sets of 100 stand-level representations for
updating the forest inventory were formulated. Stand-level
inventories were sorted into nine different bins according to
their mean BA and height. The targets for these two variables
followed the formula

y−sd; y; yþ sd ð14Þ
where y is the mean value and sd is the standard deviation
of the set. The target value for the standard deviation was
calculated in the first step of the algorithm. This process
allowed for the possibility to simulate an updated invento-
ry at each period, by ensuring that each of the nine subsets
had a similar amount of variation to the initial inventory.
To move from the stand level scenario to the forest holding
level scenario, a random stand-level scenario is selected for
all stands. This process of sorting determines the size of the
second stage problem, and in this case, the total number of
forest-level scenarios is fixed at 100. Based on previous
research (Eyvindson and Kangas 2016), 100 scenarios
were deemed to provide a sufficient solution quality for
the sources of error considered in this example. The solu-
tion quality was determined through the use of the sample
average approximation (Kleywegt et al. 2002), and both in-
sample stability and out-of-sample stability are evaluated
(Chap. 4 of King and Wallace 2012). For this case, the total
number of unique second stage problems that can be cre-
ated is 941 (9 bins and 41 stands) an exceptionally large
number that would be time consuming to enumerate and
solve with current resources. A simplification was required
to ensure the tractability of the problem. The first stage
problem is a collection of second stage problems, and to
ensure tractability within a reasonable amount of time, we
decided to use a set of 45 second stage problems.

To highlight how the preferential information influences
the solution, a large number of iterations were conducted.
The target for periodic (5-year period) income (bt) was set
between 60,000€ (1270€/ha) and 70,000€ (1480€/ha) with
intervals of 5000€ (105€/ha), the confidence level (α) for the
CVaR was set at 0.8, 0.9, and 0.95 (Fig. 2). As α increases, so
does the importance of the averages of the extreme losses. For
each period, a specific CVaR is evaluated, as this represents
the tail risk of not achieving the required even-flow of income
for that specific period. To simplify the analysis, a discount
rate (r) was set at 3%; only one discount rate was used simply
to ease the analysis. The risk parameter (λ) was set to indicate
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a nearly risk neutral DM and increased progressively to reflect
a rather risk averse DM (with values close to 0 representing a
risk neutral DM, and values close to 1 representing a strongly
risk averse DM). Additionally, the cost to conduct a new in-
ventory (h) was set to 500€, which corresponds to the current
cost of conducting an airborne laser scanning inventory, ap-
proximately 10.5€/ha. This cost could be considered rather
low if the data collection was for a single holding, but it would
be rather realistic if the inventory was carried out for a larger
area at the same time.

3 Results

One of the primary results which should be highlighted is that
regardless of risk preferences, the option to conduct an up-
dated forest inventory was always used. This can be seen in
Fig. 2, where the timing of the next inventory shifts from
earlier to later as the importance of risk and the requirement
for periodic income decreases. With a very risk averse indi-
vidual with a high periodic income requirement, the timing of
the next inventory should be no earlier than before the third
period. With a small relaxation in either the risk or period
income requirement, the next inventory should occur before
the fourth period. A nearly risk neutral DM would delay
the next inventory to as late as possible (in this case,
before the sixth period). These results seem rather intui-
tive, as it highlights that risk can be reduced by
conducting an inventory earlier.

In Fig. 2, it is possible to see the absolute improvement
from the two-stage programming with fixed recourse (the
“+” symbols) and the two-staged programming with recourse
(the solid symbols). While this net improvement seems small,
the improvement can be viewed through a value of informa-
tion analysis (see Chap. 4 of Birge and Louveaux 2011).

Figure 3 examines the value of shifting from a fixed re-
course problem to a recourse problem. The value of formulat-
ing this as a recourse problem depends on the risk aversion of
the DM. For all cases, the improvement in the solution is
positive, even though the improvement is very small for the
case when the DM is risk neutral (i.e., the case when the DM
simply wants to maximize NPV). The improvement of the
objective function (the maximum possible value for the objec-
tive value is 1) ranges from nearly 0 to 0.057, depending on
the confidence level.

4 Discussion

In this paper, a two-stage stochastic program with recourse for
the timing of the next forest inventory and the accompanying
adjustments to the forest management plan has been devel-
oped. The first stage selected the management schedules to
follow until the conduct of a new inventory, while the second
stage selected management schedules for each new inventory.
This analysis highlights that the timing of the new inventory is
directly related to the risk preferences of the DM. If the DM is
rather risk neutral (i.e., when λ = 0.05) and wants to have

Fig. 2 The Pareto frontier for the net present value and
corresponding conditional value at risk. The λ parameter is
the greatest (λ = 1) on the left of each graph and decreases

towards the right of each graph (until λ = 0). To promote
readability, a selection of λs were removed (specifically 0.6,
0.7, 0.8, and 0.9)
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small periodic incomes, then the DM should conduct the next
inventory before deciding which operations should occur in
the 6th period. Alternatively, when the DM is rather risk
averse (i.e., when λ = 1) and wants to have larger periodic
incomes, then the DM should conduct a new inventory before
the third or fourth period.

With a planning horizon of 30 years, there are many occa-
sions when the timing of the inventory is at the end of the
planning horizon. For some of these cases, the optimal next
timing may occur at an even later period. Two options are
available to the DM, either they can extend the planning ho-
rizon, or once time has passed, conduct an updated plan with
the available information. Additionally, the consistency of the
timing of the next inventory was checked by reducing the
planning horizon. For very short planning horizons, there are
cases when a new inventory is not conducted, this is because
the benefits of the new inventory are less than the costs.

This analysis also compared the case when the DM could
update the forest information and the case when the DM could
not update the forest inventory. The comparison of these al-
ternatives is between a two-stage stochastic program with
fixed recourse and a two-stage stochastic program with re-
course. Earlier studies (Eyvindson and Cheng 2016) have
compared the stochastic formulation with the corresponding
deterministic formulation, which highlighted the possible im-
provements by incorporating uncertainty. On a stand level
Kangas et al. (2015) have shown the trade-off between the
cost and benefits of obtaining updated data, and this depends
on the quality of the new data. Adding the possibility of re-
course will never be negative and the improvement depends
on the risk preferences of the DM.

Modifying the problem from a stochastic problem with
fixed recourse to a problem with recourse requires the con-
struction of second stage scenario sets. The process of sorting

the data is a time-consuming process, even though it was
automated. Linking the sorting process with a decision sup-
port tool such as SIMO in Finland (Rasinmäki et al. 2009), or
Heureka in Sweden (Wikström et al. 2011)) that utilizes basic
linear programming tools can be accomplished through the
addition of a module, and this can expand the functionality
of these tools to include stochastic programming.

The model was structured with an aim to limit the compu-
tational processing requirements. In our model, only one up-
date to the forest inventory can be made. To model a similar
problem using multistage stochastic programming, several ad-
justments would need to be made, and these adjustments
would substantially increase the computational processing re-
quired. Additional scenarios would need to be evaluated and
increases in the amount of sorting would be required to appro-
priately represent the uncertainty at later stages. In our opin-
ion, the additional computational requirements may not be
justified, as the decisions proposed past the second stage
would need to depend on an actual forest inventory.

The type of forest owner and the size of forest holding
may impact the usefulness of this kind of information. For
the forest owners’ that are risk neutral, there may not be
much value in including the option for recourse. However,
most forest owners have a tendency towards risk aversion
and would be interested in understanding the trade-off
between reducing risk and the costs of conducting a new
forest inventory. For forest owners whose proportion of
income is strongly linked to conducting forest operations,
risk aversion may be rather strong. This can be linked to
the risk aversion between small and large stakes (Rabin
2000). These kinds of forest owners could benefit by both
managing and understanding the associated risks which
can be provided through utilizing stochastic programming
with recourse.

Fig. 3 The value of including the recourse option of conducting a new inventory. As risk aversion increases, the value of including the recourse option
increases

2 Page 8 of 10 Annals of Forest Science (2017) 74: 2



Additionally, the certainty of the target parameter (i.e., the
desired periodic income) will have a direct impact on the value
of the analysis. As the risk is linked directly to the target
parameter, any uncertainty in the target parameter will impact
the related risk measure. This kind of uncertainty could be
included in the stochastic programming framework. For in-
stance, Aouni et al. (2012) have focused on understanding
the impact of target parameter uncertainty in stochastic goal
programming.

Modifications of this model can allow for additional
sources of recourse to be included in the stochastic program-
ming problem. For instance, price uncertainty could be includ-
ed through recourse. To allow for tractability this would re-
quire some simplification. For instance, price uncertainty
could be included through appropriately sized bands (i.e., 5€
increments), and the management decisions could be based on
how the price uncertainty is resolved. Political uncertainty
could be included as a recourse option. Decisions can be set
prior to the political decision, and proposed decisions can be
set depending on the resolution of the political decision.

The appropriate timing of the next forest inventory depends
upon the needs and desires of the DM, and this should be
taken into consideration when conducting new inventories of
the forest holding. In Finland, the typical interval between
subsequent inventories is currently 10 years, and according
to our analysis, this interval of measurements may be too
frequent for most DMs. If the accuracy of the inventory in-
creases or the cost of conducting the inventory decreases, the
ideal time to update the forest inventory will change.
Determining the exact optimal time for re-inventorying will
remain difficult to pinpoint, as the timing will still depend
upon the DM preferences, which can change through time.
Even with these caveats, this research can provide a useful
tool for evaluating the benefits obtained by conducting new
inventories, and rather than updating the forest data as soon as
the benefits exceed the costs, the inventory should be made
when the benefits are optimized with consideration to the
costs.
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