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Abstract
& Key message Operophtera brumata L. performance
varies among three Mediterranean oak species. Quercus
canariensisWilld is more susceptible to infestation proba-
bly due to its (i) early leafing, (ii) high nutritional value for
the larvae, and (iii) widespread abundance.
& Context Larvae of Operophtera brumata were observed for
the first time in an outbreak in Tunisia affecting Quercus
canariensis, Quercus afares Pomel, and Quercus suber L.
Due to its polyphagous nature and the important ecological
and economic damage it causes, it is most relevant to under-
stand its interaction with North African oaks species.
& Aims In this paper, budburst phenology of the three oak
species, larval performance, and genetic patterns of
O. brumata were studied in northwestern Tunisia.
& Methods In the spring of 2010, 2011, and 2012, budburst
phenology of host species and larval densities were monitored

weekly. Larval performance of O. brumata on the three oak
species was analyzed. DNA extraction, PCR, and DNA se-
quencing were performed.
& Results Budburst ofQ. canariensis andQ. afareswas earlier
than Q. suber. Q. canariensis was the most infested host.
Larvae which fed on Q. canariensis had faster development,
lower mortality, and higher pupal weight than larvae fed onQ.
afares andQ. suber. Molecular analyses showed that Tunisian
haplotypes were not different from those in Spain, Italy, and
Germany.
& Conclusion Results indicated differences in larval perfor-
mance. Q. canariensis was the most favorable host species.
Its high density in the field and early leafing coinciding with
larval hatching made this species particularly susceptible.

Keywords Q. canariensis .Q. afares .Q. suber . Winter
moth . Tunisia

1 Introduction

Budburst timing varies among and within tree species (Van
Dongen et al., 1997). Advances or delays in leafing are
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important for insect life cycles (Foster et al. 2013). The close
coincidence of budburst and larval hatch of spring-feeding
generalist moth species was reported in many studies
(Hunter 1992; Tikkanen and Julkunen-Tiitto 2003; Van Asch
et al. 2010; Foster et al. 2013). Such synchronization is im-
portant for the survival and growth rate of the larvae, and
therefore also, the expected fitness of the insects. For instance,
in order to gain maximal weight, the larvae of the winter moth,
Operophtera brumata L., an important forest defoliator (Van
Dongen et al. 1997), need to enter a bud at budburst to feed
upon the young leaves (Van Dongen et al. 1997). The dispers-
al behavior of O. brumata larvae might change with the onset
of budburst (Hunter 1990). The newly hatched larvae often do
not find suitable foliage on their natal tree and are forced to
disperse. They can do this by “ballooning” (Holliday 1977;
Hausmann and Viidalepp 2012).

O. brumata is a Holarctic species (Winstad et al. 2011;
Hausmann and Viidalepp, 2012) widely distributed in
Europe which has rapidly expanded its range colonizing
other continents. It was recently reported as new for North
Africa (Hausmann and Viidalepp 2012) and Tunisia
(Mannai et al. 2015). Such extension of the distribution
area offers the opportunity for the winter moth to contact
and use new host plant species. In Tunisia, the main host
species is Q. canariensis Willd but Quercus afares Pomel
and Quercus suber L. are also attacked (Mannai et al.
2015). O. brumata is univoltine (Van Dongen et al.
1997), but the time for egg and larval developments, the
length of pupation period and adult emergence varies
throughout its range: in southern Italy, the egg stage lasts
about 2 months and pupation for 8 months (Horgan 1993),
whereas, in northern Europe, the egg stage lasts about
8 months and pupation lasts for about 3 months (Horgan
1993). Depending on the weather, the larva needs 1–
2 months from hatching to maturity passing through five
instars (Kúti et al. 2011). Adults emerge in the autumn or
mid-winter, usually late October to early December in
Central Europe, but this shifts to a late winter phenology
(December to March) in southernmost Europe and North
Africa (Hausmann and Viidalepp 2012).

Early field observations of O. brumata in Tunisia
suggested restricted patterns of host use with feeding
activity concentrated on only three host plants of the
genus Quercus: Q. canariensis mixed with Q. suber
and Q. afares in the Ain Zena reserve (Mannai et al.
2015). The use of novel hosts leads us to hypothesize
firstly that some host adaptation or specialization might
occur at regional/species level. Secondly, budburst phe-
nology may play an important role which affects the
interaction between this polyphagous insect and the
host plant used by larvae. Field data and laboratory
experiments were combined in order to investigate
whether O. brumata showed differences in (i) density

of larvae among years and host plants, (ii) feeding be-
havior during budburst and larval performance, mea-
sured by larval development time, larval mortality, and
pupal weight on the three host species. In addition, the
DNA barcode fragment of the COI gene was sequenced
for O. brumata collected from these three Quercus spe-
cies and compared with DNA barcodes from another
Tunisian population (Mzara forest), from various
European populations (Spain, Italy, and Germany) and
from individuals of Operophtera fagata Scharfenbe as
outgroup to test the association between genetic pat-
terns and host use as well as test the hypothesis of a
recent colonization of O. brumata in North Africa.

2 Materials and methods

2.1 Study area

The study site is located in the Ain Zena forest in northwestern
Tunisia (alt. 950m, 36° 43′N, 8° 51′ E) at the southern edge of
a large forest in Ain Draham. Vegetation is dominated by
Q. canariensis, Q. afares, and Q. suber (Mhamdi et al.
2013). Q. afares is an endemic North African species origi-
nat ing from hybridizat ion between Q. suber and
Q. canariensis (Mir et al. 2006). The average height of the
three species at the study area is 7.3, 12, and 18m forQ. suber,
Q. afares, and Q. canariensis, respectively.

2.2 Tree density

The density of Q. canariensis, Q. suber, and Q. afares was
estimated by counting the number of trees in five 400 m2

plots, totaling an area of 0.2 ha.

2.3 Budburst phenology and larvae density

In 2010, 2011, and 2012, samples were taken on a weekly
basis from mid-March to late April, for 6 weeks (W1–W6)
to collect larvae and 9 weeks for budburst, until the first of
May (W1–W9). Every week, two branches from 10 mature
trees per host species were monitored, one low-level branch
(2.5 to 5m) and one from crown height level (>5m). Branches
were carefully cut using a pole pruner and bagged in a large
plastic bag to avoid losing larvae. In the laboratory, branches
were used to count larvae density and the proportion of swol-
len buds (phenological stage in which O. brumata can colo-
nize buds (Hunter 1990)).

2.4 Laboratory feeding trials

The performance of O. brumata on Q. canariensis, Q. afares,
and Q. suber was compared in laboratory feeding trials.
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Experiments were performed in the spring of 2011, coinciding
with the budburst of the host plants. Neonate larvae were
obtained from branches collected in the field in March 2011
and were individually placed in Petri dishes, kept at 25 ± 2 °C
and a light regime of 12:12 L:D (light:dark) as in natural
conditions and reared ad libitum on leaves of each tested
oak species. Thirty larvae, repeated 3 times, were used for
each tested plant. Young still-expanding leaves were collected
daily from plantlets of each species, planted in the same con-
ditions at the nursery of the INRGREF. Larvae were checked
daily and numbers of molted larvae were recorded. Larval
development time for each tested oak species was reported.
To evaluate larval performance, development time, larvae sur-
vival, and pupal weight of the 5th instar larvae were assessed
on each tested species as biological parameters.

2.5 Mortality and pupal weight of field collected larvae

First, second, and third instar larvae were collected only from
Q. canariensis and Q. afares as they were absent on Q. suber.
Fourth and fifth instar larvaewere collected fromQ. canariensis,
Q.afares, andQ.suber.Each larvawaskept individually inaPetri
dish and reared to pupation on young expanding leaves of each
host species collected daily fromplantlets at the INRGREFnurs-
ery.ThePetri disheswere examineddaily to record thenumberof
molting and dead larvae. Rearing tests were done in the spring of
2011.Pupalweightof the5th instar larvaecollected fromthe field
and larvae developed in the laboratory (from the second instar to
pupation) onQ. canariensis,Q. afares, andQ. suberwere com-
paredinorder to investigate thesuitabilityof thesehosts forwinter
moth larvae.

2.6 Molecular analysis

Mature larvae were collected by hand from the host plants
(Q. canariensis, Q. afares, and Q. suber) in April 2011 from
Ain Zena and Mzara. To prevent the sampling of siblings, each
larva was collected from a different tree. Pupae were collected
from the soil next to infested trees. Larvae and pupae were
preserved in 96% ethanol. One or two segments of larval thorax
and the cremaster part of pupae were sampled into lysis plates
for DNA barcoding. In total, 15 individuals were sampled.
DNA extraction, PCR, and DNA sequencing were performed
at the Canadian Centre for DNA Barcoding, Guelph, Canada
(CCDB), following standard high-throughput protocol, that can
be accessed under http://ccdb.ca/resources.php. PCR
amplification with a single pair of primers (Ivanova et al. 2006
) consistently recovered a 658-bp region near the 5′ terminus of
the mitochondrial cytochrome c oxidase 1 (CO1) gene that in-
cluded the standard 648 bp barcode region for the animal king-
dom (Hebert et al. 2003). PCR primers used were LepF1/LepR1
(Hebert et al. 2003). Quality check of the sequence data follow-
ed the CCDB standards and included the accurate examination

of trace files as well as exclusion of chimaera and sequences
with stop codons. DNA extracts are stored at the CCDB, with
aliquots being deposited in the DNA Bank facility of the ZSM
(see http://www.zsm.mwn.de/dnabank/). Sequences and
metadata are hosted in BOLD (Barcode of Life Data Systems,
project INRGR “Global Geometridae/Lepidoptera of Tunisia-
cork oak defoliators-INRGREF”) and are accessible and down-
loadable in the public dataset DS-OPEROPH. All sequences are
deposited also in GenBank according to the iBOL data release
policy. Sequence ID numbers on BOLD are provided in Table 1.
Images, GPS coordinates, and sequence trace files for each
specimen as well as details on host institution can be obtained
from the Barcode of Life Data System (BOLD; Ratnasingham
and Hebert 2007), public DS-OPEROPH.

Eight sequences of German specimens of O. brumata (A.
Hausmann), one of a southern Italian specimen (M. Infusino)
and one sequence of a southern Spanish specimen (A.
Hausmann) were included into the analysis. German and
Italian sequences of 8 individuals of O. fagata were used as
outgroup. A first analysis was performed with the tools of
BOLD database and was then refined on MEGA6 and
MEGA 7 (Tamura et al., 2013; Kumar et al. 2016) construct-
ing a Maximum Likelihood (ML) Tree including 21
Operophtera specimens from the western Palearctic (3 from
Tunisia), bootstrap method, 500 replicates, Tamura-Nei mod-
el, complete deletion, bootstrap values indicated when >50%.
Alignment was based on the alignment tools of BOLD data-
base. Manual alignment check revealed no errors (Fig. 4).

2.7 Statistical analysis

The statistical analysis was performed using the SPSS-10.0
software package for Windows.

Generalized linear models (GLMs) were applied to the fol-
lowing dependent variables: (1) the Julian day when 50% of
budburst occurred; (2) the number of larvae per branch, con-
sidering tree species and year as factors; (3) larvae develop-
ment (number of days spent in each instar), considering tree
species as a factor. A Normal distribution model best fitted the
Julian day when 50% of budburst occurred and larvae devel-
opment. A Poisson distribution model best fitted the number
of larvae per branch. The effect of each tested oak species on
the larval development time and the pupal weight was
assessed with an analysis of variance (ANOVA) and
complemented by multiple comparisons of means by the
SNK test (Student–Newman–Keuls) and was expressed as
mean ± standard error of mean (MSE).

The proportion of dead larvae among the total individuals
obtained in the feeding experiments was analyzed by GLM
using a Binomial model with log link function, considering
the factor plant species. Results are presented in the form of
the Wald’s chi-square test value (χ2), parameter estimates and
the respective P value.
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3 Results

3.1 Tree density and budburst variation

Q. canariensis was the most abundant species in the stud-
ied region with an average density of 700 trees/ha follow-
ed by Q. suber and Q. afares with an average density of
175 trees/ha and 60 trees/ha, respectively. The Julian day
when 50% of budburst occurred varied between host

plants (χ2
2 = 13.03, p < 0.001) and years (χ2

2 = 13.78,
p < 0.001). The interaction term was also significant
(χ2

4 = 18.89, p < 0.001). Budburst of Q. afares and
Q. canariensis began in late March, but budburst of
Q. suber occurred about 3 weeks later (Fig. 1). In 2010
and 2011, 50% ofQ. canariensis budburst occurred 1 week
before Q. afares. In 2012, budburst of Q. canariensis be-
gan a week after Q. afares. For all years, Q. suber
budburst was 3 to 4 weeks later (Fig. 1).

Table 1 Insects used for
molecular analyses: 21 specimens
of Operophtera brumata and
O. fagata. BOLD sequence ID-
numbers, sites, and host plant

Species Stage Sequence-ID number
in BOLD

Location Host plant

Operophtera brumata Pupa GWOSP600-11 Ain zena (Tunisia) Q. afares

GWOSP595-11 Mzara (Tunisia) Q. canariensis

GWOSP587-11 Ain zena (Tunisia) Q. canariensis

Adult GBLAC679-13 Bavaria, Oberbayern (Germany) –

GBLAC990-13 Bavaria, Oberbayern (Germany) –

GBLAC166-13 Bavaria, Oberbayern (Germany) –

GWOSP887-11 Sicily (Italy) –

GWOTD346-12 Andalusia (Spain) –

GBLAA454-14 Schleswig-Holstein (Germany) –

Larva GWORB1495-08 Bavaria, lower Bavaria (Germany) Q. robur

GWORO977-09 Lower Saxony (Germany) –

GWORO967-09 Lower Saxony (Germany) –

GWORO954-09 Lower Saxony (Germany) –

Operophtera fagata Adult GBLAC168-13 Saarland (Germany) –

GBLAC993-13 Saxony (Germany) –

GBLAF596-14 Brandenburg, Barnim (Germany) –

GWOTD330-12 Calabria (Italy) –

GWOTD332-12 Calabria (Italy) –

GWORB791-07 Bavaria, south (Germany) –

GBLAC167-13 Saarland (Germany) –

Larva GWORO972-09 Lower Saxony (Germany) –

(−) Absence of information about host plant in database

Fig. 1 Evolution of budburst of
Q. canariensis, Q. afares and
Q. suber in 2010, 2011, and 2012
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3.2 Larval density on host plants

For 6 weeks, a total of 1057, 1011, and 355 larvae were col-
lected in 2010, 2011, and 2012, respectively. The average
number of larvae per branch varied between host species
(χ2

2 = 883.12, p < 0.001) and years (χ2
2 = 115.50,

p < 0.001); the interaction term was also significant
(χ2

4 = 112.50, p < 0.001). For all weeks, mean larval numbers
were higher on Q. canariensis than on Q. afares and Q. suber
(Table 2). For all host species, larval density was highest in
April (Table 2).

3.3 Larval development and mortality

In the laboratory experiment, total larval development time
from the 1st instar to the 5th was shorter on Q. canariensis
(36.5 ± 0.3 days) than on Q. afares (40 ± 0.3 days) and
Q. suber (46.2 ± 0.3 days). The host species had a significant
effect on larval development (F(2, 206) = 245.84, p < 0.001).
For each instar larva, the development was faster on
Q. canariensis than on Q. afares and Q. suber (Fig. 2).

Death cause was in most cases unknown. Mortality was
higher onQ. afares for the 1st and 2nd instar larvae and great-
er on Q. suber for the 4th and 5th instar larvae (Fig. 3). The
host species had a significant effect on the proportion of 3rd
(χ2

1 = 11.34, p < 0.001) and 4th (χ2
2 = 7.3, p < 0.05) instar

dead larvae.

3.4 Pupal weight

The pupal weight varied significantly among species, in the
laboratory trials (F(2, 50) = 38.12, p < 0.001) and in the field
(F(2, 73) = 13.96, p < 0.001). It was higher for Q. canariensis
with an average of 27.2 ± 0.5 mg and 28.8 ± 0.5 mg, from
laboratory feeding trials and the field, respectively, than
Q. afares at 24.4 ± 0.6 mg and 26.5 ± 0.5 mg and Q. suber
at 20.4 ± 0.6 mg and 23.8 ± 0.9 mg.

3.5 Molecular data and patterns

A total of 15 barcode sequences of Tunisian O. brumata were
sequenced to the full barcode region of 658 bp (BOLD, pro-
ject INRGR http://www.barcodinglife.com/Global
Geometridae/Lepidoptera of Tunisia-cork) represented in
Fig. 4. No genetic differences were found between the speci-
mens feeding on the various host plants. All 15 Tunisian DNA
barcodes belong to exactly the same haplotype and perfectly
match the haplotype of the populations examined from a
Tunisian forest (Mzara) next to Ain Zena, as well as those
from Spain, Italy, and Germany (see Fig. 4). On the BOLD
database, there are additional data of the same haplotype from
Morocco, France, the Netherlands, Austria, UK, and Canada.
Populations with slightly diverging haplotypes (diverging by
1–2 basepairs only) have been barcoded from northern
Germany, Finland, and UK The genetic distance from O.
fagata, chosen as outgroup, was 7.0% (Fig. 4).

4 Discussion

The winter moth is a polyphagous insect that takes advantage
of many different host species, when available; oak is usually
the primary host with a high density and greater defoliation
(O’Donnell 2015). Larval density was high in 2010 and 2011
on all the oak species considered, especial ly on
Q. canariensis. Then in 2012, the density fell sharply
(Table 2). In the field, Q. canariensis trees had a higher den-
sity on average than the other two oaks. It was the most
infested host species. Cunningham et al. (2001) showed that
when the abundance of one host species is high, the probabil-
ity that the insect will land on this species is greater.
Furthermore, phenological differences among and within host
species are very important factors which affect host use and
adaptations ofO. brumata. Manyworks have shown that there
is a large annual variation of budburst of oak (Wint 1983;
Fraval 1984; Du Merle 1988; Van Dongen et al. 1997; Pinto

Table 2 Mean number of larvae on each host species per week and per year

Year Host plant W1 W2 W3 W4 W5 W6 Mean number of larvae

2010 Q. canariensis 3.1 ± 1.4 7.5 ± 2.7 14.7 ± 7.2 23.2 ± 7 21.2 ± 6.2 15.5 ± 3.6 12 ± 2

Q. afares 0.4 ± 0.3 3.5 ± 1.3 4.6 ± 1.6 2.7 ± 0.8 2.2 ± 1 1.9 ± 0.6 2.7 ± 0.4

Q. suber 0 0 0 1.9 ± 0.9 1.9 ± 0.8 1.4 ± 0.8 1.7 ± 0.6

2011 Q. canariensis 1.2 ± 0.4 9.4 ± 2 24.2 ± 5.7 20.8 ± 6.3 16.8 ± 4.4 4.9 ± 2.1 12.9 ± 2

Q. afares 0 3.6 ± 0.9 5.9 ± 1.2 3.7 ± 0.8 3.1 ± 1 0.8 ± 0.5 2.8 ± 0.4

Q. suber 0 0 0 0 2.5 ± 1.4 4.2 ± 1.5 1.13 ± 0.3

2012 Q. canariensis 3.5 ± 1.2 2.4 ± 1 6.3 ± 2.6 4 ± 1.3 2.3 ± 1 2.7 ± 1 3.5 ± 0.6

Q. afares 1.7 ± 0.6 2.4 ± 0.7 3.8 ± 1.3 3.3 ± 1.2 1.1 ± .5 0.8 ± 0.4 2.2 ± 0.4

Q. suber 0 0 0 0 0.8 ± 0.5 0.4 ± 0.2 0.2 ± 0.1

W1 3rd week of March, W2 4th week of March, W3 1st week of April, W4 2nd week of April, W5 3rd week of April, W6 4th week of April
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et al. 2011). Budburst timing did not differ between
Q. canariensis and Q. afares whereas that of Q. suber oc-
curred about 3 weeks later than the other two species
(Fig. 1). In a given region with several host species,
O. brumata will feed mainly on the host which budburst phe-
nology coincides with its larval hatching. Once larvae
emerged, they needed young leaves available on deciduous
to semi-evergreen Quercus species: Q. canariensis and
Q. afares. On the evergreen oak Q. suber, larvae found only
old leaves, which explain the absence of young larvae on this
species (Table 2). This suggests that the phenology of
Q. canariensis allows a high colonization by O. brumata.
Q. canariensis probably offers more chances for O. brumata
to survive because of early leafing and intense budburst which
exceeds 50% at the peak density of the insect (Fig. 1, Table 2).
Hunter (1992) found that Quercus robur L. trees that leaf out
early have the highest density of caterpillars.

The suitability of host species for larva development and
survival of polyphagous insects differs from one host plant
species to another. Generalist Lepidoptera species can vary
greatly in their growth efficiency on different natural host
plants (Feeny 1970). Many studies have focused on the effect

of the host plant on larval performance (Hunter 1992;
Tikkanen and Lyytikainen-Saarenmaa 2002).O. brumata per-
formance varies among these three Mediterranean oak species
which would offer different food quality. Budburst of
Q. canariensis and Q. afares occurred at the same time. The
shortest larval development time was recorded for larvae feed-
ing onQ. canariensiswhich was the most infested host, while
the longest development time was recorded for those feeding
on Q. suber (Fig. 2). O’Donnell (2015) showed that larvae of
O. brumata fed on Q. rubra L. and Malus domestica Borkh
had faster development and lower mortality than larvae fed on
Acer rubrum L., Betula papyrifera Marshall, Prunus
pensylvanica L.f., Vaccinium angustifolium Aiton, and
V. corymbosum L. Similarly, Ruuhola et al. (2001) also ob-
served that larval growth of the winter moth on Salix
phylicifolia L. was significantly faster than on Salix pentandra
L. and on Salix myrsinifolia Salisb. Larval growth is clearly
better on certain hosts than others, depending on host nutri-
tional quality and resistance mechanisms (Kirsten and Topp
1991). The ability of generalist Lepidoptera to complete larval
development, even at the cost of increased development times
(Wint 1983), is the most important feature of their polypha-
gous habit (Warrington 1985). Results of the pupal weight of
O. brumata suggest that food quality may have influenced
pupal mass. Tikkanen (2000) demonstrated that pupal weight
of O. brumata larvae reared on Q. robur varied between 16
and 42.2 mg. In the data obtained here, pupae of larvae reared
onQ. canariensis were heavier than those reared onQ. afares
and Q. suber.

According to the slow-growth-high-mortality hypothesis
(Clancy and Price 1987), the extended feeding period makes
insect larvae more susceptible to attacks by predators, parasit-
oids, and pathogens, resulting in a higher mortality in natural
environments (Häggström and Larsson 1995). Host species
also affects mortality of O. brumata larvae (Wint 1983).
Mortality of 4th and 5th instar larvae was greater on

Fig. 2 Development time of
O. brumata in days (±SE) from
first (L1) to fifth (L5) larval instar

Fig. 3 Mortality rate (±SE) of each larval stage (first (L1) to fifth (L5)
larval instar) collected from the field

3 Page 6 of 8 Annals of Forest Science (2017) 74: 3



Q. suber than on Q. canariensis and Q. afares (Fig. 3).
Caterpillars would then experience higher parasitism rates
on Q. suber (which should be tested in further experiments).

Molecular data and patterns show no genetic difference
between the Tunisian populations and the European “main
pool” of that species belonging all to one and the same
haplotype (Fig. 4). This result (1) agrees with the absence
of host specialization (potentially leading to complex hap-
lotype diversification) and the polyphagous life history of
this species; and (2) clearly supports the hypothesis of a
recent expansion of the distribution area instead of an
overlooked occurrence of a long-term isolated population
in North Africa. First instar larvae of O. brumata are
abseiling on silky threads enabling to long-distance dis-
persal by wind (Hausmann and Viidalepp, 2012).
Moreover, the species has been recorded in Morocco
(Hausmann and Viidalepp 2012), supposedly colonized
from Spain. The latter country, therefore, has to be
regarded as a potential origin of the Tunisian populations
as well as Italy. The hypothesis of a recent colonization
due to an anthropogenous transport of immature stages
over long distances with tree seedlings is not excluded,
but is questioned by the fact that Tunisia has not seen
any colonization from one of the many other Central
European defoliating moth species (Hausmann and
Viidalepp 2012).

5 Conclusion

We concluded that the deciduous Q. canariensis was
more susceptible to infestation by the winter moth than
other species due to its high density in the field, early
leafing, and best food quality offered to this insect.
There are significant differences in the performance of
larval development on the different hosts. These differ-
ences are reflected in the various components of indi-
vidual fitness, such as larval development time, larval
mortality, and pupal weight.

Population abundance of the winter moth observed after
2011 was not sufficient to damage trees. However, this insect
was observed in other cork oak forests (Ain El Baya in 2013
and El Jouza in 2015), suggesting further expansion. Winter
moth populations should be managed through constant mon-
itoring for early detection of outbreaks.
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