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Svetlana Saarela1 · Sören Holm1 · Anton Grafström1 · Sebastian Schnell1 ·
Erik Næsset2 · Timothy G. Gregoire3 · Ross F. Nelson4 · Göran Ståhl1
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Abstract
• Key message The study presents novel model-based esti-
mators for growing stock volume and its uncertainty esti-
mation, combining a sparse sample of field plots, a sam-
ple of laser data, and wall-to-wall Landsat data. On the
basis of our detailed simulation, we show that when the
uncertainty of estimating mean growing stock volume on
the basis of an intermediate ALS model is not accounted
for, the estimated variance of the estimator can be biased
by as much as a factor of three or more, depending on
the sample size at the various stages of the design.

Handling Editor: Jean-Michel Leban

� Svetlana Saarela
svetlana.saarela@slu.se
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goran.stahl@slu.se

• Context This study concerns model-based inference for
estimating growing stock volume in large-area forest inven-
tories, combining wall-to-wall Landsat data, a sample of
laser data, and a sparse subsample of field data.
• Aims We develop and evaluate novel estimators and vari-
ance estimators for the population mean volume, taking into
account the uncertainty in two model steps.
• Methods Estimators and variance estimators were derived
for two main methodological approaches and evaluated
through Monte Carlo simulation. The first approach is
known as two-stage least squares regression, where Landsat
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2 Department of Ecology and Natural Resource Management,
Norwegian University of Life Sciences, P.O. Box 5003,
NO-1432 Ås, Norway
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data were used to predict laser predictor variables, thus
emulating the use of wall-to-wall laser data. In the second
approach laser data were used to predict field-recorded vol-
umes, which were subsequently used as response variables
in modeling the relationship between Landsat and field data.
• Results The estimators and variance estimators are shown
to be at least approximately unbiased. Under certain
assumptions the two methods provide identical results with
regard to estimators and similar results with regard to
estimated variances.
• Conclusion We show that ignoring the uncertainty due to
one of the models leads to substantial underestimation of the
variance, when two models are involved in the estimation
procedure.

Keywords Landsat · Large-scale forest inventory · Monte
Carlo simulation · Two-stage least squares regression

1 Introduction

During the past decades, the interest in utilizing multiple
sources of remotely sensed (RS) data in addition to field
data has increased considerably in order to make forest
inventories cost efficient (e.g., Wulder et al. 2012). When
conducting a forest inventory, RS data can be incorporated
at two different stages: the design stage and the estimation
stage. In the design stage, RS data are used for stratification
(e.g., McRoberts et al. 2002) and unequal probability sam-
pling (e.g., Saarela et al. 2015a), they may be used for bal-
anced sampling (Grafström et al. 2014) aiming at improving
estimates of population parameters. To utilize RS data at the
estimation stage, either model-assisted estimation (Särndal
et al. 1992) or model-based inference (Matérn 1960) can be
applied. While model-assisted estimators describe a set of
estimation techniques within the design-based framework
of statistical inference, model-based inference constitutes
is a different inferential framework (Gregoire 1998). When
applying model-assisted estimation, probability samples are
required and relationships between auxiliary and target
variables are used to improve the precision of population
parameter estimates. In contrast, the accuracy of estimation
when assessed in a model-based framework relies largely
on the correctness of the model(s) applied in the estima-
tors (Chambers and Clark 2012). While this dependence on
the aptness of the model may be regarded as a drawback,
this mode of inference also has advantages over the design-
based approach. For example, in some cases, smaller sample
sizes might be needed for attaining a certain level of accu-
racy, and in addition, probability samples are not necessary,
which is advantageous for remote areas with limited access
to the field.

While several sources of auxiliary information can be
applied straightforwardly in the case of model-assisted
estimation following established sampling theory (e.g.,
Gregoire et al. 2011; Massey et al. 2014; Saarela et al.
2015a), this issue has been less well explored for model-
based inference for the case when the different auxiliary
variables are not available for the entire population. How-
ever, recent studies by Ståhl et al. (2011) and Ståhl et al.
(2014) and Corona et al. (2014) demonstrated how prob-
ability samples of auxiliary data can be combined with
model-based inference. This approach was termed “hybrid
inference” by Corona et al. (2014) to clarify that auxiliary
data were collected within a probability framework.

A large number of studies have shown how several
sources of RS data can be combined through hierarchical
modeling for mapping and estimation of forest attributes
such as growing stock volume (GSV) or biomass over large
areas. For example, Boudreau et al. (2008) and Nelson
et al. (2009) used a combination of the Portable Airborne
Laser System (PALS) and the Ice, Cloud, and land Ele-
vation/Geoscience Laser Altimeter System (ICESat/GLAS)
data for estimating aboveground biomass for a 1.3 Mkm2

forested area in the Canadian province of Québec. A Land-
sat 7 Enhanced Thematic Mapper Plus (ETM+) land cover
map was used to delineate forest areas from non-forest
and as a stratification tool. These authors used the PALS
data acquired on 207 ground plots to develop stratified
regression models linking the biomass response variable to
PALS metrics. They then used these ground-PALS mod-
els to predict biomass on 1325 ICESat/GLAS pulses that
have been overflown with PALS, ultimately developing a
regression model linking the biomass response variable to
ICESat/GLAS waveform parameters as predictor variables.
The latter model was used to predict biomass across the
entire Province based on 104044 filtered GLAS shots. A
similar approach was applied in a later study by Neigh
et al. (2013) for assessment of forest carbon stock in boreal
forests across 12.5± 1.5 Mkm2 for five circumpolar regions
– Alaska, western Canada, eastern Canada, western Eura-
sia, and eastern Eurasia. The latest study of this kind is
from Margolis et al. (2015), where the authors applied the
approach for assessment of aboveground biomass in boreal
forests of Canada (3,326,658 km2) and Alaska (370,074
km2). The cited studies have in common that they ignore
parts of the models’ contribution to the overall uncertainty
of the biomass (forest carbon stock) estimators, i.e., they can
be expected to underestimate the variance of the estimators.

With non-nested models, the assessment of uncertainty is
straightforward. McRoberts (2006) and McRoberts (2010)
used model-based inference for estimating forest area using
Landsat data as auxiliary information. The studies were per-
formed in northern Minnesota, USA. Ståhl et al. (2011)



Hierarchical model-based inference 897

presented model-based estimation for aboveground biomass
in a survey where airborne laser scanning (ALS) and air-
borne profiler data were available as a probability sample.
The study was performed in Hedmark County, Norway.
Saarela et al. (2015b) analysed the effects of model form
and sample size on the accuracy of model-based estima-
tors through Monte Carlo simulation for a study area in
Finland. However, model-based approaches that account
correctly for hierarchical model structures in forest surveys
still appear to be lacking.

In this study, we present a model-based estimation frame-
work that can be applied in surveys that use three data
sources, in our case Landsat, ALS and field measurements,
and hierarchically nested models. Estimators of population
means, their variances and corresponding variance estima-
tors are developed and evaluated for different cases, e.g.,
when the model random errors are homoskedastic and het-
eroskedastic and when the uncertainty due to one of the
model stages is ignored. The study was conducted using
a simulated population resembling the boreal forest condi-
tions in the Kuortane region, Finland. The population was
created using a multivariate probability distribution copula
technique (Nelsen 2006). This allowed us to apply Monte
Carlo simulations of repeated sample draws from the simu-
lated population (e.g., Gregoire 2008) in order to analyse the
performance of different population mean estimators and
the corresponding variance estimators.

2 Simulated population

The multivariate probability distribution copula technique
is a popular tool for multivariate modelling. Ene et al.
(2012) pioneered the use of this technique to generate
simulated populations which mimic real-world, large-area
forest characteristics and associated ALS metrics. Copu-
las are mathematical functions used to model dependencies
in complex multivariate distributions. They can be inter-
preted as d-dimensional variables on [0, 1]d with uniform
margins and are based on Sklar’s theorem (Nelsen 2006),
which establishes a link between multivariate distributions
and their univariate margins. For arbitrary dimensions, mul-
tivariate probability densities are often decomposed into
smaller building blocks using the pair-copula technique
(Aas et al. 2009). In this study, we applied C-vine copu-
las modeled with the package “VineCopula” (Schepsmeier
et al. 2015) of the statistical software R (Core Team 2015).
As reference data for the C-vine copulas modeling, a dataset
from the Kuortane region was employed. The reference set
consisted of four ALS metrics: maximum height (hmax), the
80th percentile of the distribution of height values (h80), the
canopy relief ratio (CRR), and the number of returns above

2 m divided by the total number of returns as a measure for
canopy cover (pveg), digital numbers of three Landsat spec-
tral bands: green (B20), red (B30) and shortwave infra-red
(B50), and GSV values per hectare from field measurements
using the technique of Finnish national forest inventory
(NFI) (Tomppo 2006). For details about the reference data,
see Appendix A.

A copula population of 3×106 observations was created,
based on which GSV was distributed over the study area
using nearest neighbour imputation with the Landsat and
ALS variables as a link, and a sample of 818,016 observa-
tions corresponding to the 818,016 grid cells of 16m × 16m
size, belonging to the land-use category forest. The selected
sample of 818,016 elements is our simulated population
with simulated Landsat spectral values, ALS metrics and
GSV values (Saarela et al. 2015b). An overview of the study
population is presented in Fig. 1:

3 Methods

3.1 Statistical approach

The model-based approach is based on the concept of a
superpopulation model. Any finite population of interest
is seen as a sample drawn from a larger universe defined
by the superpopulation model (Cassel et al. 1977). For
large populations, the model has fixed parameters, whose
values are unknown, and random elements with assigned
attributes. The model-based survey for a finite population
mean approximately corresponds to estimating the expected
value of the superpopulation mean (e.g., Ståhl et al. 2016).
Thus, in this study, our goal was to estimate the expected
value of the superpopulation mean, E(μ), for a large finite
population U with N grid cells as the population elements.
Our first source of information is Landsat auxiliary data,
which are available for each population element (grid cell).
The second information source is a sample of M grid cells,
denoted Sa . Each grid cell in Sa has two sets of RS auxil-
iary data available: Landsat and ALS. The third source of
information is a subsample S of m grid cells, selected from
Sa . For each element in S, Landsat, ALS, and GSV val-
ues are available. For simplicity, simple random sampling
without replacement was assumed to be performed in both
phases of sampling. The size of S was 10 % of Sa , and Sa

ranged from M = 500 to M = 10, 000 grid cells, i.e., S

ranged from m = 50 to m = 1000. We applied ordinary
least square (OLS) estimators for estimating the regression
model parameters and their covariance matrices for mod-
els that relate a response variable in one phase of sampling
to the auxiliary data. One such example is ALS metrics
regressed against GSV in the sample S. The OLS estimator
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Fig. 1 The Kuortane study area. The image was shown at the SilviLaser 2015 - ISPRS Geospatial Week where the study’s preliminary results
were presented (Saarela et al. 2015c)
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was applied under the usual assumptions, i.e., (i) indepen-
dence, assuming that the observations are identically and
independently distributed (i.i.d.); this assumption is guaran-
teed by simple random sampling; (ii) exogeneity, assuming
that the (normally distributed) errors are uncorrelated with
the predictor variables, and (iii) identifiability, assuming
that there is one unique solution for the estimated model
parameters, i.e., (XT X) has full column rank.

Our study focused on the following cases:

Case A: Model-based estimation, where Landsat data are
available wall-to-wall and GSV values are available for
the population elements in the sample S. In the following
sections, the case is also referred to as standard model-
based inference.

Case B: Two-phase model-based estimation, where ALS
data are available for Sa and GSV values for the subsam-
ple S. This case is also referred to as hybrid inference
(Ståhl et al. 2016), since it utilizes both model-based
inference and design-based inference.

Case C: Model-based estimation based on hierarchical
modeling, with wall-to-wall Landsat data as the first
source of information, ALS data from the sample Sa as
the second information source, and GSV data from the
subsample S as the third source of information. The case
is referred to as model-based inference with hierarchical
modeling.

Case C was separated into three sub-cases. The differ-
ence between the first two concerns the manner in which
the three sources of data were utilized in the estimators
and the corresponding variance and variance estimators.
The third sub-case was introduced since it reflects how
this type of nested regression models have been used in
previous studies by simply ignoring the model step from
GSV to GSV predictions based on ALS data, i.e., by
treating the GSV predictions as if they were true values
(e.g., Nelson et al. 2009; Neigh et al. 2011, 2013).

C.1: Predicting ALS predictor variables from Land-
sat data – two-stage least squares regression. − In
this case information from the subsample S was used
to estimate regression model parameters linking GSV
values as responses with ALS variables as predic-
tors. Information from Sa was then used to estimate
a system of regression models linking ALS predic-
tor metrics as response variables to Landsat variables
as predictors. Based on Landsat data ALS predictor
variables were then predicted for each population ele-
ment and utilized for predicting GSV values with the
first model. The reason for this rather complicated
approach was that variances and variance estimators
could be straightforwardly derived based on two-stage
least squares regression theory (e.g., Davidson and
MacKinnon 1993).

C.2: Predicting GSV values from ALS data – hierar-
chical model-based estimation. − In this case a model
based on ALS data was used to predict GSV values
for all elements in Sa . The predicted GSV values were
then used for estimating a regression model linking
the predicted GSV as a response variable with Landsat
variables as predictors. This model was then applied to
all population elements in order to estimate the GSV
population mean.

C.3: Ignoring the uncertainty due to predicting GSV
based on ALS data—simplified hierarchical model-
based estimation. In this case, the estimation proce-
dure was the same as in C.2, but in the variance esti-
mation we ignored the uncertainty due to predicting
GSV values from ALS data. As mentioned previously,
the reason for including this case is that this procedure
has been applied in several studies.

3.1.1 Case A: Standard model-based inference

This case follows well-established theory for model-based
inference (e.g., Matérn et al. 1960; McRoberts 2006;
Chambers & Clark 2012). For estimating the expected value
of the superpopulation mean E(μ) (Ståhl et al. 2016), we
utilise a regression model linking GSV values as responses
with Landsat variables as predictors using information from
the subsample S. We assume a linear model to be appropri-
ate, i.e.,

yS = ZSα + wS (1)

where yS is a column vector of length m of GSV values,
ZS is a m × (q + 1) matrix of Landsat predictors (with a
first column of unit values and q is the number of Land-
sat predictors), α is a column vector of model parameters
with length (q + 1), and wS is a column vector of random
errors with zero expectation, of length m. Under assump-
tions of independence, exogeneity, and identifiability (e.g.,
Davidson and MacKinnon 1993), the OLS estimator of the
model parameters is

α̂S = (ZT
S ZS)−1ZT

S yS (2)

where α̂S is a (q + 1)-length column vector of estimated
model parameters.

The estimated model parameters α̂S are then used for
estimating the expected value of the population mean, ̂E(μ),
Ståhl et al. (2016):

̂E(μ)A = ιTUZU α̂S (3)
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where ιU is a N-length column vector, where each element
equals 1/N , ZU is a N ×(q+1) matrix of Landsat auxiliary
variables, i.e., for the entire population.

The variance of the estimator ̂E(μ)A is (Ståhl et al.
2016):

V
[

̂E(μ)A

]

= ιTUZUCov(̂αS)ZT
U ιU (4)

where Cov(̂αS) is the covariance matrix of the model
parameters α̂S . To obtain a variance estimator, the covari-
ance matrix in Eq. 4 is replaced by an estimated covariance
matrix.

When the errors, wS , in Eq. 1, are homoskedastic, the
OLS estimator for the covariance matrix is (e.g., Davidson
and MacKinnon 1993):

̂CovOLS(̂αS) = ŵT
S ŵS

m − q − 1
(ZT

S ZS)−1 (5)

where ŵS = yS − ZS α̂S is a m-length column vector
of residuals over the sample S, using Landsat auxiliary
information.

When the errors, wS , in Eq. 1 are heteroskedastic, the
covariance matrix can be estimated consistently (HC) with
the estimator proposed by White (1980), namely

̂CovHC(̂αS) = (ZT
S ZS)−1

[
m

∑

i=1

ŵ2
i z

T
i zi

]

(ZT
S ZS)−1 (6)

where ŵi is a residual and zi is a (q + 1)-length row vector
of Landsat predictors for the ith observation from the sub-
sample S. To overcome an issue of the squared residuals ŵ2

i

being biased estimators of the squared errors w2
i , we applied

the correction m
m−q−1 ŵ2

i (Davidson and MacKinnon 1993),

i.e., all the ŵ2
i -terms in Eq. 6 were multiplied with m

m−q−1 .

3.1.2 Case B: Hybrid inference

In the case of hybrid inference, expected values and vari-
ances were estimated by considering both the sampling
design by which auxiliary data were collected and the model
used for predicting values of population elements based on
the auxiliary data (e.g., Ståhl et al. 2016). For this case, a
linear model linking ALS predictor variables and the GSV
response variable were fitted using information from the
subsample S

yS = XSβ + eS (7)

where XS is the m × (p + 1) matrix of ALS predictors over
sample S, β is a (p + 1)-length column vector of model
parameters, and eS is an m-length column vector of random

errors with zero expectation. Under assumptions of inde-
pendence, exogeneity and identifiability the OLS estimator
of the model parameters is (e.g., Davidson & MacKinnon
1993):

̂βS = (XT
S XS)−1XT

S yS (8)

where ̂βS is a (p + 1)-length column vector of estimated
model parameters.

Assuming simple random sampling without replacement
in the first phase, a general estimator of the expected value
of the superpopulation mean ̂E(μ) is (e.g., Ståhl et al.
2014):

̂E(μ)B = ιTSa
XSa

̂βS (9)

where ιSa is a M-length column vector of entities 1/M and
XSa is a M × (p + 1) matrix of ALS predictor variables.

The variance of the estimator ̂E(μ)B is presented by
Ståhl et al. (2014, Eq.5, p.5.), ignoring the finite population
correction factor:

V
[

̂E(μ)B

]

= 1

M
ω2 + ιTSa

XSaCov(̂βS)XT
Sa

ιSa (10)

where ω2 is the sample-based population variance from the
M-length column vector of ŷSa

-values and Cov(̂βS) is the
covariance matrix of estimated model parameters ̂βS . The
ŷSa

values were estimated as

ŷSa
= XSa

̂βS (11)

By replacing ω2 and Cov(̂βS) with the corresponding
estimator, we obtain the variance estimator. The sample-
based population variance ω2 is estimated by ̂ω2 =

1
M−1

∑M
i=1(ŷi − ¯̂y)2 (cf. Gregoire 2008), and the OLS

estimator for Cov(̂βS) is (e.g., Davidson & MacKinnon
1993):

̂CovOLS(̂βS) = ̂σ 2
e (XT

S XS)−1 (12)

where ̂σ 2
e = êT

S êS

m−p−1 is the estimated residual variance and

êS = yS − XS
̂βS is an m-length column vector of residuals

over sample S, using ALS auxiliary information.
In the case of heteroscedasticity, the OLS estimator

(Eq. 8) can still be used for estimating the model parame-
ters ̂βS but the covariance matrix is estimated by the HC
estimator (White 1980)

̂CovHC(̂βS) = (XT
S XS)−1

[
m

∑

i=1

ê2
i x

T
i xi

]

(XT
S XS)−1 (13)
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where êi is a residual and xi is the (p + 1)-length row
vector of ALS predictors for the ith observation from the
subsample S. Like for the Case A, we corrected the the
squared residuals ê2

i by a factor m
m−p−1 (Davidson and

MacKinnon 1993).

3.1.3 Case C: model-based inference with hierarchical
modelling

We begin with introducing the hierarchical model-based
estimator for the expected value of the superpopulation
mean, E(μ):

̂E(μ)C = ιTUZU(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S yS

(14)

where in addition to the already introduced notation, ZSa is
a M × (q + 1) matrix of Landsat predictors for the sample
Sa . In the following, it is shown that the hierarchical model-
based estimators for Case C.1 and Case C.2 turn out to
be identical under OLS regression assumptions. In the case
of weighted least squares (WLS) regression, the estimators
differ (see Appendix B).

C.1: Predicting ALS predictor variables from Landsat
data – two-stage least squares regression.

In this case, we applied a two-stage modeling approach
(e.g., Davidson & MacKinnon 1993). Using the sample
Sa , we developed a multivariate regression model link-
ing ALS variables as responses and Landsat variables as
predictors, i.e.

xSaj
= ZSaγ j + dj , [j=1, 2, ..., (p + 1)] (15)

where xSaj
is a M-length column vector of ALS variable

j , γ j is an (q+1)-length column vector of model param-
eters for predicted ALS variable j , and dj is an M-length
column vector of random errors with zero expectation.
We assumed that “all” Landsat predictors Z are used so
ZSa is the same for all variables xSaj

.
There are (p+1)×(q+1) parameters γij in �, an (q+

1)× (p+1) matrix of model parameters, to be estimated.
If we assume simultaneous normality the simultaneous
least squares estimator can be used as:

γ̂ j = (ZT
Sa

ZSa )
−1ZT

Sa
xSaj

(16)

We denote ̂� as a (q + 1) × (p + 1) matrix of esti-
mated model parameters, where the first column of ̂�

is the column vector (ZT
Sa

ZSa )
−1ZT

Sa
1M , which equals

(

1 0 · · · 0
)T

1×(q+1)
, where 1M is an M-length column

vector of unit values. Thus, we can predict ALS variables
for all population elements using Landsat variables, i.e.:

̂XU = ZU
̂� (17)

where ̂XU is a N × (p + 1) matrix of predicted ALS
variables over the entire population U .

Then, the predicted ALS variables ̂XU were coupled
with the estimated model parameters ̂βS from Eq. 8 to
estimate the expected value of the mean GSV:

̂E(μ)C.1 = ιTU
̂XU

̂βS (18)

To show that this equals Eq. 14, we can rewrite Eq. 18,
using Eq. 8, as

̂E(μ)C.1 = ιTU
̂XU(XT

S XS)−1XT
S yS

which evidently is equivalent to

̂E(μ)C.1 = ιTUZU
̂�(XT

S XS)−1XT
S yS (19)

Finally, using the estimator for ̂� (Eq. 16), we can
rewrite Eq. 19 as

̂E(μ)C.1 = ιTUZU(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S yS

which coincides with Eq. 14 proposed at the start of this
section.

Since Eq. 18 can be rewritten as ̂E(μ)C.1 =
∑p+1

i=1 ιTU x̂Ui
β̂Si

, the variance V
[

̂E(μ)C.1

]

of the estima-

tor in Eq. 18 can be expressed as

V
[

̂E(μ)C.1

]

=
p+1
∑

i=1

p+1
∑

j=1

Cov(β̂Si
[ιTU x̂Ui

], β̂Sj
[ιTU x̂Uj

])

(20)

Since ̂βS is based on the subsample S and ̂XU is
based on the sample Sa , eS and dj are considered to be
independent, and as a consequence we have

Cov(β̂Si
[ιTU x̂Ui

], β̂Sj
[ιTU x̂Uj

]) = βiβjCov([ιTU x̂Ui
], [ιTU x̂Uj

])
+[ιTUxUi

][ιTUxUj
]Cov(β̂Si

, β̂Sj
)

+Cov(β̂Si
, β̂Sj

)Cov([ιTU x̂Ui
], [ιTU x̂Uj

]) (21)

The covariances Cov(β̂Si
, β̂Sj

) are given by the ele-
ments of the matrix σ 2

e (XT
S XS)−1, where σ 2

e is the vari-

ance of the residuals êS , estimated as ̂σ 2
e = êT

S êS

m−p−1 (same

as in Section 3.1.2). Thus, we estimate Cov(β̂Si
, β̂Sj

) as

̂Cov(β̂Si
, β̂Sj

) = ̂σ 2
e (XT

S XS)−1
ij (22)
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Further, Eq. 17 gives

Cov([ιTU x̂Ui
], [ιTU x̂Uj

]) =
q+1
∑

k=1

q+1
∑

l=1

[ιTUzUk
][ιTUzUl

]Cov(γ̂ki , γ̂lj )

(23)

The covariance of the estimated model parameters ̂�,
assuming homoskedasticity,

Cov(γ̂ki , γ̂lj ) = Cov(̂�) = �(ZT
Sa

ZSa )
−1 (24)

where � is a (p + 1) × (p + 1) matrix of covariances
of the M × (p + 1) matrix of residuals D, which are
estimated as ̂D = XSa − ZSa

̂�, hence the covariance
matrix � is estimated as:

̂� =
̂D

T
̂D

M − q − 1
(25)

Combining Eqs. 20–24, we can derive the least squares

(LS) variance V
[

̂E(μ)C.1

]

:

VLS

[

̂E(μ)C.1

]

= 1

N2

N
∑

i=1

N
∑

j=1

(

zi (Z
T
Sa

ZSa )
−1zT

j βT �β

+σ 2
e zi

̂�(XT
S XS)−1

̂�
T
zT
j

+σ 2
e zi (Z

T
Sa

ZSa )
−1zT

j

p+1
∑

k=1

p+1
∑

l=1

λkl(X
T
S XS)−1

kl

)

= ιTUZU (ZT
Sa

ZSa )
−1ZT

U ιU βT �β

+ιTU ZU
̂�CovOLS(̂βS)̂�

T
ZT

U ιU

+σ 2
e ιTU ZU (ZT

Sa
ZSa )

−1ZT
U ιU

p+1
∑

k=1

p+1
∑

l=1

λkl(X
T
S XS)−1

kl

(26)

Here, λkl is the [k, l]th element of he matrix �.

To derive an estimator ̂VLS

[

̂E(μ)C.1

]

for the variance

Eq. 26, we replace β with estimated ̂βS , the covariance
matrix � with ̂� from Eq. 25, and σ 2

e with the estimated
̂σ 2

e . Knowing that E(β̂Si
β̂Sj

) = βiβj + Cov(β̂Si
β̂Sj

)

we have a “minus” sign between the second and third
terms of Eq. 26 due to subtracting a product of the esti-
mated covariances. Hence, our estimator for the variance
VLS

[

̂E(μ)C.1

]

is

̂VLS

[

̂E(μ)C.1

]

= ιTUZU (ZT
Sa

ZSa )
−1ZT

U ιÛβ
T

S
̂�̂βS

+ιTU ZU
̂� ̂CovOLS(̂βS)̂�

T
ZT

U ιU

−̂σ 2
e ιTU ZU (ZT

Sa
ZSa )

−1ZT
U ιU

p+1
∑

k=1

p+1
∑

l=1

λ̂kl (X
T
S XS)−1

kl

(27)

where λ̂kl is a [k, l]th element of the estimated covariance
matrix ̂� of residuals ̂D.

In the special case when any potential heteroskedasti-
ciy is limited to the GSV function of ALS predictor vari-
ables over the sample S, the heteroskedasticity-consistent
variance estimator is:

̂VHC

[

̂E(μ)C.1

]

= ιTU ZU (ZT
Sa

ZSa )
−1ZT

U ιÛβ
T

S
̂�̂βS

+ιTU ZU
̂� ̂CovHC(̂βS)̂�

T
ZT

U ιU

−ιTU ZU (ZT
Sa

ZSa )
−1ZT

U ιU

p+1
∑

k=1

p+1
∑

l=1

λ̂kl
̂CovHC(̂βS)kl

(28)

C.2: Predicting GSV values from ALS data – hierarchi-
cal model-based estimation.

In this case, the predicted GSV variable ŷSa
is used as

a response variable for estimating model parameters link-
ing GSV and Landsat-based predictors over the sample
Sa , i.e., our assumed model is

XSaβ = ZSaα + wSa (29)

where XSaβ is an M-length column vector of expected
values of predicted GSV values ŷSa

= XSa
̂βS using ALS

data, α is a (q+1)-length column vector of model param-
eters linking estimated GSV values and Landsat predictor
variables, and wSa is an M-length column vector of
random errors with zero expectation.

In case the XSaβ values were observable, the OLS
estimator of α would be

α̃Sa = (ZT
Sa

ZSa )
−1ZT

Sa
XSaβ (30)

However, we use the XSa
̂βS values and thus our OLS

estimator of α is

α̂Sa = (ZT
Sa

ZSa )
−1ZT

Sa
XSa

̂βS (31)

Thus, using the estimator ̂βS (Eq. 8), we obtain:

α̂Sa = (ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S yS (32)

Then the estimated model parameters α̂Sa were
employed for estimating the expected value of superpop-
ulation mean E(μ):

̂E(μ)C.2 = ιTUZU α̂Sa

= ιTUZU(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S yS

which coincides with Eq. 14. Thus, for models with
homogeneous random errors, the estimators of the
expected mean are the same for Cases C.1 and C.2.
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Based on the estimator ̂E(μ)C.2 = ιTUZU α̂Sa , the
variance is Ståhl et al. (2016)

V
[

̂E(μ)C.2

]

= ιTUZUCov(̂αSa )Z
T
U ιU (33)

where Cov(̂αSa ) is the covariance matrix of α̂Sa .
By replacing the covariance Cov(̂αSa ) with estimated
covariance ̂Cov(̂αSa ) in the expression Eq. 33, we obtain
a variance estimator.

Under OLS assumptions Cov(̂αSa ) is estimated as

̂CovOLS (̂αSa ) = ŵT
Sa

ŵSa

M − q − 1
(ZT

Sa
ZSa )

−1

+(ZT
Sa

ZSa )
−1ZT

Sa

[

XSa
̂CovOLS(̂βS)XT

Sa

]

ZSa (ZT
Sa

ZSa )
−1

(34)

where, ŵSa = XSa
̂βS −ZSa α̂Sa is an M-length vector of

residuals.
For the derivation of the estimator in Eq. 34, see

Appendix C.
In case of heteroskedasticy of the random errors in the

sample Sa and the sample S, the HC covariance matrix
estimator (White 1980) of the estimated model parame-
ters α̂Sa was applied (like before, the OLS estimator for
α̂Sa was used):

̂CovHC (̂αSa ) = (ZT
Sa

ZSa )
−1

[
M

∑

i=1

ŵ2
i z

T
i zi

]

(ZT
Sa

ZSa )
−1

+(ZT
Sa

ZSa )
−1ZT

Sa

[

XSa
̂CovHC(̂βS)XT

Sa

]

ZSa (Z
T
Sa

ZSa )
−1

(35)

where ŵ2
i is a squared residual for the ith observation

in the sample Sa . As in Cases A and B, we applied the
correction M

M−q−1 ŵ2
i (Davidson and MacKinnon 1993).

A derivation of the estimator (Eq. 35) is given in see
Appendix C.

C.3: Ignoring the uncertainty due to predicting GSV
values based on ALS data – simplified hierarchical
model-based estimation.

This case is included since several studies have used
predicted values ŷSa

, using ALS models, as if they were
true values, and hence, the uncertainty of their estimation
has been ignored. In this case, the same estimator (Eq. 14)
for the expected value of mean was used, but for the vari-
ance estimator, Eqs. 33 and 34 were applied. Under OLS
assumption, the matrix Cov(̂αSa ) was estimated as

̂CovOLS(̂αSa )C.3 = ŵT
Sa

ŵSa

M − q − 1
(ZT

Sa
ZSa )

−1 + 0 (36)

In the case of heteroskedasticity, it was estimated as

̂CovHC(̂αSa )C.3 =(ZT
Sa

ZSa )
−1

[
M

∑

i=1

ŵ2
i z

T
i zi

]

(ZT
Sa

ZSa )
−1+0

(37)

Thus, in these estimators, we ignored the uncertainty
due to the regression model based on information from
the sample S.

3.2 Sampling simulation

Monte Carlo sampling simulation with R = 3 × 104 repeti-
tions was applied. At each repetition, new regression model
parameter estimates for the pre-selected variables and their
corresponding covariance matrix estimates were computed.
Based on the computed model parameters, the expected
value of the population mean and its variance were esti-
mated for each case. Averages of estimated values ̂E(μ) and

their estimated variances ̂V
[

̂E(μ)
]

were recorded. Empir-

ical variances V
[

̂E(μ)
]

emp
were computed based on the

outcomes from the R repetitions as

V
[

̂E(μ)
]

emp
= 1

R − 1

R
∑

k=1

[

̂E(μ)k − ̂E(μ)

]2

(38)

Further, the empirical mean square error (MSE) was
estimated based on the R repetitions

MSE
[

̂E(μ)
]

emp
= 1

R

R
∑

k=1

[

̂E(μ)k − E(μ)
]2

(39)

with the known expected value of the superpopulation mean
E(μ) = 104.27 m3ha−1, as the simulated finite population
mean.

For all cases, we calculated the relative bias of the
estimated variance

̂RelBIAS = 100% ×
̂V

[

̂E(μ)
]

− V
[

̂E(μ)
]

emp

V
[

̂E(μ)
]

emp

(40)

In order to make sure that the number of repetitions in
the Monte Carlo simulations was sufficient, we graphed
the average value of the target parameter estimates versus
the number of simulation repetitions. For all our cases and
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Fig. 2 The convergence of the estimated model-based variance under OLS assumptions ̂V OLS

[

̂E(μ)
]

over the number of repetitions in the

Monte Carlo simulations, sample sizes: m = 100 grid cells, M = 1000 grid cells.

estimators, the graphs showed that the estimators stabilized
fairly rapidly and that our 3×104 repetitions were sufficient.
An example is shown in Fig. 2, for the case of estimating
̂V OLS

[

̂E(μ)
]

:

4 Results

As expected, the accuracy of the model-based estimator
with hierarchical modeling (Case C) increased as sample
sizes in the two phases increased. The estimator is at least
approximately unbiased, because for every group of sam-

ple sizes MSEemp

[

̂E(μ)
]

≈ Vemp

[

̂E(μ)
]

. The Landsat

variables had less predictive power than ALS metrics in pre-
diction GSV; hence, the accuracy of the Case B estimator
is higher than the Case A estimator. However, including
wall-to-wall Landsat auxiliary information improved the
accuracy compared to using ALS sample data alone, i.e., the
MSE of Case C is lower than the MSE of Case B (Table 1).

Comparing the performances of the Case C.3 variance
estimator and the hierarchical model-based variance estima-
tor of Case C.2, we observed that ignoring the uncertainty
due to the GSV-ALS model leads to underestimation of the
variance by about 70 % (Table 1).

In Table 2, we present examples of the goodness of fit of
the models used in the Case C.2 (and C.3). From Table 2,

it can be observed that the goodness of fit was substantially
better for the ALS models compared to the Landsat models.

5 Discussion

In this study, we have presented and evaluated novel esti-
mators and their corresponding variance estimators for
model-based inference using three sources of information
and hierarchically nested models, for applications in for-
est inventory combining RS and field data. The estimators
were evaluated through Monte Carlo simulation, for the
case of estimating the population mean GSV. The esti-
mators and the variance estimators were found to be at
least approximately unbiased, unless in the Case C.3 where
the uncertainty of one of the models was ignored. The
precision of the estimators depended on the number of
observations used for developing the models involved; the
uncertainties due to both model steps involved were found
to substantially contribute to the overall uncertainty of the
estimators.

Our first main methodological approach (Case C.1) uses
wall-to-wall Landsat data to predict the ALS predictor vari-
ables involved when regressing field-measured GSV as a
response variable on ALS data. In this way, we emulated
wall-to-wall ALS data, which were used for estimating
the population mean across the study area. The method is
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Table 2 Averages of adjusted coefficients of determination R2
a and estimated residual standard errors σ̂e and σ̂w for the ALS- and Landsat-based

models developed in Case C.2

ALS Landsat

Number of grid cells, m R2
a σ̂e Number of grid cells, M R2

a σ̂w

50 0.87 35.61 500 0.25 81.09

100 0.86 37.38 1000 0.25 80.40

500 0.85 38.74 5000 0.25 79.74

1000 0.85 38.96 10,000 0.25 79.65

straightforward but rather cumbersome to apply when the
ALS models involve several predictor variables. Our second
main methodological approach (Case C.2) is more intu-
itive, since it proceeds by first estimating a model between
field GSV and ALS data; subsequently, GSV is predicted
for all sample units with ALS data and these predictions are
used as responses in modeling GSV based on Landsat data.
Finally, wall-to-wall Landsat data are used for making pre-
dictions across the entire study area and for estimating the
population mean GSV. Compared to the first method, this
method is simpler to apply for ALS models with a large
number of predictor variables. For models with homoge-
neous residual variances, fitted using OLS, the estimators
obtained from the two different methods are identical, but
the variances and variance estimators differ. However, the
variance estimates obtained in the simulation study were
similar for the two methods.

Several previous studies have combined two sources
of RS data and field data in connection with hierarchi-
cal model-based estimation of forest resources. Boudreau
et al. (2008), Nelson et al. (2009), Neigh et al. (2013), and
Margolis et al. (2015) applied estimators of the kind denoted
C.3 in this study, i.e., they accounted for only one model
step in the assessment of uncertainties. This is pointed out
by Margolis et al. (2015), and Neigh et al. (2013) concluded
that this would lead to a substantial underestimation of the
variance. In our study, with the new set of estimators to
specifically address this issue, we found that the underesti-
mation of the variance may be as high as 70 % if the model
step linking field and ALS data is ignored in the assessment
of uncertainties. However, the magnitude of the underesti-
mation depends on the properties of the models involved
and the sample sizes applied for developing the models.
Our findings also are important for studies (e.g., Rana et al.
2013; Ota et al. 2014) where ALS data are taken as true val-
ues in developing models where other types of RS data are
used for stand or plot level predictions of forest attributes
such as GSV, biomass, or canopy height.

Compared to hybrid inference using only the ALS sam-
ple and field data (Case B), using any of the two main

methodological approaches of this study (Cases C.1 and
C.2) improved the precision of the estimated mean GSV.
Compared to using only wall-to-wall Landsat and field
data (Case A), the improvement in precision was very
large.

An advantage of model-based inference and thus the
estimators we propose is that they do not require proba-
bility samples of field or ALS data. Purposive sampling
can be applied in all phases. This property makes the pro-
posed inference technique attractive for forest surveys in
remote areas, such as Siberia in the Russian Federation
and Alaska in the USA, where field plots cannot eas-
ily be established in all parts of the target area due to
the poor road infra-structure. However, in this study, we
applied simple random sampling as a means to provide an
objective description of the data collection; further, one of
the methods evaluated, i.e., hybrid estimation, requires a
probability sample of auxiliary data. Note that simple ran-
dom sampling was applied in both phases, which to some
extent limits the generality of the results since ALS sam-
ples are typically acquired as clusters of grid cells (e.g.,
Gobakken et al. 2012). Ongoing studies are addressing this
issue in order to make the proposed type of estimators more
general.

The new estimators are derived for both homoskedastic-
ity and heteroscedasticity conditions, regarding the random
errors variance. In case of heteroscedasticity, typically the
OLS estimator of the covariance matrix of estimated model
parameters overestimates the actual variances the model
parameters (White 1980; Davidson and MacKinnon 1993).
Thus, a heteroskedasticity-consistent estimator should be
applied in such cases. In our simulation study, we applied
a modified HC estimator; however, our results do not indi-
cate any major difference between using different types
of covariance matrix estimators. Another technical detail
regards whether or not linear models can always be success-
fully applied for modelling GSV, as assumed in this study
where OLS regression and linear models were applied. With
nonlinear models or other parameter estimation techniques
the proposed theory would need to be slightly modified.
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Although some simplifying assumptions were made, we
suggest that the proposed set of estimators (Cases C.1
and C.2) has a potential to substantially contribute to the
development of new techniques for large-area forest sur-
veys, utilizing several sources of auxiliary information in
connection with model-based inference.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

Appendix A: Reference data

A.1 Study site

To demonstrate the validity of our estimators, we chose the
Kuortane area in the southern Ostrobothnia region of west-
ern Finland as study site. The main reason for this was the
availability of data from earlier studies that have been con-
ducted in the same region (e.g., Saarela et al. 2015b, 2016).
The area has a size of approximately 30,000 ha of which
20,941 ha are covered by forests with Pinus sylvestris being
the main tree species. Picea abies and Betula spp. usually
occur as mixtures. The remaining parts of the landscape are
formed by peat lands and open mires on higher elevations,
and agricultural fields and water bodies at lower elevations
and terrain depressions, respectively.

A.2 Field data

Field data were collected in 2006 using a systematic sample
of circular field plots that were arranged in clusters. Each
cluster consisted of 18 plots with a radius of 9 m, and the
sample covered all land use types. For this study, however,
only plots in forest areas were considered for further analy-
sis. The distance between plots in a cluster was 200 m and
the distance between clusters was 3500 m. In total, mea-
surements from 441 forest field plots were available. GSV
values per hectare were calculated for each field plot follow-
ing the Finnish National Forest Inventory (NFI) procedure
(Tomppo et al. 2008). Plots with GSV values of zero were
omitted.

At all trees with a diameter at breast height (dbh) larger
than 5 cm the following variables were observed: dbh, tree
story class, and tree species. Tree height was measured for
one sample tree per plot and species, while height for the
remaining trees was predicted using models from Veltheim
(1987). For calculating GSV, which is our variable of inter-
est, individual tree models from Laasasenaho (1982) were

applied. Individual tree volumes were then aggregated on
the plot level and expanded to per hectare values.

A.3 ALS data

ALS of the study area was conducted in July 2006 using
an Optech 3100 laser scanning system. The average fly-
ing altitude above terrain was 2000 m. The mean footprint
diameter was 60 cm and the average point density was 0.64
echoes m−2. Altogether, 19 north-south oriented flight lines
were flown using a side overlap of about 20 %. The point
cloud was normalized to terrain height using a digital ter-
rain model generated with the Orientation and Processing
of Airborne Laser Scanning data (OPALS) software (Pfeifer
et al. 2014) from the same data, and divided along a grid of
16x16 m large cells. For each cell and field plot the height
values of laser echoes were used to calculate several metrics
related to observed values of GSV. Four metrics were cal-
culated with the FUSION software (McGaughey 2012), and
used for this study: maximum height observation (hmax); the
80th percentile of the distribution of height values (h80); the
canopy relief ratio (CRR); and the number of returns above
2 m divided by the total number of returns as a measure for
canopy cover (pveg). For details about the ALS data, see
Saarela et al. (2015a).

A.4 Landsat data

Landsat 7 ETM+ orthorectified (L1T) multi-spectral
imagery data were downloaded from U.S. Geological Sur-
vey (2014). The images were acquired in June 2006. For
each field plot and grid cell, digital numbers of spectral
values from the green (B20), red (B30), and shortwave infra-
red (B50) bands were extracted using the nearest neighbour
re-sampling method in ArcGIS software (ESRI 2011).

Appendix B: Weighted least squares regression
estimator for the model-based inference in Case
C.1

In the case of applying weighted least squares estimator
for heteroskedasticity removal in Case C.1, the estimator
(Eq.(8)) will have the following form

̂βS = (XT
S G−1

S XS)−1XT
S G−1

S yS (41)

where GS is a m × m diagonal matrix with weight elements
in the diagonal and zeros outside of the diagonal.

The estimator [corresponding to Eq. 16] will be

γ̂ j = (ZT
Sa

H−1
Saj

ZSa )
−1ZT

Sa
H−1

Saj
xSaj

(42)

where H Saj
is a M × M diagonal matrix with weight ele-

ments in the diagonal and zeros outside of the diagonal for

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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j th ALS variable over sample Sa , and xSaj
is an M-length

column vector of j th ALS variable.
Thus, estimator for the expected value of the superpopu-

lation mean estimation in Case C.1 will be

̂E[μC.1]WLS =

ιTUZU

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

γ̂ (p+1) = (ZT
Sa

H−1
Sa (p+1)

ZSa )
−1ZT

Sa
H−1

Sa (p+1)
xSa (p+1)

)T

(

γ̂ p = (ZT
Sa

H−1
Sap

ZSa )
−1ZT

Sa
H−1

Sap
xSap

)T

.

.

.
(

γ̂ 2 = (ZT
Sa

H−1
Sa2

ZSa )
−1ZT

Sa
H−1

Sa2
xSa2

)T

(

γ̂ 1 = (ZT
Sa

H−1
Sa1

ZSa )
−1ZT

Sa
H−1

Sa1
1M

)T

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

T

×(XT
S G−1

S XS)−1XT
S G−1

S yS (43)

Appendix C Proof of the hierarchical model-based
variance estimators in Case C.2.

C.1 General derivation

For each element in the sample Sa , there are two models:
yi = xiβ + ei with e ∼ N(σ 2

e , 0) and xiβ = ziα +wi with
w ∼ N(σ 2

w, 0), where yi is GSV value, xi is an (p + 1)-
length row vector of ALS predictor variables, zi is a (q +
1)-length row vector of Landsat predictor variables, and ei

and wi are independent and identically distributed (i.i.d.)
random errors for the ith observation. Combining these two
models, we can develop a composite model:

xiβ = ziα + wi

yi − ei = ziα + wi

yi = ziα + wi + ei (44)

That is, in vector notation the regression model applied
in Case C.2 is

ySa
= ZSaα + wSa + eSa (45)

For deriving an estimator for the covariance matrix of the
estimated model parameters α̂Sa , we modify Eq. 32 as:

α̂Sa = (ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S yS

= (ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S (XSβ + eS)

= (ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S XSβ

+(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S eS

Knowing that (XT
S XS)−1XT

S XS = I (m×m) in the first
term of the expression, we obtain:

α̂Sa = (ZT
Sa

ZSa )
−1ZT

Sa
XSaβ

+(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S eS

Recalling from Eq. 44 that XSaβ = ZSaα + wSa , we
modify further to obtain:

α̂Sa = (ZT
Sa

ZSa )
−1ZT

Sa
(ZSaα + wSa )

+(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S eS

= (ZT
Sa

ZSa )
−1ZT

Sa
ZSaα + (ZT

Sa
ZSa )

−1ZT
Sa

wSa

+(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S eS

Knowing that (ZT
Sa

ZSa )
−1ZT

Sa
ZSa = I (M×M), we

obtain:

α̂Sa = α + (ZT
Sa

ZSa )
−1ZT

Sa
wSa

+(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S eS

Moving α to the left side of the expression, we get

α̂Sa − α = (ZT
Sa

ZSa )
−1ZT

Sa
wSa

+(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S eS (46)

Now, we derive the estimator for the covariance of α̂Sa :

Cov(̂αSa ) = E
[

(̂αSa − α)(̂αSa − α)T
]

= E
[

(

(ZT
Sa

ZSa )
−1ZT

Sa
wSa + (ZT

Sa
ZSa )

−1ZT
Sa

XSa (X
T
S XS)−1XT

S eS

)

×(

(ZT
Sa

ZSa )
−1ZT

Sa
wSa + (ZT

Sa
ZSa )

−1ZT
Sa

XSa (X
T
S XS)−1XT

S eS

)T
]

= E
[

(ZT
Sa

ZSa )
−1ZT

Sa
wSa

(

(ZT
Sa

ZSa )
−1ZT

Sa
wSa

)T

+(ZT
Sa

ZSa )
−1ZT

Sa
wSa

(

(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S eS

)T

+(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S eS

(

(ZT
Sa

ZSa )
−1ZT

Sa
wSa

)T

+(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S eS

(

(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S eS

)T
]

= (ZT
Sa

ZSa )
−1ZT

Sa
E

[

wSaw
T
Sa

]

ZSa (Z
T
Sa

ZSa )
−1 + (ZT

Sa
ZSa )

−1ZT
Sa

E
[

wSae
T
S

]

XS(XT
S XS)−1XT

Sa
ZSa (Z

T
Sa

ZSa )
−1

+(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S E
[

eSwT
Sa

]

ZSa (Z
T
Sa

ZSa )
−1

+(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S E
[

eSeT
S

]

XS(XT
S XS)−1XT

Sa
ZSa (Z

T
Sa

ZSa )
−1
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Assuming that wSa and eS are independent and uncor-
related, and knowing that E[wSa ] = 0 and E[eSa ] = 0,

we have E
[

wSae
T
S

]

= E
[

eSwT
Sa

]

= E
[

wSa

]

E
[

eS

]

= 0.

Thus,

Cov(̂αSa ) = (ZT
Sa

ZSa )
−1ZT

Sa
E

[

wSaw
T
Sa

]

ZSa (Z
T
Sa

ZSa )
−1

+(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S E
[

eSeT
S

]

XS(XT
S XS)−1XT

Sa
ZSa (Z

T
Sa

ZSa )
−1

= (ZT
Sa

ZSa )
−1ZT

Sa
�ZSa (Z

T
Sa

ZSa )
−1

+(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S 	XS(XT
S XS)−1XT

Sa
ZSa (Z

T
Sa

ZSa )
−1 (47)

where � is a covariance matrix of errors wSa and 	 is a
covariance matrix of errors eS .

C.2 Under homogeneous random errors

Under the general OLS assumptions � = σ 2
wI (M×M),

where σ 2
w is estimated as ̂σ 2

w = ŵSa ŵT
Sa

M−q−1 , where ŵSa =
XSa

̂βS − ZSa α̂Sa is an M-length column vector of resid-
uals over sample Sa . Thus, first part of Eq. 47, i.e.,

(ZT
Sa

ZSa )
−1ZT

Sa
�ZSa (Z

T
Sa

ZSa )
−1, can be estimated as

(ZT
Sa

ZSa )
−1ZT

Sa

[

σ̂w
2I (M×M)

]

ZSa (Z
T
Sa

ZSa )
−1

= ŵSa ŵ
T
Sa

M − q − 1
(ZT

Sa
ZSa )

−1

In the second term of Eq. 47, 	 is estimated as
̂σ 2

e I (m×m) = êS êT
S

m−q−1I (m×m), where êS = yS − XS
̂βS is

an m-length column vector of residuals over the sample S.
Thus, the second term can be estimated as

(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1XT

S

[ êS êT
S

m − q − 1
I (m×m)

]

XS(XT
S XS)−1XT

Sa
ZSa (Z

T
Sa

ZSa )
−1

= (ZT
Sa

ZSa )
−1ZT

Sa
XSa

[ êS êT
S

m − q − 1
(XT

S XS)−1]XT
Sa

ZSa (Z
T
Sa

ZSa )
−1

We can see that the expression
[ êS êT

S

m−q−1 (XT
S XS)−1

]

is in
fact the estimator of the covariance matrix of the estimated
model parameters ̂βS (Eq. 12). Therefore, we can write the
estimator of Cov(̂αSa ) as

̂CovOLS (̂αSa ) = ŵSa ŵ
T
Sa

M − q − 1
(ZT

Sa
ZSa )

−1

+(ZT
Sa

ZSa )
−1ZT

Sa

[

XSa
̂CovOLS(̂βS)XT

Sa

]

ZSa (Z
T
Sa

ZSa )
−1

(48)

C.3 Under heteroskedasticity

In the case of heteroskedasticity, we followed the theo-
retical framework developed by White (1980). Thus, the
expression ZT

Sa
�ZSa in the first term of Eq. 47 can be esti-

mated as
∑M

i=1 ŵ2
i z

T
i zi ; correspondingly, in the second term

the expression XT
S 	XS can be estimated as

∑m
i=1 ê2

i x
T
i xi .

Further, the second term of Eq. 47 can be estimated as

(ZT
Sa

ZSa )
−1ZT

Sa
XSa (X

T
S XS)−1[

m
∑

i=1

ê2
i x

T
i xi

]

(XT
S XS)−1XT

Sa
ZSa (Z

T
Sa

ZSa )
−1

We can see that (XT
S XS)−1

[ ∑m
i=1 ê2

i x
T
i xi

]

(XT
S XS)−1

is in fact the heteroskedasticity-consistent estimator of
the covariance matrix of the estimated model parameters
̂βS (Eq. 13). Therefore, the heteroskedasticity-consistent
covariance matrix estimator for the estimated model param-
eters α̂Sa is

̂CovHC(̂αSa ) = (ZT
Sa

ZSa )
−1

[
M

∑

i=1

ŵ2
i z

T
i zi

]

(ZT
Sa

ZSa )
−1

+(ZT
Sa

ZSa )
−1ZT

Sa

[

XSa
̂CovHC(̂βS)XT

Sa

]

ZSa (Z
T
Sa

ZSa )
−1

(49)
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(2012) Assessing the accuracy of regional LiDAR-based biomass
estimation using a simulation approach. Rem Sens of Env
123:579–592

ESRI (2011) ArcGIS Desktop: Release 10 Redlands, SA: Environmen-
tal Systems Research Institute

Gobakken T, Næsset E, Nelson RF, Bollandsås OM, Gregoire TG,
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