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Abstract
& Key message Ozone, one of the major atmospheric pol-
lutants, alters tree growth, mainly by decreasing carbon
assimilation and allocation to stems and roots. To date, the
mechanisms of O3 impact at the cellular level have been
investigated mainly on young trees grown in controlled or
semi-controlled conditions. In the context of climate
change, it is necessary to introduce a valuable defence pa-
rameter in the models that currently predict O3 impact on
mature trees and the carbon sequestration capacity of for-
est ecosystems.
& Context Air pollution is an important factor that affects neg-
atively forest ecosystems. Among oxidative air pollutants,
ozone is considered as the most toxic in terms of impact on
vegetation.

& Aims This paper focuses on the negative impacts of ozone
on trees in controlled conditions or in their natural environ-
ment. The current knowledge of the responses at cell level is
presented and ways to improve their use for ozone risk assess-
ment of forest stands are discussed.
& Methods Information was collected from original papers or
reviews, providing an overview of the research conducted
over the last 60 years.
&Results The negative effects of ozone on carbon assimilation
and tree biomass production were reviewed and discussed,
with a focus on effects on cell processes implied in cell de-
fence, including stomatal regulation, detoxification, signal-
ling, and biosynthesis of wood compound.
& Conclusion In the context of increasing significance of
O3 flux approach, this review intends to shed light into
the black box of defence processes, which are playing a
crucial part within the effective O3 dose modelling.
Today, it is recognized that tropospheric ozone inhibits
tree growth and its role on the future carbon sink of the
forest ecosystem is discussed along with the combination
of other environmental factors like elevated temperature,
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water, and nitrogen supply, likely to be modified in the
context of climate change.

Keywords Ozone impact . Defence . Carbon assimilation .

Carbonallocation .Stomata .Detoxification .Signalling .Cell
wall

1 Introduction

Asa result of humanactivities,Earthclimate is assumed tochange
(IPCC 2013) as we enter a new geologic era, the Anthropocene
(Barnosky et al. 2012; Steffen et al. 2011). It is now well
established that the release of greenhouse gases (GHGs) affects
climate on a global scale, since these gasesmodify radiative trans-
fer and thus change the Earth’s energy balance (IPCC 2013).
Tropospheric ozone (O3), one of these GHGs and an important
component of air pollution, is predicted to spread over large parts
of the globe in the coming decades (Dentener et al. 2005; Fig. 1).
In addition, this pollutant is thought to impact negatively forest
productivity (Ainsworth et al. 2012), although species composi-
tion canmodulate this effect (Wang et al. 2016). Since a large part
of global forest areas is predicted to be exposed toO3 in the future
(Fowler et al. 1999), carbon sequestration by forests may be re-
duced (Sitch et al. 2007; Subramanian et al. 2015). Historically,
the phytotoxic effect of photooxidants, including O3, was first
discovered in the 1950s in mixed conifer forests from the Los
Angeles basin (Haagen-Smit et al. 1952). High concentrations
of tropospheric O3 are an urban problem linked to car traffic
and NOx formation, but O3 or its precursors are easily airborne

and the pollutant can damage forest trees far from the source of
emission. In the 1980s, several research groups showed that vis-
ible symptoms of injury on tree leaves in different regions of the
USA were clearly related to the effect of photooxidants (Miller
et al. 1997; Skelly et al. 1997). In Europe, in the middle of the
1980s, the German foresters were the first to draw attention to
visible damages observed on coniferous trees, incriminating air
pollution (Krause et al. 1986). The same observation was also
made in Eastern France, leading to the development of a bilateral
cooperation for exploring the causes of this problem between the
French DEFORPA programme (1984–1991) and the German
partners, followed with the common EUREKA programme
EUROSILVA (1992–1994). In the 1990s, extended European
cooperation (eight countries) started on the effects of ground-
level O3 on trees and on the reduction of air pollutants, linked to
the European Framework Programme for Research (e.g. STEP)
andwithin theUnitedNationsEconomicCommission forEurope
(UNECE).

The first experiments operated by these research programmes
were conducted on trees in the field, e.g. in Germany (Weidmann
et al. 1990) and in Austria (Wieser and Havranek 1993).
Subsequently, experiments in controlled conditions (open-top
chambers and phytotronic chambers) were set up to decipher
the mechanisms of O3 impact on leaves of young trees (Gerosa
et al. 2009; Sandermann et al. 1997). The trees display a series of
defence responses to O3 which, when overwhelmed, leads to
different types of damages including leaf necrosis and growth
reduction. The obtained results proved that, before visible symp-
toms appear, O3 affects the leaf metabolism by damaging the
photosynthetic machinery and by increasing carbon use, further

Fig. 1 Predicted differences in
decadal averaged surface O3

concentrations (ppbv) comparing
the 2020s and the 1990s for two
global chemistry-transport
models (from Dentener et al.
2005). a TM3 CLE Eulerian
global chemistry-transport model
using the current legislation
(CLE) scenario; b STOCHEM
CLE Lagrangian tropospheric
chemistry-transport model using
the current legislation (CLE)
scenario
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leading to reduced growth and productivity (Dizengremel 2001;
Heath and Taylor 1997). The development of free-air CO2 en-
richment (FACE) projects provided a nice opportunity to study
forest ecosystem responses to the increase of tropospheric O3

combined or not with high CO2 exposure (King et al. 2005).
The gap between the two approaches (field versus controlled
conditions) has recently been partly reduced through the
German CASIROZ programme by developing a large set of
ecophysiological and biochemical analyses on mature beech
and spruce trees submitted to free-air O3 fumigation (Matyssek
et al. 2010b), on birches in Finland (Oksanen et al. 2007) and on
conifers in Austria (Wieser et al. 2013). However, the degree of
sensitivity to ozone is highly variable between tree species (Reich
1987; Wittig et al. 2009), raising the question of the underlying
physiological processes (Matyssek et al. 2012).

In 2000, to meet the request from policy makers to the
scientific community for quantitative information about O3

effects, a specific European programme for the assessment,
validation and mapping of visible O3 injury on the vegetation
was set up, based on the ICP Forests monitoring network. The
concept of a critical level for O3, introduced by UNECE
(LRTAP convention 2004), was originally based on the accu-
mulated exposure over a threshold concentration of 40 ppb
(AOT40). For forest trees, exceeding an AOT40 value of
5 ppm.h accumulated over one growing season would cause
growth reduction (LRTAP convention 2004). More recently, a
flux-based concept was developed in order to take into ac-
count the actual O3 flux in the leaf through the stomata
(Emberson et al. 2000; Grünhage et al. 2004; Karlsson et al.
2004). Indicators such as AFstY (accumulated stomatal flux
above a threshold of Y nmol m−2 s−1) or PODY (phytotoxic
ozone dose above a threshold flux of Y nmol m−2 s−1) appear
more representative of the impact of O3 on vegetation as,
being based on the Jarvis multiplicative model of stomatal
conductance (Jarvis 1976), they take into account tempera-
ture, water vapor pressure deficit (VPD), light, soil water po-
tential, concentration of O3 and the plant phenology. These
indices simulate the uptake of O3 in leaves and represent the
hourly average flux accumulated above a threshold Y by a leaf
during the plant growth. Hoshika et al. (2014) also proposed
to take into account a stomatal O3 flux per net photosynthesis
rate rather than stomatal O3 flux only. All these flux-based
methodologies rely on empirically derived relationships,
linking stomatal O3 flux to tree biomass loss through a series
of models at leaf, tree and forest levels. These relationships
thus provide estimates of the effective O3 dose, i.e. the fraction
of O3 flux exceeding the plant detoxification capacity, under
consideration of the environmental conditions (Matyssek et al.
2004; Musselmann et al. 2006; Dizengremel et al. 2008;
Heath et al. 2009; Buker et al. 2015). The importance of the
detoxification capacity of the tree was recently emphasized
(de Temmerman et al. 2002; Dizengremel et al. 2013;
Dizengremel et al. 2008) and was previously raised to explain

the differences in O3 sensitivity of tree species (Pell et al.
1999). Detoxification capacity depends on a network of mo-
lecular and physiological processes which needs to be
deciphered in order to identify a reliable parameter, integrated
in models and allowing a more accurate risk assessment. In
brief, the integration in field models of a pertinent ozone-
damaging factor, identified at the cellular level, could improve
risk assessment and help policy makers with related socio-
economic decisions.

Since 60 years, O3 research has covered a large spectrum of
interest, including detailed studies of the cellular events in-
duced by acute doses. In this review, acute doses correspond
to observed peak concentrations with values above 120 ppb
for several days, while chronic exposure refers to long-term
exposures (weeks, months, years) to ozone concentrations be-
low 120 ppb. The increasing interest to study the effects of this
gas is partly due to the fact that the exposure to high O3

concentrations elicits a strong oxidative stress at the tissue
level. Moreover, with hourly peak O3 concentrations at peri-
urban regions reaching 200 ppb (Feng et al. 2014), acute con-
ditions are de facto validated in natural conditions inducing
serious damage to plants. O3 research has also known a pro-
gressive extent in the study of chronic exposure with values
not higher than 100 ppb over the growth period. However,
experiments in controlled conditions with slightly higher O3

exposure (up to 120 ppb) applied every day during a shorter
time (no more longer than 3 weeks/1 month) were also fre-
quently used to mimic the effect of these ambient long-lasting
O3 exposures. Even though the increase in tropospheric O3

concentrations has recently flattened in mid-latitudes of the
Northern Hemisphere (Oltmans et al. 2013), assessing the
effects of O3 on forest trees remains a timely question consid-
ering that the threshold for a negative impact on growth has
been already reached. In this context, we present a survey of
works on the effects of this oxidative pollutant in a relative
short term on tree physiology (Fig. 2). These information are
necessary to extrapolate on a longer term the O3 effect at the
forest ecosystem scale, which have also to integrate with the
complex inter-relationships among the environmental factors
occurring over the life span of a tree.

2 Formation, transport, deposition of O3, and leaf
damage

2.1 Formation

In the troposphere, under the action of sunlight, primary
pollutants like nitrogen oxides and hydrocarbons are able
to form photochemical air pollutants, referred to as second-
ary pollutants, namely peroxyacetyl nitrate (PAN), O3 and to
a lower extent aldehydes and ketones (Becker et al. 1985).
The future of PAN is closely related to atmospheric
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temperatures and could contribute to O3 formation in the
warmer lower atmosphere (Singh 1987). The presence of
O3 in the troposphere was initially considered as the result
of a stratospheric O3 transfer, which only accounts for up to
25 % of tropospheric O3 (LRTAP convention 2010). In fact,
O3 formation mainly results from complex processes already
detailed in several reviews (Becker et al. 1985; Royal
Society 2008; Stockwell et al. 1997). Briefly, once nitrogen
dioxide (NO2) is formed, it endures a photodissociation
caused by short radiations (between 280 and 430 nm) pro-
ducing nitrogen monoxide (NO) and free oxygen atoms. The
free oxygen atom presents a high excitation level leading to
a reaction with O2 to form O3. The subsequent reaction of
O3 with NO can lead to the destruction of O3 in a non-
polluted area, where the NO2/NO ratio is low. However,
one parameter susceptible to unbalance these reactions is
the presence of volatile organic compounds (VOCs) includ-
ing CH4 (Royal Society 2008). VOCs are able to oxidize

NO, increasing the NO2/NO ratio and shifting the reactions
towards O3 accumulation. Finally, the production of O3 in
the troposphere is linked to changing precursor concentra-
tions, a relationship that highlights the non-linearity of the
O3-VOC-NOx system (Monks et al. 2015). Vegetation and
particularly forests are natural VOC producers (Sharkey
et al. 2008). In a context of warming climate, VOC emis-
sions are projected to increase and to contribute to the oc-
currence of O3 peaks or the increase of the tropospheric O3

background level. Finally, the photolysis of O3 leads to ad-
ditional radicals that can react with carbon monoxide and
organic species, leading to additional O3 production (Royal
Society 2008).

2.2 Transport of the pollutants in the troposphere

Most of air pollutant emissions, including O3 precursors, orig-
inate from regions within the mid-latitudes, where long-range

Fig. 2 Overview of O3 effects on
trees, from cell metabolism to
forest ecosystem scale,
highlighting (i) the perception of
the pollutant at the leaf scale, (ii)
the cellular responses implying
detoxification and CO2

assimilation and (iii) the carbon
allocation to the various plant
organs and the consequences on
tree growth and on carbon
sequestration at the forest level.
Where arrows are present, red
and blue indicate an O3-driven
inhibition and stimulation,
respectively. BVOCs biogenic
VOCs
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transport of air masses is dominated by westerly winds. These
winds convey emissions from source regions to downwind
regions at interregional and even intercontinental scales
(Stohl and Eckhardt 2004). The lifetime of O3 in the free
troposphere varies fromweeks tomonths, which is compatible
with long-range transport that occurs on timescales of days to
weeks (LRTAP convention 2010). Due to the stronger winds
at high altitudes, O3 formed or transported into the mid- and
upper troposphere travels further and faster than O3 remaining
in the lower troposphere, below 3 km in altitude (LRTAP
convention 2010). O3 formation can also occur at distance
from precursor source regions, when polluted air masses ar-
rive at a downwind region and meet conditions that promote
O3 formation (Lin et al. 2012).

When confined within the atmospheric boundary layer, O3

has a relatively short lifetime (hours to days) due to dry depo-
sition at terrestrial surfaces (Wesely and Hicks 2000). Dry
deposition occurs when O3 is taken up or absorbed onto sur-
faces (vegetation, soil, materials) that provide a chemical sink
for O3 decomposition (Cape et al. 2009). Surface removal
represents an important control on the near-surface O3 con-
centrations and constitutes a major term in the global mass
balance of tropospheric O3 (Fowler et al. 2009). While molec-
ular processes become important very close to surfaces (less
than 1 mm), turbulent transfer represents the main driver of
gas exchange between vegetation and the atmosphere. Forests
being aerodynamically rough surfaces, the rates of turbulent
exchange between the atmosphere and forests exceed by an
order of magnitude or more those over crops or grasslands
(Fowler et al. 1999). As a consequence, forests represent a
major sink for O3 dry deposition.

2.3 O3 deposition to soil and vegetation

The foliage of forest trees acts as the dominant O3 sink in the
atmosphere-forest interaction, and the canopy structure has a
noticeable effect on its uptake (Zhang et al. 2006). Forest
ecosystems have the capacity to remove O3, through both
stomatal and non-s tomatal mechanisms (Fig. 2)
(Dizengremel et al. 2013; Fares et al. 2013b). The stomata
are the main entry point of ozone into the leaves, and the
non-stomatal mechanisms of ozone deposition include cutic-
ular deposition, deposition at the soil surface and destruction
by chemical reactions (NOx, biogenic VOC). Most studies of
vertical O3 concentration gradients show that only minor var-
iations occur throughout forest canopies during daytime,
mainly due to convective mixing caused by solar radiation
(Jaggi et al. 2006). Overall, during daytime, the O3 concentra-
tions below the canopy of various forest types are 0 to 15 %
lower than those measured at the top of the canopy (Andreae
et al. 2002; Fontan et al. 1992; Joss and Graber 1996).
However, stronger gradients appear at night because of a
greater air stability, which limits the exchange between the

canopy and the atmosphere above, and due to radiative
cooling inducing strong temperature inversions near the
ground (Skelly et al. 1996). As a consequence, the O3 concen-
trations near the forest floor are lower than those measured in
the canopy or in the atmosphere above, especially at night
(Fontan et al. 1992). By combining O3 concentrationmeasure-
ments and stomatal conductance estimations, it is possible to
get a rather good knowledge of the dose absorbed by the plant.
However, the determination of the O3 stomatal conductance is
far from trivial. Whatever the method used, the values are
subject to uncertainties. Many measurements and modelling
studies of O3 flux for various canopies and different seasons
exist (Massman 2004; Padro 1996; Wesely and Hicks 2000).
However, there are still large doubts concerning the processes
controlling O3 deposition to plant surfaces (Ashmore et al.
2007), and therefore in the partitioning of the O3 flux between
stomatal and non-stomatal uptakes, whose relative contribu-
tions vary with canopy type and with the season of the year
(Tuovinen et al. 2009; Zhang et al. 2006). Many studies have
been dedicated to this question, and most of them show an
enhancement of O3 deposition with increased surface wetness.

Significant (20–80 % of total) non-stomatal O3 fluxes have
been observed in different forests in southern European con-
ditions (Cieslik 2009), which often limit the gas flux through
stomata. A 10-year-long measurement in a boreal Scots pine
forest in Finland showed that the non-stomatal O3 deposition
in the daytime during the growing season varied within 26–
44% of total deposition (Rannik et al. 2012). Another decade-
long dataset collected in a mixed temperate forest in Belgium
showed larger non-stomatal fractions, exceeding 60 % even
during the daytime in summer (Neirynck et al. 2012).

The correct quantification of the different components of
the deposition, including the stomatal fraction, is also required
when assessing the possible feedbacks between O3 uptake
rates and plant injury or damage, photosynthesis and plant
defences. Scaling functional processes of forest trees from
leaves and compartments (soil, canopy) to stands, ecosystems
and, finally, the landscape level (Wieser et al. 2008) is funda-
mental for understanding the capacity of forest ecosystems to
mitigate air pollution effects and to adapt to changing envi-
ronmental conditions (Matyssek et al. 2012).

2.4 Leaf damage

As a strong oxidant, O3 causes several types of visible injury,
including chlorosis and necrosis (http://hermes.wsl.
ch/didado/ozoniwww.page0?sprache=E). These symptoms,
well characterized in controlled conditions, could be also
observed on leaf trees in rural areas and mountains,
downwind from cities (Dalstein et al. 2002; Feng et al. 2014
; Miller et al. 1994) or in forested areas exposed to ambient O3

concentrations high enough to produce phytotoxic effects (de
Vries et al. 2014). In this latter case, it is obvious that the
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interpretation is more doubtful, conditioned by the complex
interactions between O3 and environmental factors inside the
canopy of adult trees or linked to water and mineral availabil-
ity of the soil (Bussotti and Ferretti 2009; Manning 2005). O3

can also induce an accelerated senescence and leaf abscission
(Gielen et al. 2007; Karnosky et al. 2005; Ribas et al. 2005).
Finally, although visible symptoms can be useful for detecting
an O3 impact, their relationship with growth reduction is not
always found (de Vries et al. 2014).

3 Cellular and molecular mechanisms impacted
by O3

3.1 Impact on guard cells

Ainsworth et al. (2012) reported that a reduction in stomatal
conductance in plants exposed to chronic elevated O3 (range
to 80–120 ppb) could be attributed to a direct effect of O3 on
photosynthesis and to a resultant increase in internal CO2 con-
centration. However, alternative reactions might explain this
response (Pell et al. 1992). In fact, studies reported that sto-
mata are impaired by chronic O3 exposure in their ability to
close rapidly in response to environmental stimuli (McAinsh
et al. 2002; Reich et al. 1984). More recently, it was shown
that stomata open and close more slowly in response to chang-
ing light conditions, VPD or CO2 concentrations as a result of
120 ppb O3 exposure (Dumont et al. 2013) or with 1.5- to 2-
fold O3 ambient level (Paoletti 2005; Paoletti and Grulke
2010). Some molecular aspects were studied in order to ex-
plain how O3 modifies the signals involved in opening or
closure processes (Vahisalu et al. 2010). Dumont et al.
(2014) showed on poplar genotypes that modification of sto-
matal responses by an exposure to 120 ppb of O3, such as
stomatal sluggishness (Fig. 2), does not result from ultrastruc-
tural changes but from a disturbance of ion fluxes and a reg-
ulation of the gene expression involved in signal transduction.
The expression of a majority of the studied genes coding for
plasmamembrane and vacuolar channels was inhibited by O3,
especially the expression of genes coding for the plasmamem-
brane proton ATPase (AHA11) and the vacuolar calcium
channels (CAX1 and CAX3) (Dumont et al. 2014).

There is also more recent evidence that stomatal conduc-
tance is not universally reduced by elevated O3 concentration,
but that leaf age and tree developmental stage can alter the
degree to which O3 affects stomatal conductance (Uddling
et al. 2009). Danielsson et al. (2003) and Pleijel et al. (2002)
added the effect of O3 to the phenology function (related to the
reduction of the stomatal conductance in senescing leaves) of
the stomatal conductance model in potato and wheat. That
new function is being increasingly used, but more knowledge
is needed to determine if the effects of O3 on trees should
really be integrated in the same way as to link the O3 function

to another function than phenology function so far. Further
research is needed (i) to characterize O3 impacts on stomatal
function as well as the interaction with other abiotic stresses
like drought and (ii) to improve stomatal conductance models
like the DO3SE model (Büker et al. 2012). In these models,
we need to improve the estimation of the start and end of the
growing season today and in the future.

3.2 Detoxification

Once O3 enters the sub-stomatal chamber, it rapidly induces
the formation of reactive oxygen species (ROS) like hydrogen
peroxide, singlet oxygen and hydroxyl radicals, increasing the
oxidative load to the apoplastic fluid (Fig. 2). The primary
effect of ROS is the alteration of membrane and enzyme pro-
teins, e.g. Rubisco (Dizengremel 2001; Heath 2008; Pell et al.
1992). The ability to limit the occurrence of ROS in the
apoplast could confer the O3 tolerance of aspen clones
(Oksanen et al. 2004). Apoplastic ascorbate (Asc) is consid-
ered as the first line of defence against O3, as observed in
herbaceous plants (Conklin and Barth 2004) but also in beech
(Haberer et al. 2007; Luwe and Heber 1995), silver birch
(Padu et al. 2005) or spruce and pine needles (Polle et al.
1995). However, the Asc levels in the apoplast are not suffi-
cient to explain the different degrees of O3 sensitivity in poplar
clones (Ranieri et al. 1999). The lack of any direct relation
between species sensitivity and apoplastic Asc levels was at-
tributed (i) to the high level of Asc oxidation in this compart-
ment, (ii) to its low concentration relative to the total cell
content and (iii) to the occurrence of other antioxidants
(Castagna and Ranieri 2009; Dizengremel et al. 2013).

At the whole-leaf level, changes in Asc content increased
or decreased according to the exposure level and the dura-
tion of O3 treatment, the leaf age, the growth stage or the
position of the leaf in the canopy (Haberer et al. 2007;
Strohm et al. 2002; Tausz et al. 2004; Wellburn et al.
1996). Thus, the higher O3 sensitivity of young beech in
phytotrons compared to adult forest trees in the field has
been partly attributed to differences in detoxification capac-
ity and notably total ascorbate concentration (Nunn et al.
2005). From a series of studies conducted on poplar exposed
to O3 in controlled conditions or in the field, it is difficult to
establish a clear relation between the constitutive level of
Asc and the genotype sensitivity (Di Baccio et al. 2008;
Dumont et al. 2014; Yun and Laurence 1999). However, a
higher level of dehydroascorbate (DHA) in a sensitive pop-
lar genotype (Dumont et al. 2014) exposed to 120 ppb O3

may express a lower capacity of the genotype to regenerate
the reduced form (AsA), a hypothesis supported by a lower
NADPH content in the leaves of this genotype (Dghim et al.
2013a).

In the absence of glutathione in the apoplasm, the Asc
regeneration process implies the transport of DHA in the
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cytosol followed by the functioning of the intra-cellular ascor-
bate-glutathione cycle (Noctor 2006). This cycle sustains AsA
regeneration in the cytosol. Glutathione is known as an anti-
oxidant, able to directly react with ROS, sometimes function-
ing in a compensatory manner to Asc but also with specific
functions (Noctor et al. 2012). Total glutathione and/or re-
duced glutathione content generally increased in leaves of tree
species under O3 fumigation (100 to 120 ppb) (Dumont et al.
2014; Wellburn et al. 1996). In adult beech trees, the glutathi-
one level is affected by canopy position, but O3 exposure
(twofold ambient concentration) involved higher content in
both shade and sun leaves (Herbinger et al. 2005). In some
works, the differences in the constitutive levels of glutathione
between poplar genotypes appeared to contribute to the higher
tolerance to chronic O3 exposure (Di Baccio et al. 2008;
Dumont et al. 2014). However, attempts to increase glutathi-
one content and glutathione reductase activity in transgenic
poplar were unsuccessful in increasing tolerance, at least to
acute (300 ppb) O3 exposure (Strohm et al. 2002).

Phenolic compounds are also recognized in leaf like impor-
tant metabolites to cope with elevated or chronic O3 exposure
of trees (Fares et al. 2010; Kontunen-Soppela et al. 2007;
Peltonen et al. 2005; Yamaji et al. 2003). For some phenolics
and condensed tannins, a potential role in the O3 tolerance has
been claimed (Haikio et al. 2009; Kontunen-Soppela et al.
2007). Furthermore, in accordance with an increased level in
phenolics, the induction of the shikimate and phenylpropanoid
pathways shared by the flavonoid, anthocyanin, tannin, stil-
bene and lignin biosynthesis has been well documented under
O3 exposure (see Cabané et al. 2012 for review). For some tree
species that emit large amounts of VOCs, it is also interesting
to consider the potential role of these compounds like antiox-
idants, as found for isoprene in poplar (Loreto et al. 2001) and
for monoterpenes in oak (Loreto et al. 2004). However, recent
works on poplar showed that the relationship between O3

tolerance and the ability to emit isoprene is not so clear
(Behnke et al. 2009; Calfapietra et al. 2008). The involvement
of polyamines like radical scavengers and protectant against
O3 has been also considered although these studies are limited
(Ludwikow and Sadowski 2008).

In addition to metabolites, a large panel of antioxidant en-
zymes are involved in the defence mechanisms to decrease the
ROS level or to regenerate the reduced form of some antiox-
idants (Fig. 2). Firstly, extracellular enzymes like superoxide
dismutases (SOD) and peroxidases (with ascorbate or pheno-
lics as preferential electron donors) were identified as signif-
icant contributors to the mitigation of ROS generation in the
apoplasm of birch (Padu et al. 2005) and poplar leaves
(Castagna and Ranieri 2009).When the apoplastic antioxidant
capacity is overwhelmed, other isoforms of these enzymes
were implied to limit the generation of cytoplasmic ROS.
Thus, total SOD and/or peroxidase activities generally in-
creased in O3-treated leaves of trees (Bernardi et al. 2004;

Diara et al. 2005; Sehmer et al. 1998; Tuomainen et al.
1996) even though conflicting results have been mentioned
(Heath and Taylor 1997). It has been claimed that the different
affinities for ROS of the antioxidant enzymes either may be
linked to the regulation of ROS as signalling actors or may be
responsible for the removal of excess ROS (Mittler 2002).
More generally, maintaining a cellular steady state of the
ROS in responses to stresses is assigned to a complex enzyme
network with actors like thioredoxin-dependent peroxidases
(including peroxiredoxins and glutathione peroxidase),
glutaredoxins and glutathione-S transferases (Foyer and
Noctor 2011; Mittler et al. 2004; Rouhier and Jacquot 2005).
Hence, the regulation of the enzymatic antioxidant system
involves a fine redox regulation (Jacquot et al. 2013). For
some of these enzymes, their characterization in trees (mainly
poplar) is recent (Navrot et al. 2006; Rouhier 2010) but their
regulation under O3 or other oxidative pollutants is still unde-
fined. Moreover, in these stress conditions, the source of re-
ducing power to supply some of the ROS-scavenging systems
remains to be elucidated (Dghim et al. 2013b; Dizengremel
et al. 2008). Finally, to propose a new index for O3 risk as-
sessment integrating the plant detoxification capacity, a com-
plex network of metabolites and enzymes has to be taken into
account. But for trees, the variations of these parameters along
the successive growing seasons as well as the canopy position
must also be considered.

3.3 Carbon assimilation and leaf senescence

One of the first O3-driven decreases in growth was charac-
terized by Reich (1983) in greenhouse-grown trees and di-
rectly correlated to a reduction in net CO2 assimilation rate
(Fig. 2). This correlation was then confirmed in fumigation
chamber, open-top chamber and field fumigation systems
across several tree species (Reich 1987). In a meta-analytic
review, Wittig et al. (2007) showed that the O3-driven de-
crease in carbon assimilation reached 14 % for angiosperm
trees grown in ambient background O3 relative to charcoal-
filtered air. Differently, gymnosperms were not significantly
affected. However when exposed to severe O3 concentration
(85 ppb), net CO2 assimilation was similarly decreased (up
to 19 %) in both angiosperms and gymnosperms. The aver-
age decrease in CO2 assimilation was progressively greater
as the O3 treatment increased (Wittig et al. 2007). O3 impact
on photosynthesis could be threshold dependent, highlight-
ing the importance to better define critical O3 threshold
across species and/or environmental conditions. Differences
in photosynthesis response to O3 may partly be explained by
interspecific variability of stomatal response to O3 and there-
fore gas flux entering the leaf. Over hundreds of individuals
indicate an 11% and 13 % decrease in average in CO2 up-
take and stomatal conductance, respectively (Wittig et al.
2007). Stomatal limitation under O3 may in part explain
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the reduced photosynthetic CO2 uptake in restricting CO2

diffusion from the atmosphere to the intercellular space
and therefore CO2 availability at the site of carbon fixation
(see section on stomatal regulation above).

In addition, O3 has been widely shown to affect both the
Calvin-Benson cycle and photochemistry activity (Fig. 2)
(Saxe 2002). A decrease in Rubisco activity and content was
strongly correlated with cumulative O3 exposure in loblolly
pine (Dizengremel et al. 1994). Similarly, in Aleppo pine, both
Rubisco and Rubisco activase levels were reduced under O3

(Pelloux et al. 2001). In angiosperms also, multiple works
supported the idea of O3-driven alteration of Rubisco activity
(Gaucher et al. 2003; Lutz et al. 2000; Matyssek et al. 1991;
Pell et al. 1992). However, it remains unclear whether the
decrease in Rubisco activity is due to enhanced degradation,
ROS-mediated protein oxidation, decreased Rubisco activase
activity or altered gene expression (Brendley and Pell 1998;
Dizengremel 2001; Heath 2008; Pell et al. 1994). It is well
documented that chronic as well as acute O3 exposures impact
gene regulation (Ernst 2013; Renaut et al. 2009) even though
acute episodes could provoke more important changes than
chronic ones (Ainsworth et al. 2012; Ernst 2013).
Furthermore, proteomic analysis confirms the downregulation
of a large number of proteins involved in the Calvin-Benson
cycle in poplar leaves exposed to chronic O3, as well as pro-
teins involved in chloroplastic electron transport (Bohler et al.
2007). O3 also decreases chloroplast size and cell starch con-
tent (Oksanen et al. 2004). Chlorophyll and carotenoid levels
have been shown to decrease under O3, resulting likely in a
less active photochemistry and a slower electron transport rate
(Bagard et al. 2008). It is, however, unclear whether the
slower electron transport rate under O3 is due to a lower leaf
pigment level or a downregulation of PSII activity in order to
avoid photooxidative damage. In addition, photochemistry
can also be diminished under a long-lasting reduction of sto-
matal conductance. Such electron transport slowdown would
likely limit NAD(P)H production and availability for anabolic
process, detoxification and photosynthetate synthesis. The
drastic decrease in chlorophyll and Rubisco contents is corre-
lated with accelerated leaf senescence (Miller et al. 1999).
Genes involved in senescence and protein turnover are upreg-
ulated in Populus tremuloides leaves exposed to O3 (Gupta
et al. 2005). Early senescence would restrict the “return on
investment” in leaf buildup and therefore drastically affect
plant carbon budget.

The reduced net CO2 assimilation in O3-exposed leaves is
largely driven by a decrease in gross CO2 assimilation rate by
the Rubisco, but it also results from increased CO2 losses
through an enhanced respiration, as observed in poplar
(Bagard et al. 2008; Noormets et al. 2001; Reich 1983),
Norway spruce (Küppers and Klumpp 1988), Scots pine
(Kellomaki and Wang 1998; Skärby et al. 1987), birch
(Matyssek et al. 1997) and beech (Kitao et al. 2009). The

increase in CO2 efflux from respiration is supported by an
enhanced glycolysis, pentose-phosphate pathway and TCA
cycle activity (Dizengremel 2001). A central enzyme linking
these metabolic pathways, the phosphoenolpyruvate carbox-
ylase, is strongly upregulated in O3-exposed leaves of a wide
range of species (Dizengremel 2001; Dizengremel et al.
2012). PEPc activity produces oxaloacetic acid, a precursor
for malate and pyruvate synthesis, and can therefore support
the rising demand in organic acids for TCA cycle decarbox-
ylation or anaplerotic pathways. PEPc-induced pathways
could play a central role in O3 tolerance in providing addition-
al carbon skeletons and NAD(P)H to detoxification processes
(Dizengremel et al. 2009). Additionally, the increase in dark
respiration under O3 is likely supported by a higher contribu-
tion of alternative pathways of the mitochondrial electron
transport chain (Dizengremel 2001) that may be driven by a
higher PEP content and subsequent higher pyruvate level (ac-
tivator of alternative oxidase). The enhancement of the mito-
chondrial alternative electron transport would help to maintain
a high respiratory rate in avoiding any respiratory control
through oxidative phosphorylation and therefore contribute
to reducing power availability for detoxification and repair
of cellular damage (Dizengremel et al. 2009).

3.4 Cell wall component biosynthesis in leaves and stems

In addition to inducing a diverse range of defence responses,
O3 has been shown to modify the cell wall. Anatomy analysis
revealed thickened cell walls with pectinaceous projections in
leaves of deciduous trees showing visible leaf symptoms
(Gunthardt-Goerg et al. 1997; Gunthardt-Goerg et al. 2000).
These observations suggested strong rearrangements in the
cell wall organization and in its component biosynthesis in
leaves of trees subjected to O3. However, most studies focused
on one component, lignin.

O3 has been shown to stimulate phenylpropanoid metabo-
lism in leaves of many tree species and under different fumi-
gation protocols involving both acute and chronic exposure
(Fig. 2). O3 increased both enzyme activities and related gene
transcript levels involved in lignin biosynthesis in Pinus
sylvestris (Rosemann and Heller 1991; Zinser et al. 1998),
Picea abies (Galliano et al. 1993a; Galliano et al. 1993b;
Heller et al. 1990), Populus spp. (Cabané et al. 2004; Di
Baccio et al. 2008; Koch et al. 1998; Wustman et al. 2001),
Betula pendula (Pääkkönen et al. 1998a; Tuomainen et al.
1996) and Fagus sylvatica (Jehnes et al. 2007; Olbrich et al.
2005). The responses of the phenylpropanoid metabolism can
be both fast (Koch et al. 1998) and substantial (Cabané et al.
2004), and the induction levels were generally correlated with
O3 concentrations (Cabané et al. 2004; Galliano et al. 1993b;
Rosemann et al. 1991). Stimulation of the phenylpropanoid
pathway was often maintained during the whole period of O3

exposure (Cabané et al. 2004; Galliano et al. 1993a) and could
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even continue after the end of the treatment (Tuomainen et al.
1996). Most of the above results were obtained from trees
growing in controlled conditions or open-top chambers, and
the same trend was also observed in more natural conditions
such as free-air O3 fumigation facilities (Betz et al. 2009;
Wustman et al. 2001). All these results unambiguously dem-
onstrate that the phenylpropanoid pathway is upregulated in
leaves under O3 exposure and is therefore probably involved
in defence and acclimation mechanisms. As a consequence of
the phenylpropanoid pathway stimulation, the lignin content
must increase as a result of O3 exposure. Indeed, such results
were found in leaves of sugar maple (Boerner and Rebbeck
1995), poplar (Cabané et al. 2004) and beech (Betz et al. 2009;
Jehnes et al. 2007; Olbrich et al. 2010b). However, the effects
of O3 fumigation on lignin content in leaves were not so clear.
Thus, no modifications of lignin content were recorded in
western yellow pine (Tingey et al. 1976), black cherry and
yellow poplar (Boerner and Rebbeck 1995), loblolly pine
(Booker et al. 1996), birch (Oksanen et al. 2005) and holm
oak (Baldantoni et al. 2011). These varying results may be
explained by potential error due to different techniques
(Klason, LTGA, etc.) used to determine lignin content as well
as their relative (in)sensitivity (Dence 1992), especially in the
case of weak variations between control and treated samples.
Another explanation could be species-specific differences in
response to O3 treatment. For example, conifers never showed
increased lignin content. Stimulation of the phenylpropanoid
pathway could in such cases be associated with a modification
of the pool of soluble phenolic and not necessarily lead to
increased lignification (Tingey et al. 1976). Nevertheless, the
newly synthesized lignin in leaves displayed changes in its
structure (Betz et al. 2009; Cabané et al. 2004). Lignin was
enriched in carbon-carbon interunit bonds and in H-units in-
dicating the production of a more condensed lignin than usual.
Moreover, lignified cells were observed in the mesophyll or
epidermis near the necrotic lesions (Cabané et al. 2004) where
ROS (H2O2) were also shown to be accumulated (Pellinen
et al. 2002). These results support the idea that stress lignins
are synthesized in response to and in defence against O3 or
ROS excess. Due to its scavenging properties, lignin may act
as an antioxidant (Blokhina et al. 2003; Dizhbite et al. 2004).

Since the response to O3 has been extensively studied in
leaves, few studies have analysed the O3 response of stems.
This is understandable since leaves show clear O3-induced
damage and a fast response while stems react much later
(Richet et al. 2012). An increase in lignin content was ob-
served in stems of poplar and birch fumigated for 3 years in
a free-air fumigation experiment (Kaakinen et al. 2004), but
this observation was not maintained after 5 years (Kostiainen
et al. 2008). In a recent study, O3 was observed to repress the
phenylpropanoid pathway in poplar wood (Richet et al. 2011),
probably as a result of reduced cambial growth. However, the
relative cell wall lignin content increased due to an O3-

induced reduction in cellulose biosynthesis, thereby modify-
ing the cellulose to lignin ratio (Fig. 2). The stem response
seems to correspond to a metabolic adjustment due to the
reorientation of the metabolism to stress acclimation in leaves,
rather than to a specific defence mechanism. O3 would not
impact directly the stem organ (Richet et al. 2012). It was
hypothesized that the modification of the cellulose to lignin
ratio in the stem could allow the tree to maintain radial and
height growth while minimizing carbon cost (Richet et al.
2011). More detailed analyses are needed to draw definite
conclusions.

3.5 O3-induced signalling in trees

O3-signalling events are very quickly initiated during O3 ex-
posure, leading to plant survival or acclimation. Acclimation
first implies O3 perception and concomitant signalling cas-
cades, ultimately succeeding in re-programming tree metabo-
lism (Fig. 3). In order to elicit and decipher signalling process-
es, trees were exposed to acute O3 dose (>150–200 ppb) for
few hours. In these conditions, some signalling actors, as cal-
cium or protein kinases, were well characterized in herbaceous
plants (Baier et al. 2005; Vainonen and Kangasjarvi 2014;
Vaultier and Jolivet 2015). However, O3-induced signalling
is by far less documented in trees. Direct extrapolation from
model herbaceous plants to trees is not always possible, as
woody plants may possess their own defence signalling sys-
tems (Dizengremel 2001; Koch et al. 2000). In beech (55–
60 years old) exposed to an experimental enhanced free-air
O3 setting (up to 150 ppb), the expression level of genes con-
nected with signalling, i.e. ethylene (ET) biosynthesis-related
genes ACC (1-aminocyclopropane-1-carboxylic acid)
synthase or oxidase, was increased (Jehnes et al. 2007;
Olbrich et al. 2010a). Besides, an environmental genomic
study performed on 5-year-old trembling aspen exposed to
1.5 times ambient O3 showed that many genes involved in
signal transduction were upregulated, e.g. ET biosynthesis-
related genes such as ACC oxidase or a gene coding for a
mitogen-activated protein kinase (MAPK) (Gupta et al.
2005). MAPK cascades are well-known components of
stress-induced signalling pathways, and several studies re-
vealed their activation in response to O3 exposure in herba-
ceous plants (Ahlfors et al. 2004; Samuel et al. 2000). In trees,
Hamel et al. (2005) showed in hybrid poplar cell suspensions
and leaf tissue that O3 (500 ppb) induced a rapid and transient
activation of at least two MAPKs, independently or upstream
of both salicylic acid (SA) and jasmonic acid (JA) signalling.
However, to date, involvement of the O3-activated MAPKs in
regulating O3 sensitivity in poplar is still to be investigated.

Trees respond to O3 exposure by producing other signalling
molecules as ROS (Diara et al. 2005; Moura et al. 2014;
Pellinen et al. 1999). The O3-induced ROS production and
subsequently the formation of necrosis are part of the
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similarities shared with early senescence and hypersensitive
response elicited by the incompatible plant-pathogen interac-
tion (Moura et al. 2014; Pellinen et al. 1999; Tuomainen et al.
1996). ROS generated either (i) directly fromO3 degradation or
(ii) actively enzymatically produced could be crucial
components of O3-induced signalling (Vainonen and
Kangasjarvi 2014).

Concerning hormones, Koch et al. (1998) suggested the
role of SA in mediating some O3-induced responses in trees.
O3 can induce lesion formation via the activation of pro-
grammed cell death, and SA perception is required for the
activation of a hypersensitive cell death pathway (Koch
et al. 2000). Poplar has higher constitutive levels of free SA
compared with herbaceous plant species such as tobacco and
Arabidopsis (Diara et al. 2005; Koch et al. 2000). In birch and
in hybrid aspen, free SA accumulated in response to acute O3

conditions (Vahala et al. 2003a; Vahala et al. 2003b).
Similarly, a significant increase in the conjugated pool of SA
was observed in poplar during acute O3 fumigation (150 ppb
for 5 h) (Diara et al. 2005). Optimal SA concentration is re-
quired to fine-tune the plant response in order to achieve the
maximum stimulation of defence responses with minimal in-
duction of cell death (Diara et al. 2005). JAwas also evidenced
as an important O3-induced signal molecule in trees as acute
O3 exposure increases endogenous JA levels in poplar or in
birch (Koch et al. 2000; Koch et al. 1998; Vahala et al. 2003b).
JA has at least two different roles in O3 responses: one in
lesion formation and the other in lesion containment
(Kangasjarvi et al. 2005). Activation of SA- and JA-

mediated signalling pathways, which may be important in
triggering defence responses against oxidative stress, leads
to O3 tolerance (Koch et al. 1998). Lesion propagation and
containment in O3 damage are under the control of ET
(Kangasjarvi et al. 2005). O3 exposure leads to ET release
from leaves, in poplar clones (Diara et al. 2005; Kargiolaki
et al. 1991), in birch (Vahala et al. 2003b) and in pine needles
(Telewski 1992). In aspen, O3 caused a clear concentration-
dependent response in ET evolution (Vahala et al. 2003a).
Marked increases in the pool of free ACC, precursor of ET,
and in ACC synthase transcripts were also detected in poplar
(Diara et al. 2005). The role of ET under chronic (75 ppb) and
acute O3 (up to 200 ppb) was investigated in aspen and silver
birch by Vahala et al. (2003a; 2003b). Comparing results ob-
tained on different species, herbaceous or not, Diara et al.
(2005) hypothesized a “pro-survival” role for ET and the ex-
istence of a threshold belowwhich ETwould not trigger lesion
development. ET can serve as a mediator of either survival or
cell death, depending on the magnitude of synthesis and its
temporal pattern (Vahala et al. 2003b). In hybrid aspen, ET
accelerated leaf senescence under low O3, but under acute O3

elevation, ET signalling seemed to be required for protection
from necrotic cell death (Vahala et al. 2003a).

Of course, complex interactions between hormones are in-
volved in tree response to O3 exposure. All the three hormonal
signalling pathways: SA, JA and ET, were involved in cell
death induced by a short exposure to high O3 concentration
(200 ppb for 8 h) in birch (Vahala et al. 2003b). Early high ET
production may antagonize the late SA accumulation, and

Fig. 3 Schematic representation
of interactions between signalling
and detoxification processes in
the cell of plants exposed to
ozone. The acclimation of the
plants to this pollutant is upon a
tight control of these two
processes. ET ethylene; JA
jasmonic acid; MAPK mitogen-
activated protein kinase; SA
salicylic acid
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conversely, increased SA production may downregulate ET
accumulation and thus prevent the ET-dependent cell death
(Vahala et al. 2003b). In poplar, difference in O3 sensitivity
would depend on differences in the modulation of signal trans-
duction pathways, i.e. the timing and magnitude of SA and ET
production, as well as on cross-talking with other signalling
molecules (Diara et al. 2005). Further investigations are really
needed in trees to unravel this puzzling network triggered by
O3, particularly under realistic chronic O3 doses. In these con-
ditions, not only the signalling pathways at the onset of an O3

episode in natural conditions must be considered but also the
impacts, some days or weeks later, when the cellular defence
mechanisms are overwhelmed, followed with the beginning
of cell death and the occurrence of necrosis (Fig. 3). Finally, it
is still necessary to decipher the steps by which defence reac-
tions like the ascorbate-glutathione cycle are under the control
of signalling (Fig. 3).

4 Impact of O3 on tree growth, forest productivity
and carbon sequestration

4.1 Carbon allocation and tree growth

A meta-analysis by Wittig et al. (2007) concluded that signif-
icant decreases in both photosynthesis and stomatal conduc-
tance of trees under O3 may negatively affect both carbon
sequestration and transpiration. A limitation of extrapolating
these data to mature forests is that the estimates are largely
based on individual juvenile trees growing in a non-
competitive environment, and extrapolation of results from
seedlings may not be appropriate for predicting the response
of mature trees and forests to O3 (Chappelka and Samuelson
1998; Ollinger et al. 1997). But recently, Matyssek et al.
(2010a) concluded that adult and juvenile trees of pioneer
and climax tree species show similar growth sensitivity to
chronic O3 stress, although the underlying response mecha-
nisms may differ. Tree growth and productivity are expected
to decrease under O3 considering aforementioned effects of
this pollutant (Fig. 2). Indeed, lower growth and diameter have
been observed in a wide range of tree species after long-term
exposure to O3 (Booker et al. 2009; Karnosky et al. 2005;
King et al. 2005; McLaughlin et al. 2007; Pretzsch et al.
2010; Tjoelker et al. 1994). Summarizing hundreds of studies,
Wittig et al. (2009) reported a decrease in total biomass, leaf
area, root to shoot ratio, height and diameter in trees exposed
to chronic O3 concentration (in the range 40–100 ppb) relative
to charcoal-filtered atmosphere. However, the intensity of O3

effects on tree carbon uptake and growth differs depending on
tree age, the loss in biomass production following O3 expo-
sure being greater in young compared to older trees
(Herbinger et al. 2005). Since O3 reduces carbon gain by
limiting stomatal diffusion, lowering Rubisco activity,

inducing early senescence and increasing carbon cost for tis-
sue repair and antioxidant synthesis, it drastically decreases
source strength and carbon availability for export to sink tis-
sues. Additionally, increased soluble sugar content and carbo-
hydrate retention have been observed in source tissue exposed
to chronic O3 concentration (from 0 to 110 ppb) (Friend and
Tomlinson 1992; Grantz and Farrar 1999; Grantz and Yang
2000), suggesting a decrease in carbon export under O3. A
lower leaf sucrose export and higher carbohydrate level would
lead to feedback regulation of photosynthesis and therefore
partly explain the reduction in carbon assimilation. Several
works have shown a decrease in allocation to roots and root
to shoot biomass ratio in response to O3 (Gorissen et al. 1994;
Grantz and Farrar 2000; Grantz and Yang 2000; Rennenberg
et al. 1996; Spence et al. 1990). Given that mature leaves
preferentially allocate carbon resources to stems and roots
(Gordon and Larson 1970; Matyssek et al. 2010b;
Rangnekar and Forward 1969), it appears logical that the
O3-induced early senescence would primarily affect root
growth. Such modification may therefore have drastic impacts
on tree surrounding rhizosphere and tree survival to environ-
mental constraints such as drought (Agathokleous et al. 2016).

4.2 Ozone impact on forest productivity and carbon
sequestration: results from free-air fumigation
experiments and modelling studies

Fowler et al. (1999) used the 3-D chemistry-transport
model STOCHEM (Collins et al. 1997) to simulate the
global distribution of tropospheric O3 from 1860 to
2100. The results indicate that the area covered by forests
exposed to >60 ppb increased from 0 in 1860 to 8.3 mil-
lion km2 in 1990, i.e. 24 % of global forest area.
According to this study, this area could reach 17 million
km2 in 2100, that is half of the projected global forest
area, if precursor emission rates remain constant (Fowler
et al. 1999). In order to advance from exposure assess-
ment to impact prediction, subsequent modelling studies
implemented the linear empirical model of O3 impact on
tree biomass production developed from experimental da-
ta in the pioneer work of Reich (1987). The results indi-
cated that biomass production of forest ecosystems would
be reduced by 3–22 % in the northeastern USA as an
effect of tropospheric O3 concentrations recorded during
the period 1987–1992 (Ollinger et al. 1997). With a sim-
ilar approach, Subramanian et al. (2015) found that bio-
mass growth of forest trees in Sweden could be reduced
annually by 4.3–15.5 % for conifers and 1.4–4.3 % for
birch by current O3 when compared to prehistoric O3.
Proietti et al. (2016), by combining satellite productivity
estimates, O3 measurement data and impact functions,
found that current O3 concentrations could reduce gross
primary productivity of European forests by 0.4–30 %
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along a North-West-South-East transect. An alternative,
flux-based methodology emerged from the International
Cooperative Programme on the effects of air pollution
on vegetation (Mills et al. 2013) under the UNECE
Convention on Long-Range Transboundary Air Pollution
(LRTAP). In this approach, the European Monitoring and
Evaluation Program (EMEP) and Rossby Centre Regional
Climate (RCA3) models provided O3 and meteorological
input data that fed the Deposition of Ozone for Stomatal
Exchange (DO3SE) model, which simulates O3 dry depo-
sition (Büker et al. 2012) and subsequently O3 stomatal
fluxes and phytotoxic O3 doses (PODY) as described in
the LRTAP convention manual (2010). O3 flux-response
relationships were applied to calculate biomass and car-
bon losses for tree species groups and representative spe-
cies. The data were combined to land cover data and
overlain to EMEP and RCA3 resolved grids. Finally,
European forest inventory and carbon sequestration
datasets were used to calculate absolute carbon losses
due to O3 in Europe. Applying a generic parameterization
for deciduous and conifer trees, the authors estimated a
reduction of carbon sequestration in the living biomass of
trees by 12 % (EMEP input data) to 16 % (RCA3 input
data) for the year 2000 as compared to pre-industrial O3

levels (Mills et al. 2013).
Either exposure- or flux-based modelling studies provide

congruent estimates of forest biomass production reduction as
an effect of current O3. However, the impact functions used
rely on O3 exposure- or flux-response relationships that were
derived for relatively young trees (<10 years of age) exposed
to O3 under semi-natural, non-competitive conditions
(Karlsson et al. 2007; Reich 1987). Although epidemiological
studies suggest that such functions are applicable to mature
trees within forest stands (Braun et al. 2010), whether conclu-
sions on the effects of O3 on forests can be drawn from the
extrapolation of results obtained on seedlings remains a matter
of debate (Samuelson and Kelly 2001). In this respect, the
free-air concentration enrichment experiment Aspen FACE
led in Rhinelander (WI, USA) provided concordant results.
In this study, young forest stands were subjected to an O3-
enriched atmosphere (1.5 × ambient) during 11 years from
seedling establishment to maturity (Karnosky et al. 2003).
The results showed significant reductions in the total biomass
of young stands of trembling aspen (−23 %), aspen-sugar
maple (−14 %) and aspen-paper birch (−13 %) (King et al.
2005), but these results reflect in main part the impact of O3 on
young trees during their initial, rapid growth stage. Because it
was conducted on a mature forest stand composed of 60-year-
old trees in a 30-m closed canopy, the free-air O3 fumigation
experiment led in the Kranzberg forest in Germany represents
a valuable alternative to FACE systems (Matyssek et al.
2010b). This study showed that stem biomass production of
beech trees exposed to elevated O3 (2× ambient, <150 ppb)

during 8 years was reduced by more than 40 %, but also
highlighted the strong influence of environmental factors such
as drought on tree responses to O3. The combination of stem
growth, sap flow velocity and O3measurements has been used
to investigate the effect of O3 on mature trees in a mixed
deciduous forest in eastern Tennessee (USA) (McLaughlin
et al. 2007). This study revealed that daily events of high O3

exposure (dailymaximum hour ≥100 ppb for 1 day or ≥85 ppb
for two consecutive days) could decrease stem growth by up
to 30 to 50 % over a season, which suggests that episodes of
acute exposure might have consequences on tree biomass pro-
duction that modelling approaches cannot predict. Combined
with climate-controlled branch cuvettes, sap flow measure-
ments could represent a valuable alternative to heavy and ex-
pensive free-air fumigation experiments for studying the im-
pact of O3 on adult forest trees (Wieser et al. 2012).

Meta-analyses (Wittig et al. 2009) as well as modelling
studies based on response functions estimate that O3 has a
significant impact (−5 to −30 %) on the net primary productiv-
ity of forest ecosystems, which might impair their capacity for
carbon sequestration (Ainsworth et al. 2012). However, field
experiments on mature forest stands have shown that many
factors can modulate tree responses to the pollutant (e.g. envi-
ronmental conditions, stand dynamics and competition) and
remain to be considered in modelling approaches. The main
challenge of stomatal deposition models is to accurately predict
stomatal conductance in response to environmental drivers
(Emberson et al. 2000). Recently, Fares et al. (2013a),
Hoshika et al. (2011) and Nunn et al. (2010) applied Jarvis’s
model parameterized with environmental observations with
field data, and they were able to predict well stomatal conduc-
tance. The recent study of Wang et al. (2016), which simulated
the O3 impact on forest composition and ecosystem dynamics
over 500 years, indicated that elevated O3 could even lead to an
increase in forest productivity due to diversity change and com-
pensatory processes at the community scale.

5 Combination of O3 and other environmental
factors

The interaction of O3 with other abiotic or biotic factors
can first be considered through its combination with other
pollutants, which can occur simultaneously or sequentially.
A review on tree exposure to pollutant mixtures showed
that the observed responses were highly variable according
to tree species, age, genotype, composition of rain solution
and soil type (Chappelka and Chevone 1992). In a context
of global change, a range of constraints, including high
CO2, increased temperature, altered precipitation and
drought episodes, will also affect trees exposed to O3 pol-
lution episodes. A first interaction has been investigated in
a context of rising atmospheric CO2 concentrations, which

934 Jolivet Y. et al.



generally results in a reduction of stomatal conductance
(Ainsworth et al. 2012). Thus, based on simulated stomatal
O3 uptake, the flux of O3 entering the leaves would be
decreased (Klingberg et al. 2011; Sitch et al. 2007).
However, the reduced stomatal conductance on a long-
term exposure under high CO2 seems uncertain consider-
ing contrasting results from FACE experiments (Uddling
et al. 2010). The stage of plant and stand development, as
well as the consideration of overstorey/understorey spe-
cies, would influence the stomatal response. Drought also
reduces stomatal conductance, with a potential subsequent
restriction of O3 effects. In fact, the protective effect of
drought would only occur in severe drought conditions
while under low water restriction the damage caused by
O3 appeared additive (Matyssek et al. 2006; Pääkkönen
et al. 1998b). However, there are clear inter- and intra-
specific differences in response to the combination of
drought and O3 (Dixon et al. 1998). The protective effect
of drought may be the result of stomatal exclusion of O3

but also the induction of defence reactions (Matyssek et al.
2006). Other works underlined that the combined effects of
drought and O3 could also decrease the antioxidant capac-
ity of leaf cells in a higher extent than with the constraint
alone, leading to a higher susceptibility to oxidative stress
(Wellburn et al. 1996). Thus, in these conditions of com-
bined stresses, the fine-tuning between O3 uptake and de-
fence capacity appears crucial (Matyssek et al. 2006).
Because of changes in plant metabolism, carbon assimila-
tion and allocation and chemical leaf defences, O3 may
also modify plant responses to biotic factors as insect or
plant pathogens. Trees can be weakened by O3, promoting
biotic attack (Chappelka and Chevone 1992; Dowding
1988). However, these studies also underlined that a great
number of factors linked to the environment, the host plant
or the pathogen may modulate the O3-host-pathogen inter-
actions and their consequences. Some works attempted to
better understand these interactions and identify underly-
ing biochemical and physiological mechanisms. Using
Aspen FACE, investigations were carried out on the impact
of both increased CO2 and O3 concentrations on forest
insects in a poplar canopy (Percy et al. 2002). In response
to O3, the production and chemical composition of leaf
cuticular waxes and the concentrations of protective com-
pounds in the leaf were modified. These modifications may
explain an increase in rust infection under O3 while a
higher abundance of leaf-chewing insects as well as aphids
have been observed, an effect alleviated by the combina-
tion of CO2 and O3. Changes in leaf morphology and com-
position, including phenolic content, induced by O3 ap-
peared to be determinant in explaining the larger deleteri-
ous effect of an herbivorous insect on O3-treated aspen
trees (Freiwald et al. 2008). Finally, the O3 impact on car-
bon allocation must be also considered as a factor that

modulates the beneficial interaction of fungi and plants
via mycorrhization (Nikolova et al. 2010; Pritsch et al.
2009), an aspect that needs to be clarified.

6 Concluding remarks

It is now widely accepted that O3 is able to reduce the growth
of forest trees. Even though the results could differ in intensity
between experiments conducted in phytotrons or in FACE
systems, between young and mature trees, the major impact
is a decreased carbon assimilation resulting in a reduced car-
bon sequestration. The precise mechanisms leading to this loss
of available carbon are still to be totally deciphered, notably
the respective roles of stomatal resistance and detoxification
processes, which determine the tree sensitivity. In addition, the
mechanisms underlying the O3 transduction signal begin to be
clarified in acute conditions while it remains fragmented in
chronic O3 exposure, particularly for trees. Another conse-
quence of the O3 effect is the modification of carbon allocation
to the different organs of the tree, which can lead to changes in
wood quality and quantity. In this context, alterations of the
functioning of forest ecosystems need also to be better inves-
tigated by taking into account the interactions between O3 and
other abiotic (CO2, water, temperature, etc.) and biotic stress-
es. Emphasis should be put on water availability, a factor
already mentioned as determinant to scale O3 effects from
seedlings to forest trees (Samuelson and Kelly 2001).
Contradictory reports of antagonistic or synergetic effects of
O3 and CO2 or drought clearly show that additional research
effort is needed. The advancement of an integrative knowl-
edge of O3 impact from the leaf cell to the tree level will allow
a significant improvement of the existing models of O3 risk
assessment on ecosystems.
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