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Abstract
& Key message Early selection in tree breeding requires a
credible age-age correlation. Modelling height growth in
provenance and progeny trials, we can predict age-age
correlations suitable for use in operational breeding as
described in this article.
& Context Tree breeding involves early selection, which is an
indirect selection using a genetic correlation. This study de-
scribes a procedure of predicting an age-age phenotypic cor-
relation as a surrogate for a genetic correlation. Although the
predicted correlations are based on white spruce (Picea
glauca) and lodgepole pine (Pinus contorta) data, they can
be used in other coniferous species with similar mode of
height growths.
& Aims The aim of the study is to predict a correlation coeffi-
cient used to adjust breeding values at a measurement age to
breeding values at a rotation age. This correlation is derived
from the observed height growth trajectories of trees in prog-
eny and provenance trials.
& Methods Correlation prediction equations were developed
using modelled height growth in provenance and progeny
trials of lodgepole pine and white spruce. The time lag be-
tween successive tree ages was used as a correlation predictor
variable.
& Results Correlations differed between spruce and pine but
the differences narrowed as trees grew older. For example, a
correlation between 20 and 100 years was 0.607 for spruce

and 0.470 for pine, whereas that of 30 and 100 was 0.826 for
spruce and 0.832 for pine. Based on the age-age correlation,
the optimum selection age for a 100-year rotation age is 40–
50 years. Parameters of the tree height growth function exhib-
ited significant genetic variance and genotype × environment
interaction.
& Conclusion After the age of 40 years, age-age correlation
for height may be less important for selection and genetic gain
prediction than the correlation between height and diameter,
which is declining with tree age.

Keywords Indirect selection . Early selection . Genetic gain .

Optimum rotation age . Optimum selection age .White
spruce . Lodgepole pine

1 Introduction

In commercial forestry, optimum rotation age (ORA) for
wood production is the age at which a forest plantation yields
the maximum profit (Chang 1984). Genetics, climate, soil
properties, silviculture, and other factors that affect tree
growth determine ORA. When wood production (yield) is
the goal of forest management, tree breeders select genotypes
(parent trees or clones) that will maximize yield at ORA. The
question is how to identify such genotypes at an early age?
How to estimate genetic gain at an early age without
overestimating genetic gain at ORA?

While efforts are underway to use DNA marker-aided and
genomic selection (e.g., Grattapaglia and Resende 2011;
Resende et al. 2012; Isik 2014), field progeny trials remain
the primary tool for estimating genetic parameters, predicting
breeding values, selecting genotypes and predicting genetic
gain. When trees are young, ranks of genotypes for growth
traits (height, diameter, and volume) change over time (e.g.,
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Mullin and Park 1994; de Sousa et al. 2005). A correlation
among measurements of the same trait at different ages is
called an age-age correlation. This correlation is high when
genotypic ranks are stable over time and low when they sub-
stantially fluctuate. A low age-age correlation suggests that
the genetic gain predicted at an earlier age will overestimate
genetic gain at ORA, because not all genotypes selected for
their superior growth at a young age would have been selected
at ORA.

Tree breeders frequently use the term optimum selection
age (OSA) to mean the age beyond which changes in the age-
age correlation are minor. Consequently, selected genotypes
and percentage genetic gain predicted at OSA and ORA ought
to be similar. Because OSA is usually unknown, Zobel and
Talbert (1984) recommended selecting genotypes when the
age of trees in the progeny trials is at least half the ORA. At
this age and size, trees are old enough for breeders to be
confident that ranking of genotypes will remain relatively
stable. White et al. (2007) lists other selection criteria linked
to ORA. It suffices to say that these selection criteria and rules
of thumb are not always feasible in all species. For example,
mid-ORA is certainly feasible in some tropical and subtropical
species where ORA is 20–30 years such that 8–10 years of
field testing is adequate (e.g., Gill 1987; Cotterill and Dean
1988). In contrast, in the interior northern boreal conifers in
Canada, mid-ORA of 40–60 years is certainly too long to
delay selection and prediction of genetic gain. Therefore,
breeding boreal conifers requires a different approach that
allows for selection at much younger ages while avoiding
overestimating the genetic gain at ORA.

The need to undertake early selection without
overestimating expected genetic gain at ORA is of particular
importance in Canada where the public owns 94% of forested
land (Natural Resources Canada 2014). Private forest compa-
nies manage these forests through forest management agree-
ments with governments (Beckley 1989). When a company
plant trees with a specified expected genetic gain, it receives
an equivalent increase in allowable cut from the existing for-
ests. This increase in today’s allowable cut in exchange for an
expected yield increase in future forests is called allowable cut
effect (Luckert and Haley 1995). Although the allowable cut
effect (ACE) provides an immediate return on investment for
companies, governments bear the risk by offering genetic gain
that might not be realized at ORA. Therefore, for govern-
ments, the age-age correlation has both technical tree breeding
and public policy implications. For example, to mitigate the
risk, Alberta and British Columbia, Canada, mandate the use
of the age-age correlation to convert genetic gain at the mea-
surement age to genetic gain at ORA.

The use of the age-age correlation to predict genetic gain at
ORA from the genetic gain predicted at an earlier measure-
ment age is consistent with a concept of correlated response to
selection (Falconer and Mackay 1996). The challenge is how

to obtain a correlation that meaningfully and convincingly
relates observed values of a trait at a measurement age and
expected values at ORA. To be used in tree breeding, such a
correlation must be estimated in a way that takes into consid-
eration the biological nature of the way trees grow and be
based on meaningful predictors. Currently, Alberta and
British Columbia use the correlation from the equation devel-
oped by Lambeth (1980). There are legitimate concerns about
the operational use of correlations from this equation, which
are addressed in this article.

In this article, I review methods that have been used to
obtain age-age correlations for use in tree breeding and present
a new method whereby correlations are linked to height
growth trajectories in provenance and progeny trials. The
present work used data from lodgepole pine (Pinus contorta
Dougl.) and white spruce (Picea glauca [Moench] Voss) trials
in Alberta. The two species make up more than 80 % of
reforestation in Alberta. Nevertheless, the method and corre-
lations developed in this study can be used in other coniferous
species with similar mode of height growth. For simplicity,
correlations for ORA of at least 50 years are included in the
tables. Correlations for short ORA can be obtained by
substituting an appropriate predictor in the presented
equations.

1.1 Theory and current practices

The use of an age-age correlation (rt,T) in tree breeding is
based on the quantitative genetics concept of correlated re-
sponse to selection (Falconer and MacKay 1996). If we treat
height at a younger (Ht) and older (HT) age as different traits,
we can predict how selection for Ht will change HT as a cor-
related response (Eq. 1).

CRHT ¼ rt;T ihthTσHT ð1Þ

where CRHT = correlated response (change) in HT due to
selection for Ht; i = selection intensity at age t; σHT = pheno-
typic standard deviation for HT; ht and hT = square root of the
heritability for Ht and HT, respectively; rt,T = genetic correla-
tion between Ht and HT. Without knowing the variance and
heritability forHT, which will be observed far in the future, it is
prudent and for practical reasons to assume that ht = hT; i will
be the same whether selection is done on Ht or HT, and the
phenotypic standard deviation for Ht approximates σHT . With
these assumptions, Eq. 1 simplifies to,

CRHT ¼ rt;T iσHth
2
t ð2Þ

where iσHth
2
t = expected genetic gain for height at a mea-

surement age (Ht). Therefore, expected genetic gain at ORA
can be estimated by a simple multiplication of expected ge-
netic gain at a measurement age by an age-age correlation
(rt,T). This is why rt,T is an important statistic for tree breeders
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working with long ORA species. To be used operationally, rt,T
must be as realistic as possible. Although this article deals with
rt,T for height growth, the same concepts apply to other traits.

Some form of a correlation between Ht and HT should be
expected because of the cumulative nature of perennial height
growth (Eq. 3).

HT ¼ Ht þ Hi ð3Þ

where Hi is the growth increment accrued since the last
time Ht was measured.

Thus, rt,T is a correlation between Ht and Ht+Hi (Eq. 4).

rt;T ¼ cov Ht;Htð Þ þ cov Ht;Hið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Htð Þvar HTð Þp

¼ var Htð Þ þ cov Ht;Hið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Htð Þvar HTð Þp ð4Þ

Consequently, even ifHt andHiwere not correlated,Htwill
be correlated with HT to the extent that Ht is a component of
HT. The amount ofHi added annually will determine the rate at
which Ht ceases to be a significant component of HT and the
rate at which rt,T declines with tree age or size. The greater the
Hi relative to Ht the lower the rt,T and vice versa. In the juve-
nile phase when trees have high annual height growth incre-
ments (AHI), Hi will accrue faster with an increase in tree age
than in a mature phase when AHI is low. Thus, attempts to
predict age-age correlations must recognize that changes in
AHI in the life of trees will affect rt,T and OSA.

There are plenty of examples of observed rt,T in the forestry
literature (e.g., Xie and Ying 1996; Hodge and White 1992;
Tauer and McNew 1985; Kung 1973). Attempts have been
made to use these correlations to develop equations for
predicting r̂t;T beyond the observed field trial periods, which
are often much shorter than ORA. Using reported rt,T,
Lambeth (1980) developed r̂t;T ¼ 1:02þ 0:308� LAR,
where LAR = ln (t/T). Since then, many equations involving
LAR in various forms have been fitted to height, diameter, and
volume (e.g., Lambeth and Dill 2001; Gwaze et al. 1997;
Jansson et al. 2003; Ye and Jayawickrama 2012). The LAR-
based models are by far the most attempted and cited r̂t;T
prediction equations. As mentioned earlier, the Lambeth
(1980) equation is used for operational breeding in Alberta
and British Columbia, Canada (Xie and Yanchuk 2003). It is
also widely used in forest biometrics when the age-age corre-
lation is involved to incorporate genetic gain into yield models
(e.g., Newton 2015).

The prevalence of LAR-based models is likely due to the
simplicity of getting t/T that fits every situation. As a ratio, the
range of t/T is the same (0.0–1.0) regardless of the age of trees,
length, and number of serial measurements. In principle, we
can fit a LAR equation based on t/T from any material and use
it to obtain r̂t;T that is similar to those from Lambeth (1980)

and many other LAR-based models. For example, Fig. 1
shows a regression of rt,T on LAR for white spruce seedlings.
These seedlings were raised in the greenhouse and their
heights measured every 2 weeks for 36 weeks distributed
equally over two growing seasons (Rweyongeza et al.
2004). With height growth from germination to the end of
the first growing season (18 weeks), the equation is r̂t;T ¼
1:0686þ 0:3047� LAR with r2 of 0.919. At the end of the
second growing season (36 weeks), the equation is r̂t;T ¼
0:9888þ 0:2804� LAR with r2 of 0.876 (Fig. 1). Both equa-
tions are very similar to Lambeth (1980) and other reported
LAR-based models. An age ratio can be substituted into these
equations to obtain a correlation for practical use in a real
breeding program.

In LAR-based models, t/T is just scaling the predictor
variable to make it appear as if the observed rt,T used to
fit the equation were observed over the entire rotation
age (ORA). Hence, substituting t/T in a LAR-based
equation is simply obtaining correlations for intermedi-
ate ages within the range of the correlation matrix of
observed rt ,T with which the equation was fitted.
Therefore, r̂t;T from LAR-based models are not predic-
tions of future r̂t;T as intended and are therefore
misleading.

Contending that perennial height growth is a cumulative trait,
which is a function of annual increments (AHI), and rt,T is deter-
mined by LAG ¼ T � t among AHI, Kremer (1992) fitted
r̂t;T ¼ 1:079� 0:132� LAG� 0:0039� LAGð Þ2. He then
did simulations to see how r̂t;T from a LAG-based model is
affected by the (i) input correlation matrix of AHI, (ii) change
in the additive coefficient of genetic variation for AHI, and (iii)
modelled AHI to 50 years. He concluded that the structure of the
input correlation matrix of AHI and the changes in the genetic
variance of AHI (σAHI

2 ) were the major determinants of variation
in r̂t;T . He further observed that, while rt,T declined with an

increase in LAG as expected, the change in σAHI
2 did not follow

any age pattern. Hence, the randomness of changes in σAHI
2

Fig. 1 Age-age correlation in white spruce seedlingsmeasured at 2-week
intervals for 36 weeks (two growing seasons) in the greenhouse. Because
of the age ratio as a predictor variable, the prediction equation could be
used to predict correlations for trees of any age
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questions the value of individual AHI in predicting r̂t;T . In a
separate study of the same species (Pinus pinaster Ait), the
change of rt,T with LAG for AHI was completely random
(Costa and Durel 1996).

There is a large body of literature linking the rate of
height and diameter growth to existing tree size (e.g.,
Bond et al. 2007; Vanderklein et al. 2007; Niklas 2007).
Therefore, AHI formed in a specific year is intrinsically
dependent on the total height that existed prior to its
formation rather than individual AHIs formed in previ-
ous years. Kremer (1992) found that rt,T for AHIs sep-
arated by 13 years was almost zero. This, together with
the randomness of σAHI

2 suggests that rt,T of AHIs may
not be useful in predicting r̂t;T . Individually, AHI re-
flects the variation in weather and other temporal envi-
ronmental factors that affect tree growth. On the long
term, these temporal variations in tree growth are aver-
aged out making total height a better predictor of r̂t;T
than AHI.

Kung (1993) argued that, due to its symmetry, the correla-
tion matrix can be viewed as a symmetrical response surface
model with a ridge on the diagonal (rt,T = 1.0) and slopes
inclining toward the two corners with rt,T decreasing with an
increase in LAG. After fitting r̂t;T ¼ b0 þ b1t þ b2T þ b3t2

þb4T2 þ b5tT (where b1=b2 and b3=b4) and finding that first
order and interaction terms were not statistically significant, the

model was reduced to r̂t;T ¼ β0 þ β1 � LAG2 (Model1). In
addition, Kung (1993) argued that, in the same way rt,T
depended on LAG, the degree of non-determination (DON =
1 – r 2, where r= rt,T) would depend on LAG. Hence, he fitted
DON = β0 + β1 × LAG (Model2) and r̂t;T ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β0 þ β1 � LAGð Þp

(Model3). Comparing r̂t;T estimated from Model1, Model2,
Model3, and Lambeth (1980) against observed rt,T, he conclud-
ed that Model2 and Model3 overestimated, whereas Model1
and Lambeth (1980) underestimated the correlation.

Gwaze et al. (1997) fitted both the LAR- and LAG-based
equations and compared r̂t;T from both equations with corre-
sponding values from the Lambeth (1980) equation. It was
observed that the LAG equations fitted the data better than
LAR equation and produced r̂t;T that were consistent with
observed values than did the Lambeth (1980) equation. It
suffices to say that, unlike LAR, the LAG-based models do
not have the problem of scaling the predictor variable to erro-
neously imply that the observed rt,T values used to fit the
model spanned the entire range of ORA.

An obvious problem one would encounter in a LAG-based
model is its inability to predict r̂t;T beyond the range of the
data used to fit the model, except when fitting a simple linear
and second degree polynomial equation. My initial attempts
showed that fitting any other model that introduces a curvilin-
ear relationship between rt,T and LAG produces an equation,
which when used to predict r̂t;T for much larger LAG yields

values that are very close to r̂t;T corresponding to the largest
LAG of the input correlation matrix. This points to the inability
to extrapolate this model beyond the range of LAG in the
observed data. The correlation prediction equations developed
in the present work have addressed this problem.

The other observed feature of the Lambeth (1980) equation
is that all t/T yielding the same ratio have the same predicted
correlation (̂rt;T ). For example, when t/T is 0.5, r̂t;T is 0.81
even though this may be a correlation between ages 2 and 4,
25 and 50, 50 and 100 years or any other mid-ORA selection
ages. This is an unlikely expectation arising from the way
Lambeth (1980) developed his equation. The same feature
would be encountered in all LAR- and LAG-based equations
reviewed in this article. This feature is a result of fitting a
single equation through an entire correlation matrix.

Plotting rt,T from any source against LAG will show
that a correlation matrix is a collection of many scatter
plots, each corresponding to correlations between a
measurement at a specified age (Xt, Xt + 1, Xt + 2, Xt + 3,
…, Xt + n) with measurements at subsequent ages (Yt + 1,
Yt + 2, Yt + 3, …, Yt + n). If we fit an equation for each of
these scatter plots, the same LAG will have different
predicted correlation (r̂t;T ) depending on the equation
from which it was predicted. This is illustrated in
Fig. 2 using data from Rweyongeza et al. (2004) for
correlations involving seedling heights at weeks 2, 4,
6, and 8 and heights up to 36 weeks. At the same
value of LAG, older trees should have higher r̂t;T than
young trees. Fitting one equation for the entire age-age
correlation matrix is equivalent to averaging all r̂t;T
f rom individual age-specif ic equat ions thereby
assigning the same r̂t;T to all cases where LAG or
LAR is the same regardless of the age of trees. The
correlation prediction equations developed in the pres-
ent work have addressed this problem.

Fig. 2 Age-age correlation for height growth in white spruce seedlings
grown in the greenhouse for 36 weeks illustrating the importance of
fitting age-specific correlation prediction equations. The number in
brackets indicate the age of seedlings and the equations correspond to
regression lines from bottom to top, respectively

1102 D.M. Rweyongeza



2 Materials and methods

2.1 Data description

The data used in this study came from a series of white spruce
and lodgepole-jack pine “complex” provenance and progeny
trials scattered across Alberta. The term “complex” is used
here to imply that white spruce trials may contain hybrids of
P. glauca (Moench) Voss and Picea engelmanii (Parry ex
Engelm). Likewise, trials of lodgepole pine (P. contorta
Doug var. latifolia [Engelm.]) may contain jack pine (Pinus
banksina Lamb) and lodgepole-jack pine hybrids. The hybrid-
ization between white and Engelmann spruces and lodgepole
and jack pines occurs naturally in Alberta. Details of the data
are summarized in Table 1.

2.2 A new method of predicting age-age correlations

The method of predicting r̂t;T presented here (i) avoids using
LAR because this variable does not predict realistic r̂t;T as

intended; (ii) recognizes that trees to do not grow indefinitely
at the same rate (AHI); (iii) uses LAG as a predictor variable
while avoiding a simple linear and polynomial regressions;
and (iv) enables LAG to predict r̂t;T meaningfully beyond
the range of the data from which the equation was developed.

Studies show that forest trees exhibit growth phases with
different AHI. The growth rate is high and exponential during
the juvenile phase. As the juvenile phase ends, trees attain
vegetative and morphological complexity and reproduction
begins, AHI declines (Kramer and Kozlowski 1979). Tree
height growth follows a sigmoid growth function whereby
AHI is lower, higher and lower in the early, middle and mature
phase, respectively (Kramer and Kozlowski 1979). Conifers
spend hundreds to thousands of years in the mature phase
(Kramer and Kozlowski 1979) with few centimeters of AHI
while expanding in diameter. The culmination of AHI and
OSA lies in the lower portion of the mature phase. The time
trend in the genetic variance for height growth appears to
follow these height growth phases (Namkoong et al. 1972;
Namkoong and Conkle 1976). Therefore, a realistic tree

Table 1 Description of Alberta provenance and progeny trials used in the study

Series Species Site Lat
(N)

Long
(W)

Elev
(m)

Entries Type
(F/P)

Ages measured (years) Current mean height
(m)

G127 LP Fox Creek (A) 54°17′ 116°53′ 965 400 F 6, 11, 14, 19, 27 9.8 (6.1–11.6)

NoseMountain (B) 54°38′ 119°07′ 1110 400 F 6, 11, 14, 19, 27 9.1 (6.5–10.6)

NoseMountain (C) 54°39′ 119°06′ 1100 332 F 6, 11, 14, 19, 27 7.9 (5.2–9.3)

Snuff Mountain
(D)

54°32′ 117°49′ 860 252 F 6, 11, 14, 19, 27 9.8 (6.3–12.6)

G132 WS Calling Lake (A) 55°17′ 113°09′ 625 146 F 8, 10, 15, 16, 21, 24 5.7 (3.9–7.1)

Red Earth (C) 56°34′ 115°19′ 518 150 F 8, 10, 15, 16, 21, 24 6.0 (3.8–7.7)

G133a WS Hay River (A) 59°08′ 117°34′ 370 123 F/P 11, 12, 18, 21, 24 4.5 (3.0–5.7)

Chinchaga (B) 57°50′ 118°12′ 470 128 F/P 11, 12, 18, 21, 24 5.5 (4.1–6.5)

G103 WS Hay River (B) 59°08′ 117°34′ 370 26 P 10, 12, 15, 21, 24, 27, 32 8.0 (5.5–8.9)

Sexsmith (D) 55°31′ 118°30′ 805 27 P 12, 15, 18, 21, 24, 27, 32 9.7 (5.3–10.8)

Swartz Creek (E) 53°23′ 116°30′ 990 27 P 12, 15, 18, 21, 24, 27, 31 9.7 (5.1–11.2)

Prairie Creek (F) 52°15′ 115°21′ 1220 27 P 12, 15, 18, 21, 24, 27, 31 7.7 (4.7–8.8)

Chinchaga (G) 57°50′ 118°12′ 470 28 P 12, 15, 18, 21, 24, 27, 32 9.2 (5.5–10.3)

Calling Lake (H) 55°17′ 113°09′ 625 30 P 12, 15, 18, 21, 24, 27, 32 9.2 (3.9–11.1)

Hangingstone (J) 56°23′ 111°26′ 540 28 P 12, 15, 18, 21, 24, 27, 35 9.2 (4.8–10.4)

G103RW WS Calling Lake 55°17′ 113°09′ 625 43 P 12, 15, 21, 24, 27, 32 9.0 (4.5–11.1)

G134 LP Calling Lake (A) 55°17′ 113°09′ 625 36 P 5, 7, 8, 9, 10, 14, 15, 19, 20, 25 9.7 (7.2–11.3)

Hay River (B) 59°08′ 117°34′ 370 36 P 5, 7, 8, 9, 10, 14, 15, 19, 20, 25 9.4 (7.6–10.4)

Swartz Creek (D) 53°23′ 116°30′ 990 33 P 5, 7, 8, 9, 10, 14, 15, 19, 20, 25 10.9 (7.5–12.7)

Hangingstone (E) 56°23′ 111°26′ 540 37 P 5, 7, 8, 9, 10, 15, 19, 20, 25 11.2 (8.4–12.9)

Carson Lake (G) 54°24′ 115°34′ 1006 36 P 5, 7, 9, 10, 14, 15, 20 7.8 (5.1–8.7)

Diamond Hills (H) 52°37′ 115°05′ 990 36 P 5, 6, 7, 9, 10, 14, 15, 20 7.9 (4.0–9.1)

Castle River (I) 49°23′ 114°20′ 1350 36 P 5, 7, 9, 10, 15, 20 5.1 (4.0–6.2)

Pine Ridge (J) 54°04′ 112°12′ 610 33 P 5, 7, 8, 9, 10, 15, 20 6.3 (5.4–7.4)

F family, P provenance, LP lodgepole-jack pine complex, WS white spruce complex
a These trials include six bulk seedlots
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height growth model must permit for a declining growth rate
in the mature phase. Only with such a model will age-age
correlation attain an optimum value at OSA.

A simple linear equation is to be avoided because it implies
that r̂t;T declines with an increase in LAG at the same rate
throughout ORA. This is inconsistent with the sigmoid height
growth pattern observed in perennial plants. A quadratic equa-
tion implies that after attaining OSA, r̂t;T would decline with
an increase in tree age (t). Kremer (1992) advanced this idea
by assuming that during ORA, the correlation would increase
with t in the first 1/3 phase because fast growing genotypes
have high AHI than slow growing ones. In the second 1/3
phase, the correlation would remain constant because AHI
of fast growing genotypes has peaked. In the last 1/3 phase,
the correlation would decline reversing the first phase trend
because AHI of slow growing genotypes has surpassed that of
fast growing genotypes. It is possible that slow growing ge-
notypes may have a relatively higher AHI toward the end of
ORA than fast growing ones. However, this does not translate
into rank reversals for total height, which is the basis for ge-
notypic selection. Thus, the quadratic and other polynomial
equations are not attempted in the present article.

The new method of predicting age-age correlations in-
volved (a) predicting height at different ages between age 5
and 120 years, (b) generating the age-age correlation matrix
from the predicted heights, and (c) developing age-age corre-
lation prediction equations using this correlation matrix.

A review of the Alberta forest inventory data showed that
in the boreal forest, the average height of 120 years old white
spruce and lodgepole-jack pine complex is 20 and 23 m. The
data in Meng and Huang (2010) and Lotan and Critchfield
(1990) support this generalization for lodgepole pine.
Table 1 shows that the average height for trees in the oldest
white spruce trials were close to half the size expected at ORA
in the natural stands. Likewise, height of lodgepole-jack pine
complex trials between age 25 and 30 years could be expected
to be half the height expected at the ORA in the natural stands.

The initial attempt was to fit a sigmoid growth curve to
observed data as follows,

Ht ¼ k
1þ be−rt

þ ε ð5Þ

where Ht = total height at age t (years); k = upper asymp-
totic height; b = a constant with no biological interpretation
(Richards 1959); e = the base of the natural logarithm; r =
the growth rate; and ε = residual. The time at the point of
inflection (t0.5) occurs mid-way between the upper and low-
er asymptote (1

�
2k ) and is calculated as t0:5 ¼ 1

r ln bð Þ. This
logistic equation is further described by Nair (1954).
Review of the results showed that the growth rate would
begin to decline early such that the predicted height at ORA
would be lower than the actual height observed in natural

stands. This is because the latest Ht measurement greatly
influenced the point of inflection (Meng and Huang 2010).
Therefore, Eq. 6 was used to predict height at 3–5-year
intervals beyond the latest Ht measurement until predicted
heights were in the range of 20–25 m similar to heights
expected at ORA in natural stands.

Hkjin ¼ aX b þ εkjin ð6Þ

where Hkjin = total height at age t (years) of nth tree in ith
family or provenance in jth replication (block) at kth test site;
εkjin = the residual; a and b are regression coefficients.

Therefore, these additional predicted height points were
combined with observed heights to create “hybrid datasets”
for fitting a sigmoid growth curve on individual tree basis
(Eq. 5) using PROC NLIN (SAS Institute 2004).

Pearson’s correlation coefficients between observed height
and height predicted by Eq. 5 were greater than 0.95 at all
sites. Individual-tree height growth functions (Eq. 5) were
used to predict total height (Ĥt, that is, height predicted by
age) from age 5 to 120 years. Pearson’s correlation coeffi-
cients for Ĥt were calculated on individual species and
single-site basis using PROC CORR (SAS Institute 2004).
Earlier analysis showed that Pearson’s correlation coefficients
between observed total height and tree age in calendar years
were greater than 0.95. Therefore, the age difference LAG in
calendar years among successive Ĥt was used as a predictor
variable for r̂t;T (Eq. 7).

r̂t;T ¼ β0e
β1d1 ð7Þ

whered1=T− t=LAG incalendaryears;β0andβ1= regression
coefficients;e=thebaseofthenatural logarithm;andallotherterms
are as previously defined. To maintain consistence with previous
notations, LAG is used in place of d1 for the rest of this section.

To allow for r̂t;T to differ among measurements with the
same LAG, separate equations were fitted for each t instead of
fitting a single equation for the entire correlation matrix. For
example, the equation for predicting r̂t;T involving height at
age 5 years (Ĥ5) was developed using correlations (r5,T) in-
volving Ĥ5 with heights at subsequent ages (ĤT), where T =
10, 15, 20,…, 120. The equation for predicting r̂t;T involving
height at age 6 years (Ĥ6) was developed using correlations
(r6,T) involving Ĥ6 with heights at subsequent ages (ĤT),
where T = 10, 15, 20, …, 120. The equation for predicting
r̂t;T involving height at age 10 years (Ĥ10) was developed
using correlations (r10,T) involving Ĥ10 with heights at subse-
quent ages (ĤT), where T = 15, 20, 25,…, 120. The equation
for predicting r̂t;T involving height at age 11 years (Ĥ11) was
developed using correlations (r11,T) involving Ĥ11 with
heights at subsequent ages (ĤT), where T = 15, 20, 25…,
120. Equations for predicting r̂t;T of all other ages were
developed using the same sequence as those illustrated above.
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These equations were fitted using PROCNLIN (SAS Institute
2004).

In addition to the age-age correlation prediction equations,
the intraclass correlation was calculated to measure variation
among families and provenances for parameters of the logistic
growth functions k, b, r, and t0.5. Where progeny trials includ-
ed provenances from bulk seedlots, they were dropped before
performing the analysis of variance. All analyses of variances
were implemented in PROC MIXED (SAS Institute 2004) as
described below (Eqs. 8 and 9).

yi jn ¼ μþ αi þ β j þ αiβ j þ εi jn ð8Þ

where yijn = observed value of the nth tree in jth provenance
(or family) in the ith replication; μ = site mean; αi = effect of
the ith replication; βj = effect of the jth provenance (or family);
αiβj = provenance (or family) × replication interaction (exper-
imental error); and εijn = residual. Except μ, all effects were
considered random effects with σα

2, σβ
2, σαβ

2 , and σε
2 variance

components, respectively.

ylijn ¼ μþ τ l þ αi τ lð Þ þ β j þ τ lβ j þ εljin ð9Þ

where ylijn = observed value of the nth tree in the jth prov-
enance (or family) in the ith replication within the lth test site;
μ = general mean; τl = effect of the lth test site; αi(τl) = effect
of the ith replication within the lth test site; βj = effect of the jth
provenance (or family); τlβj = provenance (or family) × site
interaction; and εlijn = residual. Except μ and τl, all effects
were considered random effects with σα

2, σβ
2, στβ

2 , and σε
2 var-

iance components, respectively. Intraclass correlations were
calculated as in Eq. 10 (for provenance or family on individual
sites) and Eq. 11 (for provenance or family across sites) using
respective variance components on individual sites and across
sites.

gi ¼
σ2
β

σ2
β þ σ2

αβ þ σ2
ε

ð10Þ

gac¼ac σ2
β

σ2
β þ σ2

τβ þ σ2
ε

ð11Þ

where gi and gac = intraclass correlation in individual sites
and across sites, respectively.

3 Results

In this study, the power function (Eq. 6) was fitted to observed
data only to provide few additional data points for fitting the
logistic growth function (Eq. 5). The pseudo r2 for Eq. 6 func-
tions were greater than 0.95 showing a near-perfect fit to the
model. Detailed results from this stage of the analyses are not
presented in this article.

Summary statistics for parameters of the growth functions
appear in Table 2. Also included in Table 2 are intraclass
correlations (gi) on individual sites at provenance and family
levels, which measure the genetic variability for parameters of
the growth function among populations and families. It can be
seen that the level of genetic variation (provenance or family)
for parameters of the logistic growth functions differed con-
siderably among sites within the same series of trials. Table 3
summarizes variance components as percentages of the total
variance and the intraclass correlations across sites (gac).
Lower values of gac (Table 3) compared to gi values
(Table 2) are indicative of a substantial genotype × environ-
ment (GE) interaction in the parameters of the logistic growth
function at both the provenance and family level. Based on the
Wald Z statistic, the GE interaction was statistically significant
(P<0.05), which is evident in the relative value of σβ

2 and στβ
2

when expressed as percentages of the total variance (Table 3).
Equations for predicting r̂t;T are summarized in Table 4 for

t of 10 to 50 years. For white spruce, the correlation between
observed and predicted values were 0.30–0.88 (pseudo r2 =
0.09–0.77). Corresponding values for lodgepole pine were
0.28–0.86 (pseudo r2 = 0.08–0.74). Low values are due to
the fact that, in developing r̂t;T prediction equations, the input
correlations (rt,T) were not averaged across sites. This varia-
tion in rt,Tacross sites lowers the correlation between observed
and predicted values. In contrast, if rt,T is averaged across sites
prior to developing r̂t;T prediction equations, the correlation
between observed and predicted values is 0.84–0.94 (pseudo
r2 = 0.71–0.88) for white spruce and 0.63–0.97 (pseudo r2 =
0.40–0.94) for lodgepole pine. Whether or not input r̂t;T
values are averaged across sites prior to fitting, r̂t;T prediction
equations does not change the resulting r̂t;T prediction equa-
tions. Otherwise, all equations in Table 4 were statistically
significant (P<0.0001). Table 5 contains r̂t;T values for se-
lected long ORA that would normally be encountered in
northern temperate and boreal countries such as Canada.
Correlations for other ORA can be obtained by substituting
LAG in respective equations (Table 4).

4 Discussion

This study showed that families and provenances varied sig-
nificantly for the parameters of the logistic growth function
and this variation was greatest for k (Table 2). Because k is the
prediction for height the trees can potentially attain, its vari-
ability reflects the general extent of genetic variation in height
growth as previously reported (Rweyongeza et al. 2007,
2010). Variation for r and t0.5 were greater in lodgepole pine
than in white spruce (Table 2). Lodgepole pine is more shade
intolerant (Lotan and Critchfield 1990) than white spruce.
This study used height growth data from trials that have closed
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canopy. If competition in closed canopy trials affects the tra-
jectory of tree height growth among families or provenances,
its effects on gi and gac would likely be more visible in
lodgepole pine (shade intolerant) than white spruce (shade
tolerant). This underlines the need for having species-
specific or genus-specific age-age prediction equations (where
data exist) instead of a single equation for all conifers as in
Lambeth (1980).

The GE interaction in the parameters of the growth func-
tion is equally the result of GE interaction in height growth as
previously reported for white spruce (Rweyongeza 2011) and
Pinus pinaster Ait (Danjon 1994). The GE interaction for
parameters of the growth functions will not affect the applica-
tion of the age-age correlation developed in this study
(Table 4). This is because, (i) in principle, these correlations
represent cross-site averages of r̂t;T that could be generated on
individual sites in the same way as the cross-site breeding

values do, and (ii) the correlations will be applied beyond
the narrow environment of the test site. Therefore, these cor-
relations take into consideration the variability in the response
of families and provenances to the environment encountered
in actual reforestation programs.

The consequence of fitting separate correlation prediction
equations for t instead of a single equation for the entire
correlation matrix is clearly demonstrated in this study. For
example, for white spruce (Table 4), r̂t;T is 0.859 (ages 25 and
50); 0.896 (ages 30 and 60); 0.963 (ages 40 and 80); and 0.990
(ages 50 and 100 years). For lodgepole pine (Table 4), r̂t;T is
0.811 (ages 25 and 50); 0.889 (ages 30 and 60); 0.980 (ages 40
and 80); and 0.998 (ages 50 and 100 years). Under Lambeth
(1980), these mid-ORA selection ages would have the same
correlation of 0.81.

This study used phenotypic correlations generated from
height measurements of individual trees to develop age-age

Table 2 Summary statistics and family or provenance intraclass correlations for parameters of the logistic growth functions for spruce and pines in
Alberta

Series Site b k r t0.5

Mean gi (%) Mean gi (%) Mean Min Max gi (%)a Mean Min Max gi (%)

G127 A 27.4 6.2*** 23.8 26.3*** 0.109 0.094 0.139 5.3*** 29.5 19.4 37.5 15.3***

B 29.7 1.3 22.7 15.4*** 0.110 0.095 0.136 1.5 30.1 16.0 36.7 6.0***

C 36.2 2.4** 21.1 15.2*** 0.113 0.098 0.141 3.3** 30.9 16.5 38.2 8.0***

D 29.0 1.6 23.9 29.2*** 0.110 0.094 0.149 2.3 29.3 15.5 39.3 12.2***

G132 A 48.4 7.8*** 22.0 2.5** 0.115 0.073 0.148 5.1*** 32.8 14.0 39.3 4.9***

C 32.2 5.2*** 19.4 4.2*** 0.109 0.062 0.141 5.6*** 31.1 11.6 38.0 4.7***

G133b A 61.5 2.0* 20.0 9.2*** 0.116 0.067 0.151 4.7** 34.5 15.6 39.9 4.2**

B 71.1 2.0 25.7 2.9* 0.119 0.072 0.152 3.1* 35.1 22.7 40.1 3.5*

G103 B 38.9 0.4 17.5 0.6 0.110 0.075 0.137 0.0 32.6 25.1 46.4 5.5

D 30.8 5.5 18.8 31.1*** 0.111 0.070 0.139 7.1* 30.4 23.0 39.6 2.5

E 29.9 21.3** 32.8 31.2*** 0.080 0.054 0.109 14.2** 41.5 31.3 44.1 8.3**

F 31.5 4.7 26.0 23.6*** 0.080 0.051 0.123 4.6 41.4 29.3 44.4 4.0

G 27.6 0.0 18.5 29.4*** 0.105 0.052 0.131 0.0 31.2 21.0 55.0 1.2

H 42.3 6.1* 20.6 31.2*** 0.111 0.050 0.139 2.7 33.1 21.7 68.7 6.5**

J 23.2 2.0 29.2 47.8*** 0.076 0.054 0.110 2.9 40.6 31.3 44.1 2.5

G103RW 32.3 5.3 19.9 36.5 0.103 0.079 0.122 2.0 32.9 24.7 40.0 7.4*

G134 A 29.7 11.4* 25.7 19.9** 0.116 0.094 0.132 14.5** 28.6 17.3 34.8 16.0**

B 26.0 8.8* 23.2 4.8 0.114 0.093 0.129 8.3 27.9 19.2 34.0 14.0**

D 18.7 11.7* 24.4 39.3** 0.110 0.096 0.123 10.2* 26.1 17.3 31.2 20.8**

E 11.7 15.2** 39.2 29.9** 0.064 0.051 0.075 16.5* 38.0 29.9 41.4 16.0**

G 15.0 10.9** 40.0 28.2*** 0.068 0.041 0.089 17.2** 39.1 13.2 43.3 21.6**

H 22.8 17.8** 31.6 43.4*** 0.068 0.039 0.091 33.6*** 39.2 8.6 43.4 38.8***

I 22.8 5.9* 31.6 15.8** 0.073 0.045 0.104 8.3* 40.5 22.5 44.3 8.3*

J 12.5 8.4* 28.2 18.5** 0.064 0.052 0.094 15.8*** 37.6 31.2 43.8 19.9**

a Calculated from transformed data (y= log(r) + 100); r = rate of growth; t0.5 = time at the point of inflection; gi = intraclass correlation
b The six bulk seedlots were not included in calculation of gi for this site

*P< 0.05; **P< 0.01; ***P< 0.001
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correlation prediction equations. Lambeth and Dill (2001) and
a review by White et al. (2007) suggest that the phenotypic
correlations predicted by the Lambeth (1980) equation are
always lower than corresponding genetic correlations. White
et al. (2007) observed that the reported genetic correlations are
usually 0.05 to 0.2 greater than the phenotypic correlations
from Lambeth (1980). However, as explained earlier in this
article, the way the Lambeth (1980) equation was developed
precludes any realistic comparison with observed genetic cor-
relation from any trial and species. In addition, published ge-
netic correlations are often associated with high standard er-
rors and some exceed the permissible range of −1.0 to 1.0
(e.g., Lambeth et al. 1983; Tauer and McNew 1985). This
makes unbiased Pearson’s correlations the more appropriate
substitutes to guard against using erroneously high correla-
tions to develop age-age correlation prediction equations for
practical use. According to Namkoong and Kang (1990), the
presence of a phenotypic correlation does not guarantee

presence of a genetic correlation. However, for an age-age
correlation that is partly due to autocorrelation (Eq. 4), a high
level of similarity between a genetic and phenotypic correla-
tion should be expected. Hence, for practical purposes, phe-
notypic correlations developed in the present study are con-
sidered good substitutes for genetic correlations.

Examination of the correlations in Table 4 shows that at
ORA of 100 years, OSA likely lies between 40 and 50 years.
Coincidentally, this is close to half-ORA Zobel and Talbert
(1984) advocated. Indeed, between 35 and 50 years, r̂t;T

Table 4 Age-age correlation prediction equations

Age White spruce Lodgepole pine

β0 β1 β0 β1

5 1.03458 −0.013849 1.28896 −0.033587
6 1.02211 −0.013201 1.22844 −0.031340
7 1.01100 −0.012573 1.17540 −0.029142
8 1.00111 −0.011961 1.12918 −0.027011
9 0.99232 −0.011365 1.08915 −0.024962
10 0.97778 −0.010644 1.09642 −0.024120
11 0.97266 −0.010113 1.05716 −0.022006
12 0.96830 −0.009594 1.02497 −0.020056
13 0.96462 −0.009088 0.99877 −0.018257
14 0.96153 −0.008592 0.97767 −0.016597
15 0.94270 −0.007763 0.93905 −0.014512
16 0.94351 −0.007346 0.92831 −0.013148a
17 0.94458 −0.006936 0.92109 −0.011896
18 0.94586 −0.006532 0.91675 −0.010742
19 0.94728 −0.006136 0.91476 −0.009674
20 0.92984 −0.005339 0.87807 −0.007811
21 0.93475 −0.005023 0.88568 −0.007041
22 0.93951 −0.004710 0.89410 −0.006326
23 0.94407 −0.004402 0.90298 −0.005660
24 0.94838 −0.004097 0.91200 −0.005040
25 0.93545 −0.003427 0.89169 −0.003792
26 0.94240 −0.003198 0.90612 −0.003391
27 0.94883 −0.002972 0.91953 −0.003017
28 0.95471 −0.002749 0.93170 −0.002669
29 0.96003 −0.002530 0.94247 −0.002346
30 0.95222 −0.002035 0.93482 −0.001662
31 0.95904 −0.001881 0.94674 −0.001472
32 0.96510 −0.001730 0.95689 −0.001296
33 0.97041 −0.001582 0.96539 −0.001131
34 0.97499 −0.001438 0.97235 −0.000978
35 0.97110 −0.001118 0.97002 −0.000654
36 0.97622 −0.001024 0.97660 −0.000572
37 0.98057 −0.000932 0.98190 −0.000496
38 0.98421 −0.000844 0.98610 −0.000426
39 0.98719 −0.000759 0.98936 −0.000362
40 0.98554 −0.000577 0.98870 −0.000227
41 0.98857 −0.000526 0.99149 −0.000196
42 0.99104 −0.000476 0.99365 −0.000168
43 0.99301 −0.000428 0.99528 −0.000142
44 0.99455 −0.000383 0.99650 −0.000119
45 0.99393 −0.000292 0.99629 −0.000069
46 0.99539 −0.000266 0.99728 −0.000059
47 0.99654 −0.000240 0.99803 −0.000050
48 0.99741 −0.000217 0.99857 −0.000042
49 0.99807 −0.000194 0.99897 −0.000035
50 0.99786 −0.000153 0.99890 −0.000018

r̂t;T ¼ β0e
β1d1 e = 2.71828 d1 =T− t

Table 3 Variance components as percentages of the total variance for
cross site analyses of parameters of the logistic growth function (Eq. 5)

Species Trial Trait σα
2 σβ

2 στβ
2 σε

2 gac

LP G127a k 1.52** 18.26*** 5.05*** 75.16 18.54

b 4.81** 2.61*** 3.21*** 89.38 2.74

r 5.79** 2.71*** 4.23*** 87.27 2.88

t0.5 4.22** 8.71*** 4.09*** 82.98 9.09

WS G132a k 3.45* 6.72*** 2.38*** 87.44 6.96

b 2.76* 1.94** 2.37*** 92.94 1.99

r 2.84* 3.70*** 2.74*** 90.71 3.81

t0.5 2.79* 2.81*** 2.94*** 91.46 2.89

WS G133a k 1.85* 3.84** 4.85*** 89.46 3.91

b 3.03* 1.10 2.58** 93.28 1.14

r 2.56* 1.96* 3.72*** 91.76 2.01

t0.5 2.98* 1.97* 3.52*** 91.54 2.03

WS G103b k 3.27*** 9.10** 6.44*** 81.18 9.41

b 17.2*** 0.42 2.81*** 79.54 0.50

r 8.21*** 0.18 3.42*** 88.19 0.19

t0.5 5.02*** 0.51 3.56*** 90.91 0.53

LP G134b k 2.04** 24.96*** 8.47*** 64.53 25.48

b 2.26** 5.61** 6.37*** 85.76 5.74

r 1.35** 12.96** 9.32*** 76.37 13.13

t0.5 1.23** 18.41*** 10.11*** 70.25 18.64

Test sites were treated as a fixed effect; σα
2, σβ

2, στβ
2 , and σε

2 = variance
components for replication within site, family, or provenance, family or
provenance × site interaction and residual, respectively; gac = intraclass
correlation

WS white spruce, LP lodgepole pine
a Progeny trial
b Provenance trial

*P< 0.05; **P< 0.01; ***P< 0.001
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changes only slightly. This suggests that delaying selection or
even continuing to monitor the height r̂t;T after age 35 years is
unnecessary. Height, diameter at breast height (DBH), and
taper determine volume, which is a measure of wood

production in forestry. Figure 3 shows a decline in the corre-
lation (rh,d) between height and DBH as trials grow older. The
range of rh,d in Fig. 3 is 0.76–0.94 (mean = 0.85) for
white spruce and 0.58–0.95 (mean = 0.76) for lodgepole

Table 5 Predicted age-age correlations for long rotation ages (ORA) in white spruce and lodgepole pine

Selection age (years) Rotation age (years) for white spruce Rotation age (years) for lodgepole pine

50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120

10 0.638 0.574 0.516 0.464 0.417 0.375 0.337 0.303 0.418 0.328 0.258 0.203 0.159 0.125 0.098 0.077

11 0.656 0.593 0.536 0.484 0.438 0.395 0.357 0.323 0.448 0.360 0.289 0.232 0.186 0.149 0.120 0.096

12 0.672 0.611 0.555 0.504 0.458 0.416 0.378 0.344 0.478 0.391 0.320 0.262 0.214 0.175 0.144 0.117

13 0.689 0.629 0.575 0.525 0.479 0.438 0.400 0.365 0.508 0.423 0.353 0.294 0.245 0.204 0.170 0.142

14 0.706 0.648 0.594 0.545 0.500 0.459 0.421 0.387 0.538 0.456 0.386 0.327 0.277 0.235 0.199 0.168

15 0.718 0.665 0.615 0.569 0.527 0.487 0.451 0.417 0.565 0.489 0.423 0.366 0.316 0.274 0.237 0.205

16 0.735 0.683 0.635 0.590 0.548 0.509 0.473 0.440 0.594 0.521 0.456 0.400 0.351 0.308 0.270 0.237

17 0.751 0.701 0.654 0.610 0.569 0.531 0.496 0.462 0.622 0.552 0.490 0.435 0.387 0.343 0.305 0.271

18 0.767 0.719 0.673 0.631 0.591 0.554 0.519 0.486 0.650 0.584 0.524 0.471 0.423 0.380 0.341 0.306

19 0.783 0.737 0.693 0.652 0.613 0.576 0.542 0.510 0.678 0.615 0.559 0.507 0.460 0.418 0.379 0.344

20 0.792 0.751 0.712 0.675 0.640 0.607 0.575 0.545 0.695 0.642 0.594 0.550 0.508 0.470 0.435 0.402

21 0.808 0.768 0.731 0.695 0.661 0.629 0.597 0.569 0.722 0.673 0.627 0.585 0.545 0.508 0.473 0.441

22 0.823 0.786 0.749 0.715 0.682 0.651 0.621 0.592 0.749 0.703 0.660 0.620 0.582 0.546 0.512 0.481

23 0.838 0.802 0.768 0.735 0.703 0.673 0.644 0.616 0.775 0.732 0.692 0.654 0.618 0.584 0.552 0.521

24 0.853 0.818 0.785 0.754 0.724 0.695 0.667 0.640 0.800 0.761 0.723 0.688 0.654 0.622 0.591 0.562

25 0.859 0.830 0.802 0.775 0.749 0.723 0.699 0.676 0.811 0.781 0.752 0.724 0.697 0.671 0.646 0.622

26 0.873 0.845 0.819 0.793 0.768 0.744 0.720 0.698 0.835 0.807 0.781 0.755 0.729 0.705 0.682 0.659

27 0.886 0.860 0.835 0.811 0.787 0.764 0.741 0.720 0.858 0.832 0.808 0.784 0.760 0.738 0.716 0.695

28 0.899 0.874 0.851 0.828 0.805 0.783 0.762 0.741 0.878 0.855 0.833 0.811 0.790 0.769 0.749 0.729

29 0.910 0.888 0.865 0.844 0.822 0.802 0.782 0.763 0.897 0.876 0.856 0.836 0.817 0.798 0.779 0.761

30 0.914 0.896 0.878 0.960 0.843 0.826 0.809 0.793 0.904 0.889 0.875 0.861 0.846 0.832 0.818 0.805

31 0.925 0.908 0.891 0.875 0.858 0.842 0.827 0.811 0.921 0.907 0.894 0.881 0.868 0.855 0.843 0.830

32 0.936 0.919 0.904 0.888 0.873 0.858 0.843 0.829 0.935 0.923 0.911 0.899 0.888 0.876 0.865 0.854

33 0.945 0.930 0.915 0.901 0.887 0.873 0.859 0.846 0.947 0.936 0.926 0.915 0.905 0.895 0.885 0.875

34 0.953 0.939 0.926 0.913 0.900 0.887 0.874 0.862 0.957 0.948 0.939 0.930 0.921 0.912 0.903 0.894

35 0.956 0.944 0.934 0.923 0.913 0.903 0.893 0.883 0.961 0.954 0.948 0.942 0.936 0.930 0.924 0.918

36 0.962 0.953 0.943 0.933 0.924 0.914 0.905 0.896 0.969 0.963 0.658 0.952 0.947 0.942 0.936 0.931

37 0.969 0.960 0.951 0.942 0.933 0.925 0.916 0.908 0.756 0.971 0.966 0.961 0.956 0.952 0.947 0.942

38 0.974 0.966 0.958 0.950 0.942 0.934 0.926 0.918 0.981 0.977 0.973 0.690 0.965 0.960 0.956 0.952

39 0.979 0.972 0.964 0.957 0.950 0.943 0.935 0.928 0.985 0.982 0.978 0.975 0.971 0.968 0.964 0.961

40 0.980 0.974 0.969 0.963 0.957 0.952 0.946 0.941 0.986 0.984 0.982 0.980 0.978 0.975 0.973 0.971

41 0.984 0.979 0.974 0.969 0.963 0.958 0.953 0.948 0.990 0.988 0.986 0.984 0.982 0.980 0.978 0.976

42 0.987 0.983 0.978 0.973 0.969 0.964 0.959 0.955 0.992 0.991 0.989 0.987 0.986 0.984 0.982 0.981

43 0.990 0.986 0.982 0.977 0.973 0.969 0.965 0.961 0.994 0.993 0.991 0.990 0.988 0.987 0.986 0.984

44 0.992 0.988 0.985 0.981 0.977 0.974 0.970 0.966 0.996 0.994 0.993 0.992 0.991 0.990 0.989 0.988

45 0.992 0.990 0.987 0.984 0.981 0.978 0.975 0.972 0.996 0.995 0.995 0.994 0.993 0.993 0.992 0.991

46 0.994 0.992 0.989 0.986 0.984 0.981 0.978 0.976 0.997 0.996 0.996 0.995 0.995 0.994 0.994 0.993

47 0.996 0.993 0.991 0.989 0.986 0.984 0.982 0.979 0.998 0.997 0.997 0.996 0.996 0.995 0.995 0.994

48 0.997 0.995 0.993 0.991 0.988 0.986 0.984 0.982 0.998 0.998 0.998 0.997 0.997 0.996 0.996 0.996

49 0.998 0.996 0.994 0.992 0.990 0.988 0.986 0.984 0.999 0.999 0.998 0.998 0.998 0.997 0.997 0.997

50 1.000 0.996 0.995 0.993 0.992 0.990 0.989 0.987 1.000 0.999 0.999 0.998 0.998 0.998 0.998 0.998
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pine. The decline is obviously greater in lodgepole pine
than in white spruce.

According to Lotan and Critchfield (1990), stand density
greatly affects diameter and yield per hectare in lodgepole
pine. Stand density is much lower in field trials than in fire-
origin natural stands. Nevertheless, any shading due to crown
closure in field trials will affect lodgepole pine more than
white spruce. In Scots pine (Pinus sylvestris L.), Kroon et al.
(2008) showed that genetic and phenotypic correlations be-
tween height and diameter on three sites were less than 0.80.
Volume production was genetically and phenotypically better
correlated with diameter (r> 0.95) than height (r< 0.85).
Huang et al. (1992) showed that the relationship between
height and diameter of all major forest tree species in
Alberta was nonlinear. Therefore, evidence does not support
estimation of volume genetic gain based on selection for
height growth only. One way to overcome this problem is to
estimate genetic gain directly from volume when trees are old
enough to provide meaningful DBH measurements. For
young trees where height measurements are the only reliable
data, prediction of volume genetic gain based merely on
height breeding values carries some risk of selecting wrong
genotypes and overestimating genetic gain.

5 Conclusions

This study developed a method of obtaining age-age cor-
relations for converting height genetic gain at a measure-
ment age to genetic gain at a rotation age. The method is
based on modelling height growth trajectories of white
spruce and lodgepole pine in provenance and progeny tri-
als in Alberta. The age-age correlation prediction equations
developed in this study were based on height predicted by
the logistic growth function. Parameters (b, k, and r) of the
growth function have impact on r̂t;T , because they deter-
mine the predicted heights. According to Richards (1959),

b depends on the timing of the first measurements, whereas
r determines the shape of the growth curve. As the asymp-
totic parameter, k represents height expected to be reached
by a tree during the prediction period, whereas t0.5 is the
point at mid k. Because all parameter are estimated from
tree measurement data, the number of measurements,
timing, and intervals between serial measurements will
definitely affect the logistic growth functions, the predicted
heights, and consequently r̂t;T. It is expected that measur-
ing trees long enough at short regular intervals beginning
at early ages will provide the best prediction of tree height
growth trajectories and consequently more reliable age-age
prediction equations. The earliest and latest height mea-
surements for the data used in the present study are 5 and
32 years, respectively. Although measurement intervals
differ among trial series (Table 1), they are short enough
to provided adequate tracking of the tree growth trajectory.
This attest to the strength and reliability of the age-age
correlation prediction equations developed in the present
study.

Based on r̂t;T and the assumptions behind themethodology,
it can be concluded that selection at 40–50 years is sufficient
for estimating height genetic gain at 100 years with no need
for adjustment with the age-age correlation. Although the cor-
relations and correlation prediction equations presented in this
article were developed using data from white spruce and
lodgepole pine in Alberta, they may be used for other conifers
with similar mode of height growth. For example, white
spruce correlations may be used in other spruces, whereas
lodgepole pine correlations may be used in other pine species.
Moreover, the assumptions on the conifer height growth mod-
el employed in this study are considered realistic enough to
allow the correlations to be used in conifers other than Pinus
and Picea species. Use of these correlations for deciduous
species is left for tree breeder’s discretion, because the mode
of height growth of coniferous and deciduous species may be
very different.

Fig. 3 Age-related decline for the
correlation between height and
diameter at breast height
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