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Abstract
& Key message When predicting forest growth at a region-
al or national level, uncertainty arises from the sampling
and the prediction model. Using a transition-matrix mod-
el, we made predictions for the whole Catalonian forest
over an 11-year interval. It turned out that the sampling
was the major source of uncertainty and accounted for at
least 60 % of the total uncertainty.
& Context With the development of new policies to mitigate
global warming and to protect biodiversity, there is a growing
interest in large-scale forest growth models. Their predictions
are affected by many sources of uncertainty such as the sam-
pling error, errors in the estimates of the model parameters,
and residual errors. Quantifying the total uncertainty of those
predictions helps to evaluate the risk of making a wrong
decision.
& Aims In this paper, we quantified the contribution of the
sampling error and the model-related errors to the total

uncertainty of predictions from a large-scale growth model
in Catalonia.
& Methods The model was based on a transition-matrix ap-
proach and predicted tree frequencies by species group and
5-cm diameter class over an 11-year time step. Using Monte
Carlo techniques, we propagated the sampling error and the
model-related errors to quantify their contribution to the total
uncertainty.
& Results The sampling variance accounted for at least 60 %
of the total variance in smaller diameter classes, with this
percentage increasing up to 90 % in larger diameter classes.
& Conclusion Among the few possible options to reduce sam-
pling uncertainty, we suggest improving the variance–covari-
ance estimator of the predictions in order to better account for
the multivariate framework and the changing plot size.

Keywords Large-scale predictions . Forest growth .

Transition matrix . Horvitz–Thompson estimator . Error
propagation

1 Introduction

Traditionally, forest growthmodels have been used for explor-
ing different management and silvicultural options (Vanclay
1994, p.1). However, in the last two decades, the United Na-
tions Framework Convention on Climate Change (UNFCCC)
and the international negotiations concerning the second com-
mitment period of the Kyoto Protocol (cf. Grassi et al. 2012)
have emphasized the need for large-scale growth models, i.e.,
models that can provide predictions on large areas. The parties
to those conventions need to make predictions of their forest
resources and carbon stocks at the national level (e.g., Groen
et al. 2013).
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Apart from climate change issues, large-scale forest growth
models can be useful from an economic and technical perspec-
tive. They may contribute to the development of national for-
est policies and the assessment of the sustainability and devel-
opment potential of the forest sector. For instance, energy
production from forest biomass has become a major issue
and is now under study in many countries (e.g., Nord-Larsen
and Talbot 2004; François et al. 2014).

The availability of large-scale forest growth models is cur-
rently limited. The EFISCEN matrix model, which was orig-
inally developed by Sallnäs (1990), and the Global Forest
Model (Kindermann et al. 2006) count among the very few
of their kind, although they have been used in many European
countries in order to produce national or regional forecasts
since the early 2000s (e.g., Nabuurs et al. 2000; Thürig and
Schelhaas 2006; Groen et al. 2013). Other large-scale growth
models are being developed to meet the demand for these
types of predictive tools (e.g., Wernsdörfer et al. 2012;
Packalen et al. 2014).

The use of growth models always implies a certain degree
of uncertainty in the predictions. Kangas (1999) and
McRoberts and Westfall (2014) list four sources of errors in
model predictions: (i) model misspecification; (ii) errors in the
independent variables, including the sampling and measure-
ment errors; (iii) the residual error; and (iv) errors in the model
parameter estimates. The propagation of these different errors
in plot and stand-level growth predictions have been studied
since the mid-1980s in forestry (e.g., Mowrer and Frayer
1986; Gertner 1987; Gertner and Dzialowy 1984; Mowrer
1991; Kangas 1999; Fortin et al. 2009; Mäkinen et al. 2010).
However, to the best of our knowledge, very little information
is available regarding the error propagation in national and
regional forest growth predictions.

While the uncertainty associated with large-scale growth
predictions remains to be assessed, some recent studies have
addressed the precision of biomass and volume estimates in
national forest inventories. It turns out that the uncertainty due
to the residual error and the errors in the model parameter
estimates is much smaller than the uncertainty induced by
the sampling (McRoberts and Westfall 2014; Ståhl et al.
2014; Breidenbach et al. 2014).

When dealing with large-scale growth predictions, it could
reasonably be assumed that the same conclusions apply: The
sampling error may be the most important component of the
total uncertainty. However, an additional challenge arises from
the fact that growth models are usually more complicated than
biomass and volume models. As such, they might behave
differently in terms of error propagation and, therefore, the
assertion that the sampling error is the major component
should be verified.

Given the need for large-scale growth models and their role
in the upcoming international negotiations concerning climate
change, it seemed important to assess prediction uncertainty.

The purpose of this study was to assess the uncertainty of
large-scale predictions induced by the model residual error,
the errors in the parameter estimates, and the sampling. More
precisely, it aimed at distinguishing the contribution of each
source of uncertainty to the total uncertainty of the predictions.
Considering the extent of this work, we deliberately omitted
the model misspecification and the measurement errors in the
assessment.

To achieve our objective, we used the region of Catalonia,
Spain, as a case study. Data from the Spanish national forest
inventory were used to fit a population growthmodel based on
a transition-matrix approach. This model coupled to a modi-
fied Horvitz–Thompson estimator made it possible to make
predictions of tree frequencies by species group and diameter
class for the entire region. The error propagation was then
carried out using Monte Carlo techniques (cf., Efron and
Tibshirani 1993).

2 Material and methods

2.1 Data and sampling design

The data we used in the study are a subset of the second and
the third Spanish national forest inventory (hereafter referred
to as NFI2 and NFI3, respectively) that matched the region of
Catalonia. The Spanish NFI follows a stratified sampling de-
sign (Alberdi Asensio et al. 2010). The stratification was car-
ried out in each province independently, Catalonia being com-
posed of four provinces. The primary criteria for the stratifi-
cation were the homogeneity in terms of volume and the rel-
evance of the forest type for management purposes (MAPA
1990, p.170). Other criteria such as the dominant species, the
crown coverage, and the development stage also contributed
to the stratification. All these criteria were assessed using ae-
rial photographs and existing maps (MAPA 1990, p.170).

In each stratum, the location of the observation points was
established during the NFI2 campaign using a 1×1 km grid,
leading to a systematic design and a similar sampling intensity
across the strata. Each observation point consists of a perma-
nent plot.

In Catalonia, the field measurements of NFI2 and NFI3
were carried out in 1989 and 2000, respectively, leaving
an 11-year interval between the two series of observa-
tions. Although the plots were said to be permanent, they
were not all visited again during NFI3, which is partly be
due to land use changes. Some new permanent plots were
established during NFI3 though, to account for new for-
ested areas. For the sake of this study, we considered the
stratum areas remained constant over time and we kept
only the plots that were measured in both inventories,
for a total of 8795 plots, divided into 115 strata. A sum-
mary of the sampling scheme can be found in Table 1.
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Each permanent plot consisted of four concentric cir-
cular subplots in which all trees above a minimum di-
ameter threshold were tagged and measured. More spe-
cifically, all trees with diameter at breast height (dbh,
1.3 m in height) greater than 7.5, 12.5, 22.5, and
42.5 cm were measured in a 5-, 10-, 15-, or 25-m-
radius subplot, respectively. Different metrics such as
tree dbh and height were recorded.

When the plots were revisited during NFI3, the status of
each tree was also recorded. Consequently, it could be known
whether a particular tree survived and, if it did, what its diam-
eter increment had been over the 11-year interval. In addition
to this, recruits, i.e., those new trees that had reached the
minimum diameter threshold during the interval, were also
recorded.

The subset originally contained about a hundred species,
which made a species-specific analysis impossible. For prac-
tical reasons, the different species were grouped into four
classes:

& Major commercial softwood species (s=1)
& Other softwood species (s=2)
& Typical Mediterranean deciduous species (s=3)
& Other deciduous species (s=4)

and swas defined as the species group index. The details of
this grouping are provided as Supplementary material (see
Tables S1, S2, S3, and S4). A summary of the dataset can be
found in Table 2.

2.2 Estimating the population total

The theory behind the estimators for stratified sampling
schemes is well known (cf., Gregoire and Valentine 2008;
Mandallaz 2008). The population total of a characteristic y is
usually estimated using a Horvitz–Thompson estimator
(Horvitz and Thompson 1952):

τ̂ ¼
XK

k¼1

X
i¼1

nk Nkyk;i
nk

ð1Þ

where τ is the population total, Nk is the total number of sam-
pling units in stratum k, yk, i is the variable of interest measured
in sample unit i of stratum k, and nk is the sample size in
stratum k. The variance of the estimator (1) can be estimated
as follows:

d
Var τ̂

� �
¼

XK

k¼1

N 2
k 1−

nk
Nk

� � bσ2
k

nk

¼
XK

k¼1

Nk Nk−nkð Þ
bσ2
k

nk

ð2Þ

where bσ2
k is the estimated variance of yk, i in stratum k.

There are two issues related to estimators (1) and (2). First
of all, decision makers are often more interested in tree fre-
quencies by species group and diameter class than in the total
number of trees. In many forest inventories, tree diameters are
grouped into 5-cm diameter classes in order to better represent
the forest structure. The classes are referred to by their median,
so that the 20-cm diameter class encompasses all trees with
17.5 cm≤dbh<22.5 cm. Given this preference for frequen-
cies by species group and diameter class, it is necessary to
estimate a vector of total frequencies τ instead of a single
parameter τ.

The second issue is that the number of sampling units Nk is
not constant within a particular stratum since the plot radius
changes depending upon tree dbh. As a result, there is no
single Nk for stratum k but, instead, a vector of Nk. If the
diameter classes match the thresholds for the different plot
radii, we can defineNk as a vector that contains the Nksjwhere
s is the species group index and j is the diameter class index. If
pj is the plot radius (m) for diameter class j, then the elements
of Nk are calculated as

∀s : Nks j ¼ 10000Ak

πp2j
:

Given these two issues, the Horvitz–Thompson estimator
(1) can be modified as follows:

τ̂ ¼
XK

k¼1

1

nk

X
i¼1

nk

diag N kð Þyk ;i ð3Þ

Table 1 Summary of the sampling scheme

Characteristic Symbol Total

Area (ha) 1,626,212

Number of strata K 115

Sample size 8795

Characteristic Symbol Min Mean Max

Area per stratum (ha) Ak 3531 14,141 56,709

Sample size per stratum nk 5 76.5 386

Table 2 Summary of the dataset

Characteristic Species group

s= 1 s= 2 s= 3 s= 4

Number of dead or harvested trees 10,050 11,777 9109 4646

Number of survivors 28,293 41,783 29,952 11,559

Average annual diameter increment 3.1 3.1 1.9 2.9
between NFI2 and NFI3 (mm year−1)

New trees in NFI3 1878 2922 6855 2713
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where yk,i is the vector of tree frequencies in plot i of stratum k.
The elements of this vector are the tree frequencies yk,isj. In the
context of this study, the vector yk,i contains four subvectors,
i.e.,

yk;i ¼
yk;i1•
yk;i2•
yk;i3•
yk;i4•

0
BB@

1
CCA

with each one of these subvectors representing a single species
group:

yk;is• ¼
yk;is1
yk;is2
⋮
yk;is J

0
BB@

1
CCA

where J is the number of diameter classes.
A “crude” estimator of the variance of estimator (3) is

d
Var τ̂

� �
¼

XK

k¼1

1

nk
Z1=2
k Φ̂kZ

1=2
k ð4Þ

where Zk=diag(Nk • (Nk−nk)) with • being the element-wise
operator (also referred to as the Hadamard product) and nk=

(nk,nk…)T, and Φ̂k is the estimated variance–covariance ma-
trix of yk,i. This variance–covariance matrix is easily estimated
as

Φ̂k ¼
X nk

i¼1
yk;i−yk

� �
yk;i−yk

� �T

nk−1

where yk ¼
∑nk

i¼1yk;i
nk

:

2.3 Population growth model

Usher (1966) is credited as being the first to introduce a tran-
sition matrix model in forestry. Since then, this approach has
been widely used in a large array of forest conditions (e.g.,
Solomon et al. 1986; Liang and Buongiorno 2005;
Wernsdörfer et al. 2012; Picard and Liang 2014).

Matrix models are based on the assumption that individuals
in a population (e.g., trees) can be classified into discrete clas-
ses of an individual-specific key feature, such as the afore-
mentioned diameter classes. To model diameter increments,
individuals are allowed to move from diameter class j to j ’ in
discrete time with a transition probability of πj ’,j. At the same
time, individuals can leave the population if they are harvested
or if they die, from any class jwith a probabilitymj, whereas rj
new individuals can enter the population into any class j
through recruitment. Note that these probabilities and the
number of recruits are assumed to be dependent only on the

current state. In other words, the previous growth history of a
particular individual has no impact on the probabilities at a
given time, which is commonly referred to as the Markov
assumption (Vanclay 1994, p.44).

We can assume that these probabilities and recruitment are
species-group-dependent, so that we obtain πs,j ’,j,ms,j, and rs,j.
Using matrix notation, the model can be expressed as

yk;i;tþ1 yk;i;t ¼ USyk;i;t þ rtþ1 þ ϵk;i;tþ1

�� ð5Þ

where vector yk,i,t + 1 contains the frequencies by species group
and diameter class in plot i of stratum k at time t+1, matrix U
contains the transition probabilities, matrix S is a diagonal
matrix whose elements are the probability of survival, vector
yk,i,t contains the frequencies by species group and diameter
class at time t, rt + 1 is a column vector that contains the mean
number of recruits by species group and diameter class at time
t+ 1, and ϵk,i,t + 1 is a vector of residual error terms with
E[ϵk,i,t + 1] =0 and Var(ϵk,i,t + 1) =Ψ.

For the sake of simplicity, let us assume that there is a
single plot radius and, therefore, a uniqueNk by stratum. Then,
the above transition matrix model (5) can be upscaled at the
population level in order to provide the total stem frequencies
at time t+1:

τ tþ1 ¼
XK

k¼1

X
i¼1

Nk

yk;i;tþ1

¼
XK

k¼1

XNk

i¼1

USyk;i;t þ rtþ1 þ ϵk;i;tþ1

¼ USτ t þ ρtþ1 þ ξtþ1

ð6Þ
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where ρt + 1 is a vector that contains the total number of re-
cruits by species group and diameter class in the population,

i.e., ρtþ1 ¼ ∑K
k¼1∑

Nk
i¼1rtþ1, and ξtþ1 ¼ ∑K

k¼1∑
Nk
i¼1ϵk;i;tþ1. Vec-

tor ξt + 1 actually represents the difference between the true
total of the population and the estimated total, i.e.,
ξtþ1 ¼ τ tþ1−USτ t−ρtþ1. The same upscaling can be per-
formed with the vectorNk at the cost of a tedious notation that
we omit here.

If the model is unbiased and the population size is large
enough, then we can expect ξt + 1 to be close to the expectation
of ϵk,i,t + 1, i.e., 0. However, this vector has a variance
Var(ξt + 1) = diag(∑k = 1

K Nk)
1/2Ψdiag(∑k = 1

K Nk)
1/2 where Ψ is

the variance–covariance of the ϵk,i,t + 1. This variance is

unbiasedly estimated by replacing Ψ by its estimate Ψ̂
Being population parameters, the “true”matricesU and S and

the “true” vectors τt and ρt+1 in model (6) are unknown. The
total of population τt can be unbiasedly estimated using the
modified Horvitz–Thompson estimator (Eq. 3), which takes
into account the different plot radii. The transition and survival
probabilities can be estimated from the monitoring of the indi-
vidual trees (see Supplementary material). However, estimating



the total recruitment ρt+1 is not straightforward. As a matter of
fact, the different plot radii hinder us from estimating this vector.

The inventory defines a recruit as a tree that was too small
during NFI2 but meets the dbh requirement for being included
in NFI3. Because the plot radius varies across the diameter
classes, some of those recruits might not be true recruits stricto
sensu, i.e., trees that were below the 7.5-cm minimum diam-
eter during NFI2 and that grew over this threshold during the
interval.

In fact, the total number of recruits, let ρ
:
tþ1 denote this

variable, is the sum of the true recruits ρt+1 plus all the trees
above the 7.5-cmminimum diameter but not recorded in NFI2
because they were located in the outer rings of the plots. In the
Spanish inventory, for example, the observed recruits in the
15-cm diameter class are those that were initially smaller than
7.5 cm in dbh, plus those located between 5 and 10m from the
plot center that were initially in the 10-cm diameter class and
increased up to the 15-cm diameter class.

It is possible to derive the total number of true recruits by
subtracting the “fake” recruits as calculated from the popula-
tion total τt and the transition matrix US:

ρtþ1 ¼ ρ
:
tþ1 �HUSτ t ð7Þ

whereH is a design matrix that accounts for the change in plot
radius along with diameter classes. The details of this matrix
are annexed to this paper (see Appendix). Vector ρ

:
tþ1 is easily

estimated using the Horvitz–Thomson estimator in Sect. 2.2,
whereas H is defined by the inventory protocol.

2.4 Model fit and uncertainty

Model (6) applies at the population level and it does not de-
pend on the strata. The estimation of the probabilities inU and
S is made possible through logistic regressions (see Supple-
mentary material, Section S2). However, the sampling scheme
is stratified and, consequently, the observations in the dataset
may not share the same samplingweights. Using those logistic
regressions with no correction factors might give more impor-
tance to some strata just because they were more intensively
sampled than they would have been in a pure random design,
thereby leading to biased estimates of the population
parameters.

In such a context, the sampling weights of the observations
can be included in the logistic regressions in order to take into
account the sampling scheme (Hosmer et al. 2013, p.233). The
sampling weights are also used to correct the estimated vari-
ance–covariance matrix of the parameter estimates. For more
details about this statistical approach, the reader is referred to
Hosmer et al. (2013). The SURVEYLOGISTIC procedure
available in the SAS System (SAS Institute Inc. 2008,
Ch.84) allows for the fit of such models. This is the software

we used in this paper to fit the logistic regressions behind the
transition and survival probabilities.

In the end, all the components of model (6) can be
unbiasedly estimated using either the modified Horvitz–
Thompson estimator, the logistic regressions with sampling
weights, and the data from NFI2 and NFI3, which yields

~τN FI3 ¼ ÛŜτ̂NFI2 þ ρ̂NFI3 ð8Þ

where ρ̂NFI3= ρ̂
:
NFI3−HÛŜτ̂NFI2 and ~τNFI3 is the prediction

as opposed to τ̂NFI3, which is the population total as estimated
from NFI3 using the modified Horvitz–Thompson estimator.
Term ξt + 1 in Eq. 6 can be omitted since it is equal to 0
under the assumption of unbiasedness. It still contributes to
the variance of ~τNFI3 though.

The true total of the population for the third national forest
inventory remains unknown. Because the estimated frequen-
cies from NFI3 are unbiased, we took them as a reference. If
the growth model is unbiased as well, then we can expect the
predicted frequencies to be close to the estimated ones. Abso-
lute and relative biases were estimated by species group and
diameter class in order to assess the fit of the model.

To test the impact of the sampling scheme, the growth
model was also fitted using standard logistic regressions in-
stead of those adapted to the stratified design. The standard
logistic regressions assume even sampling weights across the
observations as in a random sampling scheme.

For the purpose of prediction, i.e., predictions beyond the
third national forest inventory, the recruitment vector and the
variance–covariance of ξt + 1 were assumed to remain un-
changed. For the fourth national forest inventory (NFI4), the
model could be used as follows:

~τNFI4 ¼ ÛŜτ̂NFI3 þ ρ̂ ð9Þ
where ρ̂ = ρ̂N FI3

There were at least two sources of uncertainty in model (9).
The first one was the uncertainty due to the sampling. This
uncertainty stemmed from the estimated population total from
the third campaign (τ̂NFI3 ). The second source of uncertainty
was related to the model and came from the estimated
transition probabilities (Û), survival probabilities (Ŝ), re-
cruitment (ρ̂ ), and ξt + 1.

The logistic regression models that define the prob-
abilities in matrices Û and Ŝ are nonlinear because of
the logit link functions. Consequently, combining the
two aforementioned sources of uncertainty was not
straightforward. Monte Carlo techniques offered a sim-
pler alternative to a complex analytical development.
The technique consists in drawing a large number of
realizations for some random variables in order to re-
produce the variability of a particular phenomenon
(Vanclay 1994, p.7).
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To distinguish the contribution of each source of uncertain-
ty to the total uncertainty, we actually ran three simulations,
each one based on 10,000 realizations: a first one with random
deviates in τ̂NFI3, a second one with random deviates in all
the other components except τ̂NFI3, and, finally, a third one
with random deviates in all the components. These simula-
tions provided the uncertainty due to the sampling only, to
the model only, and to both sources, respectively. There was
no obvious link between τ̂NFI3 and all the other components,
neither in terms of covariance nor in the model formulation.
Consequently, the sum of the variances obtained in the first
two simulations should be approximately equal to that of the
third simulation where both sources of uncertainty were taken
into account. This third simulation actually represented a sort
of benchmark to make sure the simulations are consistent.

3 Results

3.1 Estimated total frequencies

The estimated total frequencies by species group and diameter
class as calculated using estimator (3) are shown in Table 3 for
NFI2 and NFI3. The total frequencies tended to decrease
along with the diameter classes for all species in the two in-
ventories. The all-diameter total frequencies indicated that the
other softwoods as well as the Mediterranean deciduous spe-
cies were the most abundant groups. For all species groups,
the all-diameter total frequencies increased between NFI2 and
NFI3, with the most notable increase being in the Mediterra-
nean deciduous species group.

The estimated all-diameter and all-species total frequencies
were τ̂NFI2 = 1,000,419,931 trees and τ̂NFI3 = 1,114,523,220.
The 0.95 confidence intervals associated with these all diam-
eter and all-species total frequencies were

for NFI2,

983,391,969 ≤ τNFI2 ≤ 1,017,447,894

for NFI3,
1,096,565,991 ≤ τNFI3 ≤ 1,132,480,450
Considering the extent of the estimated variance–covari-

ance matrices of τ̂NFI2 and τ̂NFI3, they are not shown here
but are available upon request to the authors.

3.2 Population growth model

Taking NFI3 as a reference, the comparison of the estimated
biases for the model based on weighted logistic regressions
and the one using standard logistic regressions are shown in
Fig. 1. Given the larger magnitude of the frequencies in small-
er diameter classes, larger differences were also observed in

those classes. For all species groups, the logistic regressions
accounting for the stratified sampling scheme yielded smaller
biases than standard logistic regressions in all diameter clas-
ses, except the 25-cm diameter class in the commercial soft-
woods and the 20-cm diameter class in the Mediterranean
deciduous species group (Fig. 1a, c). The largest difference
was observed forMediterranean deciduous species in the 10-cm
diameter class, where the model with standard logistic
regressions overestimated the total frequency by more than
1×107 trees, whereas there was no perceptible bias for the
model based on weighted logistic regressions (Fig. 1c).

Estimated relative biases are shown in Fig. 2. Those biases
were small for all species groups in the smaller diameter clas-
ses. Above the 50-cm threshold, the biases increased and
ranged from −35 % to 20 %. There were only a few large

Table 3 Estimated tree frequencies by species group and diameter class
(d.c.) for NFI2 and NFI3 (frequencies expressed in thousands of trees; the
70-cm diameter class encompasses all trees with dbh ≥67.5 cm)

d.c. Commercial softwoods Other softwoods

(cm) NFI2 NFI3 NFI2 NFI3

10 60,518 56,264 136,000 118,843

15 45,575 43,457 91,630 85,125

20 33,512 36,210 57,667 64,965

25 18,091 22,928 28,631 37,349

30 8,903 12,638 13,647 19,898

35 4,210 6,100 5,931 9,626

40 1,845 2,783 2,617 4,232

45 779 1,047 845 1,392

50 457 609 351 616

55 232 316 159 269

60 111 190 77 95

65 62 72 33 43

70 115 143 56 73

Total 174,408 182,757 337,645 342,526

d.c. Mediterranean deciduous Other deciduous

(cm) NFI2 NFI3 NFI2 NFI3

10 249,455 279,953 76,343 91,986

15 77,341 102,138 25,512 28,549

20 24,495 37,265 11,122 14,660

25 8,192 11,612 5,085 6,875

30 3,497 4,783 2,325 3,729

35 1,523 2,113 1,059 1,855

40 643 907 558 1,026

45 229 308 257 410

50 127 172 145 250

55 69 76 93 161

60 38 43 57 91

65 29 37 23 40

70 49 68 102 137

Total 365,686 439,473 122,680 149,767
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diameter classes, mainly in the other softwood and other de-
ciduous species groups (Fig. 2b, c), for which the model with
the standard logistic regressions performed better. In most
cases though, the model with weighted logistic regressions
yielded better results. The resulting parameter estimates of
those weighted regressions as well as the estimated recruit-
ment vector ρ̂: are available online as Supplementary material
(see Tables S5 and S6).

The predictions for the fourth national forest inventory as
estimated from the third Monte Carlo simulation, i.e., the one
that considered both sources of uncertainty, are shown in
Table 4. The realizations of the frequencies were nearly Gauss-
ian for all combinations of species groups and diameter classes.

In terms of relative values, the width of the Monte Carlo con-
fidence intervals increased along the diameter classes, ranging
from ±3 to ±6 % for smaller-diameter classes, up to more than
±20 % in the 70-cm diameter class. The total frequencies per
species group had smaller relative errors that led to relative
confidence intervals of ±2.5 to ±4.5 %. Compared with the
estimated frequencies in NFI3 (Table 3), the total frequencies
were expected to significantly increase in the Mediterranean
deciduous and the other deciduous species groups.

There was no major departure between the sum of the var-
iance in the first twoMonte Carlo simulations and the variance
of the third one, which supported the assumption of indepen-
dence between sampling and model-related errors. For all the
species groups and diameter classes, the uncertainty due to the

a b

c d

Fig. 1 Estimated biases for the model with weighted logistic regressions
(dots) and the model with standard logistic regressions (triangles)

a b

c d

Fig. 2 Estimated relative biases for the model with weighted logistic
regressions (dots) and the model with standard logistic regressions
(triangles)

Table 4 Predicted tree frequencies (~τNFI4) with their relative 0.95
confidence intervals (CIrel) by species group and diameter class (d.c.)
for NFI4 (frequencies expressed in thousands of trees; the 70-cm
diameter class encompasses all trees with dbh ≥67.5 cm)

d.c. Commercial softwoods Other softwoods

(cm) ~τNFI4 CIrel ~τNFI4 CIrel
10 53,758 [−5.6 %, +5.6 %] 110,961 [−5.0 %, +5.0 %]

15 42,216 [−5.3 %, +5.5 %] 78,820 [−4.5 %, +4.4 %]

20 35,184 [−3.8 %, +3.8 %] 62,543 [−3.2 %, +3.2 %]

25 24,750 [−3.8 %, +3.7 %] 42,038 [−3.2 %, +3.2 %]

30 15,890 [−3.4 %, +3.3 %] 25,604 [−2.9 %, +2.9 %]

35 8,511 [−4.1 %, +4.1 %] 13,459 [−3.6 %, +3.5 %]

40 4,140 [−5.3 %, +5.4 %] 6,637 [−4.6 %, +4.7 %]

45 1,603 [−8.2 %, +8.5 %] 2,369 [−7.4 %, +7.5 %]

50 820 [−8.5 %, +8.6 %] 1,059 [−7.1 %, +7.2 %]

55 433 [−9.9 %, +9.9 %] 457 [−9.4 %, +9.4 %]

60 246 [−11.5 %, +11.8 %] 193 [−13.1 %, +13.3 %]

65 124 [−15.8 %, +16.0 %] 76 [−15.5 %, +15.5 %]

70 169 [−17.9 %, +18.0 %] 91 [−22.2 %, +22.7 %]

Total 187,856 [−3.1 %, +3.2 %] 344,307 [−2.8 %, +2.7 %]

d.c. Mediterranean deciduous Other deciduous

(cm) ~τNFI4 CIrel ~τNFI4 CIrel
10 296,455 [−3.2 %, +3.1 %] 98,584 [−5.2 %, +5.3 %]

15 121,050 [−3.3 %, +3.3 %] 33,886 [−6.1 %, +6.2 %]

20 48,939 [−3.1 %, +3.1 %] 16,885 [−6.0 %, +6.0 %]

25 17,187 [−3.9 %, +3.8 %] 8,424 [−6.8 %, +6.9 %]

30 6,649 [−4.6 %, +4.6 %] 4,888 [−7.7 %, +8.0 %]

35 2,874 [−6.0 %, +6.2 %] 2,696 [−9.5 %, +9.8 %]

40 1,274 [−8.3 %, +8.4 %] 1,428 [−10.5 %, +10.5 %]

45 449 [−13.3 %, +13.0 %] 698 [−15.1 %, +14.6 %]

50 218 [−13.9 %, +13.8 %] 375 [−15.4 %, +15.2 %]

55 110 [−19.5 %, +19.2 %] 207 [−16.2 %, +16.0 %]

60 56 [−23.9 %, +24.1 %] 130 [−15.7 %, +16.3 %]

65 39 [−25.9 %, +26.3 %] 75 [−20.1 %, +20.1 %]

70 77 [−38.4 %, +39.1 %] 160 [−28.1 %, +28.1 %]

Total 495,376 [−2.6 %, +2.6 %] 168,435 [−4.3 %, +4.3 %]
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sampling accounted for more than 60% of the total variance in
most cases, except for the first diameter class and the 30-cm
diameter class in the other deciduous species group (Fig. 3).
For all species groups, the proportion tended to increase along
with the diameter classes, with more than 80% of the variance
due to the sampling in the 70-cm diameter class. The variance
induced by the sum of the error terms in the model, i.e., ξt + 1,
accounted for less than 0.2 % of the total variance (results not
shown).

4 Discussion

Taking both the sampling uncertainty and the model uncer-
tainty into account in an 11-year forecast of the Catalonian
forest, we obtained relative errors on predicted frequencies
that ranged from ±5% in the smallest diameter classes to more
than ±20 % in the largest ones (Table 4). It appears that the
sampling uncertainty represents the biggest share in the total
uncertainty. In most cases, the sampling variance accounted
for at least 60 % of the total variance, with this proportion
increasing along with the diameter classes (Fig. 3). As a matter
of fact, the model variance appeared to be the major source of
uncertainty only for the 10-cm diameter class. All other things
considered, the predictions for the 10-cm diameter class are
more highly impacted by the recruitment vector ρ̂ than those
of larger diameter classes. Although this vector is part of the
model, its estimation primarily relies on the estimate of ρ

:
NFI3

and, to a certain extent, on the estimate of τNFI2 for recruits in
diameter classes larger than 10 cm (see Eq. 7). These two
estimates, ρ̂:NFI3 and τ̂NFI2, were obtained through sampling.
Put this way, it clearly appears that the sampling contributes
more uncertainty to the system than the estimates of the

transition and mortality probabilities in matrices U and S
and the variance of the sum of residual error terms ξt + 1.

This result is in accordance with recent studies on this
topic. Breidenbach et al. (2014) and Ståhl et al. (2014) com-
pared model and sampling variability in a context of biomass
estimation from the Norwegian, Finnish, and Swedish nation-
al forest inventories, and they found out that the model-related
variability only accounted for 28 and 10 % of the total vari-
ability, respectively. Moreover, McRoberts and Westfall
(2014) reported that the model-related uncertainty was depen-
dent on the number of observations used to fit the model.
Because most models are based on least squares and maxi-
mum likelihood estimators, which are consistent, a larger
number of observations obviously results in smaller variances
for the parameter estimates.

In our case study, the logistic regression models from
which mortality and transition probabilities were pre-
dicted were based on a maximum likelihood approach
and they were fitted to more than 100,000 tree observa-
tions (Table 2), which resulted in small variances for the
parameter estimates. Even if the variances associated
with mortality and transition probability predictions in-
creased at the edge of the data range, i.e., in the larger-
diameter classes, this increase was nothing compared to
the increase in the sampling variability.

The sum of the residual error terms ξt + 1 contributed for
less than 1 % to the total variance. Working with the estimate
of the mean, McRoberts and Westfall (2014) also concluded
that the contribution of residual error terms to the uncertainty
of the estimate of the mean was relatively small. When esti-
mating the total of a population, the contribution of the resid-
ual error terms to the variance of τ̂ is N IVar(ϵ). With the
estimate of the mean, the contribution of the residual error

terms becomes Var ϵð Þ
N . Thus, when estimating the mean, the

contribution of the residual error terms tends toward 0 as the

population size increases. This assertion is false when estimat-
ing the total as the variance induced by the residual error terms
increases along with the population size. In our case study, this
contribution remained relatively small because the variances

of the ϵk,i,t + 1 were already small. This contribution could rap-
idly increase if the variances of the residual error terms were
larger though.

The assumption of independence between the residual
error terms from one plot to another may also explain
the relatively small contribution of the residual error to
the total uncertainty. It is well known that climate con-
ditions affect all diameter increments either positively or
negatively. When not explicitly considered in the model,
these climate conditions represent a random effect that
induces a positive correlation among the residual errors
and that may represent an important source of uncer-
tainty in short-term projections (Kangas 1998).

a b

c d

Fig. 3 Proportion of the total variance due to the sampling variability in
the prediction of tree frequencies for NFI4
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The short time step we used in this case study increased the
contribution of sampling error over model-related errors. In
Kangas (1998), the coefficient of variation of stand volume
growth predictions almost doubled over a 50-year projection.
Similar increases were found for stand basal area and stem
density in Fortin et al. (2009) for 15-year growth forecasts.
For longer projections, we could reasonably expect the model-
related uncertainty to increase and even exceed that of
sampling. Holopainen et al. (2010) found that model-related
errors contributed slightly more than sampling errors to the
total uncertainty over a 100-year projection.

In the short term, one way to reduce the uncertainty due to
the sampling would be to increase the sampling effort. Like
the traditional Horvitz–Thompson estimator, estimator (3) is
consistent: Its variance–covariance is inversely proportional to
the sample size. As a consequence, the error margin decreases
proportionally to the inverse square root of the sample size.
Considering that the sample is already large (see Table 1),
further reducing the error margin would imply a significant
increase in the sampling effort, which is hardly conceivable.

Another possibility would be to change the plot size. A
larger plot size for some diameter classes would induce a
decrease in the variance of the population and result in more
precise estimates. This would be particularly effective for di-
ameter classes above 30 cm, which exhibited the largest biases
and relative errors. Again, this would require additional
means, but probably less effort than increasing the sample
size. Angle count sampling (Gregoire and Valentine 2008,
Ch.8) might provide the required precision for large trees,
but this remains to be investigated.

A third option for reducing the uncertainty due to the sam-
pling is the use of more efficient estimators. The Horvitz–
Thompson estimator (3) we used is designed for a stratified
scheme with random sampling without replacement. As a
matter of fact, the within-stratum sampling is not strictly ran-
dom here, but systematic instead. If there are some strong
local random effects, then two neighbor sampling units might
be highly correlated. In such a context, the systematic design
reduces the variance of the estimator by avoiding the selection
of these neighbor sampling units (cf., Gregoire and Valentine
2008, p.55). Some alternative variance estimators exist, which
may take into account the greater precision of the systematic
sampling, but none of them are entirely unbiased (Särndal
et al. 1992, p.83).

Regardless of the approach, all estimators remain to be
tested and adapted for a multivariate response, which raises
an additional issue here. The variance estimator (4) is a
“crude” estimator of the variance–covariance in a multivariate
framework. Actually, the estimation of the covariance be-
tween related Horvitz–Thompson estimators is not straightfor-
ward (cf., Wood 2008). It involves the joint probability of
drawing two sampling units. Even though our estimator al-
ready includes the covariances between the diameter classes

throughΦ in Eq. 4, it does not explicitly account for this joint
probability. The calculation of this probability is hindered by
the changes in plot size, not only for different observation
points but also within the same observation point. This poten-
tial improvement of the estimators deserves to be addressed
since it is probably the least expensive way to reduce or, at
least, to better estimate sampling uncertainty.

Regarding the growth model we developed in this study, it
has some features that deserve to be outlined. First of all, the
estimation of the transition probabilities is based on an ordinal
logistic model. Whenever this is possible, some authors (e.g.,
Liang and Picard 2013) prefer to structure the model in such a
way that there are only two possible transitions: staying in the
initial diameter class or moving to the next one, which is
commonly referred to as the Usher assumption (Vanclay
1994, p.46). The use of a simple logistic regression then
makes it possible to estimate the probability of moving to
the next class, while the balance of probability represents the
probability of staying in the initial diameter class. Limiting the
transitions to two possibilities is a valid assumption only and
only if the time step is short enough to avoid transitions of
more than one diameter class. In national forest inventories
based on permanent sample plots, time steps are usually long
enough to allow for more than two possible outcomes in the
transitions. It is still possible to use wider diameter classes in
order to limit the number of transitions, but at the cost of a
reduced-resolution model.

In our case study, we could not use wider diameter classes
without loss of information. Moreover, using wider diameter
classes would have led to a complex situation with some diam-
eter classes having their trees measured over different plot sizes.
Using 5-cm diameter classes as we did in this study resulted in
many possible transitions. Actually, we had 11 possibilities,
including negative transitions that probably reflected some
measurement errors. The ordinal logistic regression made it
possible to predict the probabilities associated with those 11
transitions for all the species while ensuring that the sum of
the probabilities was equal to 1. It also provided a consistent
variance–covariance matrix for the parameter estimates, which
was a requirement for Monte Carlo simulations.

To the best of our knowledge, only Escalante et al.
(2011) used a similar approach, which was nevertheless a
multinomial regression instead of an ordinal logistic regres-
sion. Boltz and Carter (2006) also used a multinomial re-
gression, but it was for predicting mortality probabilities
simultaneously with two possible transitions. Compared
to our approach, the multinomial regression is more flexi-
ble, but at the cost of a substantial increase in the number of
parameters. In fact, the effect of any covariate is allowed to
change across the possible transitions. In this case study, we
tried this approach, but it resulted in a multinomial model
with 80 parameters and an ill-conditioned variance–covari-
ance matrix that impeded Monte Carlo simulations.
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The ordinal logistic regression is more restrictive: It assumes
that the intercepts delimiting the different transitions and the
effect of the covariate remain the same regardless of the transi-
tions. It also requires that the response levels can somehow be
ordered. When dealing with diameter transitions, this is not a
limitation since the number of classes in the transitions arises as
a natural order. In our case study, we managed to fit all the
transition probabilities with only 17 parameters (see Supple-
mentary material, Table S5). The assumption of constant inter-
cepts and dbh effect across the transitions is subject to debate. It
led to an underestimation of tree frequencies in larger diameter
classes of the other deciduous species group (Fig. 2d). The
model could have been fitted to each species individually. How-
ever, this was rather complicated since the distribution of the
species groups was not balanced across the transitions and the
strata. In other words, fitting individual models for each species
group led to a null occurrence in some strata and transition
states. The approach we used seemed to be a good trade-off
in terms of the number of parameters to be estimated and the
capacity to predict the transition probabilities for all species
groups and possible transitions. However, it should be stressed
that the predicted frequencies for larger diameter classes of the
other deciduous species group might be underestimated.

A second innovative feature of our model is the fact that it
accounts for the stratified sampling scheme. The stratification
implies different sampling weights across the strata. As a con-
sequence, some of them are more highly represented in the
sample than others, and not taking the stratification into ac-
count in the model fitting might lead to biased estimates at the
population level. In our study, the weighted logistic regres-
sions and the estimation of the recruitment vector accounted
for the stratified sampling scheme. It turned out that the
resulting model provided predictions that were closer to the
estimates for NFI3 for most species groups and diameter clas-
ses. However, the fit was only a few percent better in relative
values (Fig. 2). In absolute values, the fit was clearly improved
in smaller diameter classes (Fig. 1), but this was mainly the
result of an improved recruitment estimation rather than en-
hanced mortality and transition probability predictions.

One can reasonably wonder if these weighted logistic re-
gressions are worth the effort. We have to recall that the orig-
inal sampling scheme followed a systematic design. By defi-
nition, this systematic design implies constant sampling
weights across the strata. Screening the database to keep only
the plots that were measured in NFI2 and NFI3 induced a
variability in the sampling weights. However, this reduced
variability has nothing to do with what it would be in stratified
random sampling with optimal allocation (Särndal et al. 1992,
p.106). It also explains why the estimated probabilities of the
standard and weighted logistic regressions were not that dif-
ferent. In the case of greater variability in the sampling
weights, the weighted logistic regressions might prove essen-
tial to obtain unbiased estimates. In any context, those

weighted logistic regressions should be considered as more
statistically robust than their standard versions.

A third feature is the way recruitment was considered in the
model. Like transition probabilities, recruitment often follows
the Usher assumption, i.e., it is assumed to be existent only in
the smallest diameter class (e.g., Favrichon 1998; Liang and
Picard 2013). However, considering the time step in our case
study, this assumption would lead to an underestimation of
tree recruitment. A major issue arises when it comes to esti-
mating the recruitment in larger diameter classes along with
changes in plot size. As we already mentioned, this change in
plot size makes it difficult to distinguish “fake” recruits from
“true” ones. In this study, we estimated the true recruits con-
ditional on the mortality and transition probabilities. That way,
we managed to estimate the recruitment in larger diameter
classes without double counts.

However, this conditional estimation is somewhat flawed.
First, the elements of ρ are not limited to positive values. Actu-
ally, if the survival and transition probabilities are overestimated,

the difference ρ̂: NFI3−HÛŜτ̂NFI2 may yield negative recruit-

ment in some classes. In our case study, it happened for very
few diameter classes, but it could still be observed. In addition,
underestimating the survival and transition probabilities may
lead to overestimating the recruitment in larger diameter classes.
For instance, recruitment in the 65- and 70-cm diameter classes
is very unlikely over an 11-year period. This negative recruit-
ment for some classes and the recruitment in the larger diameter
classes represent major limitations. A state-of-the-art method
would consist in estimating the mortality and transition proba-
bilities as well as the recruitment in a single regression, for which
the estimator remains to be developed.

Combining the two sources of uncertainty required an
upscaling of the model at the region level. This upscaling rep-
resented in Eq. 6 wasmade possible because all the components
of the growth model were density-independent. As a matter of
fact, the species group and the diameter class are the only two
covariates in our model. Using a density-dependent model (e.g.,
Favrichon 1998) implies a complex error propagation. While
this error propagation can be approximated through a second-
order Taylor series (see Sambakhe et al. 2014), we preferred to
use a simpler model for the sake of the example.

Keeping the model density-independent facilitated the
upscaling, but it remains a strong assumption. Actually, the
model suffers from the stationary assumption: The mortality
and transition probabilities remain constant over time
(Vanclay 1994, p.44). In other words, the model assumes that
the mortality and transition probabilities as well as the recruit-
ment will remain what they were between NFI2 and NFI3.
Changes in the average density are likely to result in biased
predictions.

An additional limitation of this study is the assumption of
constant areas for the strata. These areas are likely to change
due to land use change or to reforestation. Mathematically
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speaking, this means that vectorNk in estimators (3) and (4) is
no longer constant but is a random variable. An estimated Nk

could be predicted if a model of forested area changes was

available. Then, the uncertainty associated with this N̂k could
be propagated through the estimators using Monte Carlo sim-
ulation as we did in this study. It would result in less precise
estimates of the tree frequencies. Since this model of forested
area changes was not available, we could not quantify this
source of uncertainty which would certainly increase the
model-related uncertainty. This remains to be investigated.

In our study, we did not consider model misspecification.
In fact, we assumed the model was correct and unbiased. Ståhl
et al. (2014) made the same approximation in their study on
biomass estimation in Finland and Sweden. However, there
are many circumstances in which we can expect term ξt + 1 to
be different from 0. Mandallaz (2008) outlined that this was
inevitable when the model is external, i.e., not fitted to data not
from the inventory. The aforementioned assumptions of con-
stant intercepts and dbh effect in the estimation of transition
probabilities, of density-independent mortality and transition
probabilities, and of strata with constant areas may result in
model misspecification. This is not a concern for predictions
of tree frequencies over one or two 11-year growth periods.
However, we would recommend not using the model for lon-
ger growth forecasts since it might impact the accuracy of the
predictions. Considering that the plots are permanent, refitting
the model to the new data after each campaign would be a
safer strategy. If the time step was to change, the model could
also be adapted using the generalized approach proposed by
Harrison and Michie (1985).

In the context of a two-stage forest inventory, Mandallaz
andMassey (2012) have shown that it is possible to correct for
model misspecification by using a two-stage HT estimator.
The method could be adapted for an inventory such as the
Spanish NFI. However, it requires some observations, which
is a major problem when predicting forest growth as future
conditions cannot be observed. If the model was used for
updating a former inventory, this kind of estimators could
prove efficient. For example, if a subsample of plots had been
revisited in 2011, then these observations could have been
used to estimate and correct for the bias due to model
misspecification. If these observations are unavailable or if
the model is used in purely predictive context, there are no
other options than assuming a correct model or guessing what
a plausible bias due to model misspecification could be.

5 Conclusions

Predicting forest growth on a large scale is challenging be-
cause it involves many sources of uncertainty. First, the cur-
rent forest conditions cannot be taken for certain since they are

estimated through sampling. Second, the growth model pa-
rameters remain unknown and the fit only provides estimates
of them, which is an additional source of uncertainty in large-
scale forest growth predictions.

In this study, we managed to take these two sources of
uncertainty into account in growth forecasts of Catalonia’s
forests. This required the development of a multivariate ver-
sion of the Horvitz–Thompson estimator and a population
growth model based on a transition matrix approach. Using
Monte Carlo simulation, it was then possible to make predic-
tions of tree frequencies by 5-cm diameter class, with their
0.95 confidence intervals. As a general trend, it should be
expected that deciduous species will be more abundant,
whereas coniferous species will remain relatively stable.
Those predicted total frequencies were based on the assump-
tion of a constant stratum areas and were for the year 2011, the
date at which the fourth national forest inventory campaign
should have been carried out. Unfortunately, the fourth cam-
paign was delayed due to some financial constraints. Until this
inventory is carried out, this study provides some estimates of
tree frequencies by diameter class at the population level.

While the predictions of total tree frequencies by species
group included small relative errors, it turned out that the frequen-
cies in larger diameter classes were predicted with much lower
precision. Like previous studies concerning the uncertainty as-
sessment of national biomass and volume estimates (McRoberts
andWestfall 2014; Ståhl et al. 2014; Breidenbach et al. 2014), we
concluded that the model-related uncertainty is generally smaller
than the sampling uncertainty. Evenwhen themodel-related error
appeared to be greater, as in the case of smaller diameter classes,
it seemed to be the consequence of sampling variability in the
recruitment estimation. Among the different options for reducing
sampling uncertainty, we recommend first improving the current
estimators. A consistent variance–covariance estimator of the
multivariate Horvitz–Thompson estimator should be developed
and the estimators should better account for the sampling scheme
and the changing plot size.
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Appendix. Recruitment modeling

Let us recall that all trees with diameter at breast height (dbh,
1.3 m in height) greater than 7.5, 12.5, 22.5, and 42.5 cm are

Uncertainty assessment of large-scale forest growth predictions 881



measured in a 5-, 10-, 15-, and 25-m-radius subplot, respec-
tively. Considering that the vector of 5-cm diameter classes
ranges from the 10-cm diameter class to the 70-cm diameter
class, we can define a vector p that contains the plot radius for
each diameter class. In this case study, this vector would be
p= (5, 10, 10, 15, 15, 15, 15, 25, 25, 25, 25, 25, 25)T. Let us
represent the number of recruits as observed through the sam-
pling scheme and the true number of recruits by ρ

:
and ρ,

respectively.
The number of recruits in the 10-cm diameter class (ρ

:
) is

actually the true number of recruits in this class, i.e., ρ1¼ ρ
:
1.

Let us now consider the number of recruits in the 15-cm
diameter class. The true number of recruits is actually the
number of recruits in the inventory minus the number of trees
in the 10-cm diameter class that increased to diameter class
15 cm, which can be considered as “fake” recruits. However,
those fake recruits cannot be located within 5 m of the plot
centre. Otherwise, they would not have been recorded as re-
cruits. They can only be located in the outer ring of the plot,
between 5 and 10 m from the center. If we assume a Poisson
point process, the true number of recruits for this class would
be:

ρ2 ¼ ρ
:
2− 1−

52

102

� �
π2;1 1−m1ð Þτ1

where π2,1 is the probability that a tree in the 10-cm diameter
class would increase to the 15-cm diameter class, m1 is the
probability that a tree in the 10-cm diameter class is harvested
or dead, τ1 is the total number of trees in the 10-cm diameter

class, and 1− 52

102

� �
is the proportion of trees located in the

outer ring.
This hypothesis can be further extended to any diameter

class by creating a matrix that we will designate as H. The
elements of H are calculated as

hij ¼ 1−
p2j
p2i

if j< i

0 if j ≥ i

8<
:

where pi and pj are taken from the above p.
The vector of true recruits can easily be calculated as

ρ ¼ ρ
:−HUSτ
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