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Abstract
Key message We provided a precise quantitative analysis
of the factors at the origin of bark damage during harvest-
ing operations and developed a model able to predict them
accurately. The major factors were the distance of trees to
skid trails, the intensity of removals, the harvesting system
as well as the interactions between the distance of trees to
skid trails with harvesting systems, the average skidding
distance, the tree species and tree height.
• Context During timber harvesting, trees in the remaining
stand may suffer bark damage resulting from tree-felling or
log manipulation. Although a multitude of case studies and
empirical observations provide qualitative and quantitative in-
formation with respect to the potential causal factors, the basic
quantitative relationship betweenmajor factors of influence and
the resulting degree of bark damage remains largely unclear.
• Aims The objective was to provide a precise quantitative
analysis of impact factors explaining the occurrence of bark
damage during harvesting operations.
•Methods Three different modelling approaches were tested:
boosted regression tree (BRT), a generalised linear mixed ef-
fects model (GLMM) and Bayesian Markov chain Monte
Carlo generalised linear mixed models (MCMCglmm).

• Results The major factors with a significant impact on the
occurrence of bark damage were the distance of trees to skid
trails, the intensity of removals, the harvesting system and the
interaction term between the distance of trees to skid trails
with harvesting systems, average skidding distance, tree spe-
cies and tree height.
• Conclusion The final model includes the relevant major
factors impacting on the infliction of bark damage during
practical harvesting operations. Furthermore, it discriminates
well with respect to the occurrence of bark damage, and it
provides managers with a rational and conclusive tool for
optimising harvesting operations.

Keywords Bark damage . Harvesting operations .

Modelling . Boosted regression trees (BRT) . Generalised
linearmixedmodels (GLMM) .BayesianMarkovchainMonte
Carlo generalised linear mixedmodels (MCMCglmm)

1 Introduction

Since the twentieth century, the increased use of mechanised
wood harvesting systems has been associated with the prob-
lem of greater levels of harvest-induced bark damage inflicted
on the remaining trees of forest stands (Vasiliauskas 2001).
Bark injuries can be caused by felling or skidding operations.
Injuries caused along the work chain of a specific harvesting
system can be summarised as “system damage” (Limbeck-
Lilienau and Stampfer 2004). A common indicator used to
describe the intensity of such bark injuries is the “degree of
damage”, which expresses the rate of damaged trees as the
percentage of all trees in the remaining stands.

For instance, in an economic context, a bark injury results in
economic damage only if the biological injury is associated
with degradation of timber quality or in a reduction in growth
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or yield. However, bark injuries generally increase the risk of
fungus infections and are often associated with considerably
deteriorated timber quality followed by losses in yield of mar-
ketable timber volume. Bark wounds are reported to deteriorate
the timber quality by either the incidence of stain (discoloration)
or wood decay (Vasiliauskas 2001). The infection of wounds by
fungi may lead to serious wood degradation. Following wood
infection, for many tree species, decay may even invade the
central portions of the stem and form a typical “heart rot” that
expands well above and below the surface of the bark wound
(Pawsey and Gladman 1965; Shigo 1966; El Atta and Hayes
1987). Norway spruce (Picea abies) in particular is highly sus-
ceptible to wound decays that lead to degradation and serious
economic losses (Dimitri and Schumann 1975; Kohnle and
Kändler 2007; Metzler et al. 2012).

Since the 1970s, several studies in Germany have examined
the impact of mechanised logging operations on harvest-related
injuries (Guglhör and Melf 1995; Mahler 1987; Meng 1978;
Löffler 1975). Furthermore, the results of the second German
National Inventory BWI 2 (reference year 2002) underlined the
fact that the degree of harvest-related bark injury in German
forests has reached seriously problematic levels with particular-
ly high levels found in Southwest Germany (state of Baden-
Wuerttemberg). Here, almost 20 % of the inventoried trees
displayed visually discernible bark injuries, most likely inflicted
during harvesting operations (Polley and Hennig 2005).

Many case studies describe a variety of factors that influence
the injury level in the remaining stands during timber harvesting
operations. In general, these studies focus on selected usage sce-
narios, such as, for instance, certain timber harvesting methods
with varying degree of mechanisation and selected pre-skidding
machines, certain topographic or stand conditions and harvesting
intensities. In a comprehensive literature review and overview,
Nill (2011) grouped individual studies by reportedly superior
influencing factors. He identified the human factor, for example,
as a key factor which comprises training and experience and
motivation. Kellog et al. (1986), Knorr and Prien (1988),
Vospernik (2004), Limbeck-Lilienau and Stampfer (2004),
Stampfer et al. (2002) and Schoettle et al. (1999) show that train-
ing is actually an essential basis for careful work and that experi-
ence, for instance in operating modern harvesting machines, can
have a direct impact on the degree of damage. In some of the
abovementioned studies, the additional aspect of workmotivation
is studied and considered inseparable from other factors. All au-
thors agree on the high impact ofworkers; however, they state that
in case studies, the quantification of the impact of the human
factor is rather complicated if not completely impossible.

Another set of single factors that are discussed is the prepa-
ration for harvesting operations and forest spacing. Specifically,
the spacing of skid trails determines the pre-skidding distance
and, simultaneously, a higher density of skid trails increases the
number of trees that are vulnerable because of their positions
along these skid trails (Limbeck-Lilienau and Stampfer 2004;

Mahler 1987; Han and Kellogg 2000; Sauter and Grammel
1996; Schoettle et al. 1997; Froese andHan 2006). The variable
“proximity of a tree to the edge of the skid trail” could also be as
a significant factor in models for damage assessment (Bobik
2008; Froese and Han 2006; Fajvan et al. 2002).

Another set of factors that influence the amount of damage is
associated with the harvesting operation, in particular the cho-
sen timber harvesting methods. Here, the type of pre-skidding
plays themost important role. A direct comparison of complete-
ly different types of harvesting operations is usually difficult
because different methods often require specific topographic
and site-specific conditions and can rarely be viewed as substi-
tutes (Nill 2011). In addition, certain types of harvesting oper-
ations were developed for different bucking schemes producing
long or short logs with corresponding machinery. This directly
influences the degree of damage caused by the operations,
whereas in principle, long logs cause greater damage because
of their more difficult manipulating processes (Boltz 1987;
Nichols et al. 1994; Limbeck-Lilienau 2003; Suwala 1997;
Woods et al. 2007). The above-quoted diverse national and
international studies on influencing factors on the degree of
bark damage to remaining trees in harvesting operations discuss
many single factors. However, merging these factors in statis-
tically significant models for the quantification of the influence
of the main factors on the degree of damage and the interaction
between the factors is still lacking.

Therefore, the objective of this study was to provide a
precise quantitative analysis of the impact factors in order to
support decision making with respect to economic manage-
ment of harvest-induced bark damage. For this, we used a bark
damage prognosis model previously developed from a com-
prehensive database (Nill 2011; Nakou et al. 2013) as a “pre-
cursor” model and attempted to improve the model by apply-
ing and comparing the effect of three different, more complex
modelling approaches (boosted regression trees, generalised
linear mixed effects model and BayesianMarkov chainMonte
Carlo generalised linear mixed models).

2 Material and methods

2.1 Harvesting operations: selection and inventory

The large number of harvest operations included in the database
was gathered by the Forest Research Institute of Baden-
Wuerttemberg in collaboration with ForstBW (state forest ser-
vice) and its technology bases, which represent a network of
forest enterprise units with specifically trained practitioners for
wood harvesting issues andwhich supervised and conducted the
majority of the associated inventories. In previous studies, this
network of forest technology bases has been found to be a par-
ticularly suitable tool for acquiring empirical data in large-scale
studies in practical forestry (e.g. Kohnle et al. 2006).
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2.1.1 Selection of harvest operations

The selection of the inventoried harvesting operations took
place in a two-stage process (Nill 2011). The accounting
and business management system of ForstBW provides data
on current or completed harvesting operations in the state
and community forests in Baden-Wuerttemberg. Based on
previous studies about bark damage and based on the
knowledge of experts, the first step involved scanning this
database regularly for harvesting operations that were
judged to be potentially relevant for the study. Relevant
aspects were the tree species harvested, stand age, slope,
spatial stand distribution and so on. Further aspects includ-
ed harvesting-specific characteristics such as harvesting vol-
ume, technique, etc. It was thus ensured that all operations that
were carried out during one harvesting season (winter
2007/2008 and summer 2008) were included in the base
population, and therefore potentially any single harvesting
operation could have been selected. To limit the expenditure
for the survey and to ensure the validity of the results, it
seemed appropriate to restrict the selection of harvesting
operations to more or less single-layered stands.

If a potentially interesting harvesting operation was
pre-selected in the first step, a questionnaire was sent
to the responsible forest district manager asking for
more detailed information on characteristics such as har-
vesting technique, skid trail design, timber assortment,
etc. Final selection of a harvesting operation for the
study was based on this auxiliary information, and the
respective operation was assigned to one of ten
predefined harvesting type categories. In the first step,
645 harvesting operations were pre-selected. In the final
selection, 183 harvesting operations were used for the
study.

Harvesting operation types were essentially classified ac-
cording to the question: “What was harvested with which
technique in which way, and for what length of distance was
the timber hauled through the stand?” (Table 1):

“what”—classification of themain timber product (short
logs <7 m long, long logs >7 m long, tree-length logs,
full-trees)
“with which technique”—skidding methods (cable,
cable with grip tong,1 cable yarder)
“in which way”—degree of mechanisation (fully and/or
partially2 mechanised, motor manual)
“for what length of distance”—mean distance to skid
trail3 (20, 40, >40 m)

2.1.2 Inventory method

Seeing as the inventory methods for the harvesting operations
were intended to be applied by the trained forestry practi-
tioners from the network of technology bases, the develop-
ment of the inventory design had to include the following
three aspects:

& Applicability to a wide variety of stands/harvesting
operations

& Achievement of the measurements by applying a robust and
simple design and technology within a narrow time frame

& Mirroring, in principle, the guidelines for the sample tech-
nique used in the inventories conducted by ForstBWas the
basis for the decade-related forest management plans in
state and communal forests in Baden-Wuerttemberg
(Kemner and Risse 1994)

The design conceived for the purpose of the study of
harvesting-induced bark damage was thus based on a system-
atic grid sample laid out according to the forest inventories
and the concept introduced by Götschmann and Strebel
(1996). In principle, the distribution of the sample points with-
in the stands was oriented in relation to the distribution of the
skid trails. In contrast to the forest inventories, all trees within
the circular plots were inventoried. However, the size of the
circular plots within the stands was varied to ensure that at
least ten trees per sample plot were measured. Furthermore,
the number of sample plots was determined by taking into
account expert judgement on the area actually harvested and
the stand homogeneity (10–20 sample points per stand).

All trees were measured for diameter at breast height (at
1.3 m of height; diameter at breast height (dbh)). Likewise, all
trees that had been removed at the harvesting operation were
identified as newly harvested stumps and measured for diam-
eter at the remaining stump. To assess dbh of the removed
trees, the remaining trees were measured for diameter at stump
height as well, and the relation of dbh to diameter at stump
height was used to estimate dbh of the removed trees. Heights
were measured for three randomly selected trees and used to
construct stand height curves. These stand height curves were
used to estimate the height of trees not measured for height
(remaining trees as well as removed trees).

For all trees included in the sample plots, the distance to the
closest skid trail was recorded and the remaining trees after
harvesting were examined for newly inflicted bark injuries.
For the removed trees, the felling direction and the skidding
processes involved were assessed and noted. The inventory of
bark damage was based on the definition according to Meng
(1978), and the number and locations of damage (root, stem
below breast height, stem above breast height) were recorded
for the respective tree and the single largest bark damage lo-
cation was measured in detail (area, length, width).

1 Grapple skidder
2 In partially mechanised methods, the trees are felled motor manually
and then processed with harvesting machines.
3 Is the mean distance of all the trees harvested to the skid trail
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2.2 Model improvement

From the database described above, Nill (2011) had developed
a model for the probability of the occurrence of bark damage
based on the data from the harvesting operations. The data-
base comprised only damage along the stem; damage at the
roots was not included. Furthermore, for the model, the vari-
able “occurrence of bark damage” was binary-coded (“yes/
no”). Consequently, Nill’s models deliver the probability of
occurrence of bark damage. This probability was estimated
using mixed models (generalised linear mixed models
(GLMMs)). The model was designed as a GLMM with ran-
dom effects at the level of the stand. Key criteria for deciding
which of the initially tested potential variables should remain
in the final model were relevant statistical parameters, such as
statistical significance, Akaike information criterion (AIC),4

pseudo-Bayesian information criterion (BIC)4 and area under
the curve (AUC)4. The selection processes of the variables
included in the model and the modelling method are described
in detail in Nill (2011). Later on, Nill’s model was evaluated
and subsequently slightly modified (Nakou et al. 2013).

In this study, we attempted to improve this model by not
only examining the factors that cause damage to bark, as in the
original model of Nill, but also by investigating their interac-
tions. In this optimisation process, three different modelling
techniques were applied and compared: boosted regression
tree (BRT), GLMM and Bayesian Markov chain Monte
Carlo generalised linear mixed model (MCMCglmm). All

calculations were performed using the statistical software
package “R” (R Development Core Team 2005).

2.2.1 BRT

BRT is a combination of two powerful statistical techniques:
boosting and regression trees. Boosting is a machine learning
technique similar to model averaging where the results of
several competing models are merged. However, unlike mod-
el averaging, boosting uses a forward, stage-wise procedure
where tree models are fitted iteratively to a subset of the train-
ing data. Subsets of the training data used at each iteration of
the model fit are randomly selected without replacement
where the proportion of the training data used is determined
by the modeller as the so-called bag fraction parameter. This
procedure is known as stochastic gradient boosting and intro-
duces an element of stochasticity into improving model accu-
racy and reducing overfitting (Elith et al. 2008).

In our study, 50 trees were fitted initially in the normal man-
ner, using recursive binary partitioning of the data. Residuals
from the initial fit were then fitted with another set of 50 trees
whose residuals were then again fitted with the next set of trees.
This procedure was subsequently continued until a specific loss
function was minimised, which was verified by n-fold cross-
validation. In the case of regression trees, the loss function to
minimise is represented by model deviance. The final fit is then
based on the entire dataset and computed as the sum of all trees
multiplied by the learning rate (Elith et al. 2008).

In fitting a BRT, two parameters must be specified: learning
rate and tree complexity. The learning rate represents the con-
tribution of each successive tree to the final model as it pro-
ceeds through the iterations. The tree complexity determines
whether the model will consist of main effects only (tree

4 The AIC, pseudo-BIC und AUC measures of model performance are
described in Bennett et al. (2013). All calculations were performed in R
(R Development Core Team 2005).

Table 1 Type and number of recorded harvesting operations

Harvesting
system

Degree of mechanisation Assortment Skidding methods Distance to
skid trail

No. of
cases

No. of
trees

No. of
damaged
trees

Tree species

1 mm Long logs (>7 m) cl + gt 40 and >40 m 41 2,580 414 Sp, Be, Fir, Dg Fir, Pi, La

2 mm Long logs (>7 m) cl 40 and >40 m 18 1,552 260 Sp, Be, Fir, Dg Fir, Pi, La

3 mm Long logs (>7 m),
tree-length logs,
full-trees

cy ct 23 758 208 Sp, Be, Fir, Dg Fir, Pi, La

4 mm Short logs (<7 m) cl + gt 40 m 6 530 23 Sp, Be, Fir, Dg Fir, Pi, La

5 mm Tree-length logs cl + gt 40 and >40 m 23 1,383 224 Sp, Be, Fir, Dg Fir, Pi, La

6 mm or pm Full-trees cl + gt >40 m 8 469 117 Sp, Be, Fir, Dg Fir, Pi, La

7 pm Short logs (<7 m) cl + gt 40 m 25 1,976 314 Sp, Be, Fir, Dg Fir, Pi, La

8 pm Short logs (<7 m) gt 40 m 22 1,606 184 Sp, Be, Fir, Dg Fir, Pi, La

9 pm Long logs (>7 m) cl + gt 40 m 4 529 70 Sp, Be, Fir, Dg Fir, Pi, La

10 fm Short logs (<7 m) gt 20 m 14 1,011 93 Sp, Be, Fir, Dg Fir, Pi, La

mm motor manual, pm partially mechanised, fm fully mechanised, cl cable, gt grip tong, cy cable yarder, ct cable trail, Sp spruce, Be beech, Dg Fir
Douglas fir, Pi pine, La larch
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complexity=1) or whether interactions between the factors
should be included (tree complexity=2, 3, …). Ultimately,
the combination of learning rate and tree complexity deter-
mines the total number of trees in the final model.

In BRTs, the standard output does not include component-
wise p values for each of the predictors in the model because
term-wise p values are not easily determined. Instead, an in-
dex of relative influence may be calculated by summing up the
contribution of each variable, which is equivalent to summing
up the branch length for each variable in the regression tree.

The fitted BRTmodels compared in this study were obtain-
ed using the BRT script provided by Elith et al. (2008) imple-
mented in R’s “gbm” library (Ridgeway 2007). The parame-
ters applied for fitting the BRT were set as follows: learning
rate 0.01, tree complexity 10, cross-validation 10-fold and bag
fraction 0.8.

2.2.2 GLMM

GLMMs are regression models that allow for selecting, as with
generalised linear models (GLM), from various distributions
and link functions in order to model a wide range of types of
dependent variables through linear combinations of one or mul-
tiple predictor variables (“fixed effects”). Additionally,
GLMMs include so-called random effects. These random ef-
fects quantify the variation of regression intercept or slopes
amongst different grouping levels of the dependent variable
(“grouping variable”) by a probability distribution instead of
estimating a fixed regression coefficient for each level.

A grouping variable should be used as a random effect if its
levels may be conceived as representing a random sample
from a larger group (O’Hara 2009). Often, the levels of group-
ing variables are meaningless but need to be taken into ac-
count in order to obtain valid p values and estimates.
Therefore, such “nuisance variables” should be used as ran-
dom effects whenever their variation is of interest. In all other
cases, variables should generally only be used as fixed effects
(Robinson 1991). Thus, it would be proper to use grouping or
nuisance variables as fixed effects. However, random effects
have the practical advantage of using fewer degrees of free-
dom, particularly if random effects comprise numerous levels.
In this study, the random effect is at the stand level (183
different harvesting operations).

The first step of the modelling process of GLMM is to
identify an appropriate distribution and link function for the
data, if necessary. The purpose of the link function is to trans-
form the values of the dependent variable so that they match
the scale of the linear predictor (i.e. [−∞, ∞]) and to linearise
the relationship with the predictor variables. For each distri-
bution, a canonical (“natural”) link function exists. However,
there are also less commonly used alternatives that may suit
the data better in some cases. As the response variable in our
study was binary, we choose a logit link function.

Before actually calculating the model, we needed to con-
sider which estimation method to use. This choice generally
depends on the dependent variable and on the random effects
that are to be included in the model (cf. Bolker et al. 2009). For
our study, the Laplace approximation method appeared to be
best suited. The computation of p values for the significance
of fixed effects was done with Wald chi-square tests and for
the random effects with likelihood ratio (LR) tests. The com-
putation of p values for the significance of the single param-
eters was done with Wald Z tests. The model selection criteria
were AIC, pseudo-BIC and AUC value as discussed above.

The subsequent calculation of the relative influence of each
predictor (fixed effect) was executed by fitting a model for
each predictor without the respective predictor. The degree
of deterioration of the statistical fit triggered by the omission
of the respective predictor served as an indicator of the pre-
dictor’s impact. Dividing this value by the sum of all deterio-
rations aggregated for all predictors rendered a relative pro-
portion of the respective predictor’s impact.

Overdispersion is an important concept in the analysis of
discrete data. Overdispersion is the situation that occurs most
frequently in Poisson and binomial regression when variance
is much higher than the mean (whereas it should ideally be the
same). It is evident with a high (>2) residual mean deviance
(which should normally be around one) and the presence of
too many outliers. The reasons for overdispersion may be
outliers, misspecification of the model, variation between the
response probabilities or correlation between the binary re-
sponses. It results in incorrect estimations of standard error
and confidence interval. In this study, the degree of
overdispersion from the residual deviance (the residual scaled
deviance should be roughly equal to the residual degrees of
freedom) was examined.

The GLMMs were fitted using the “glmer” function of the
“lme4 package” in R.

2.2.3 MCMCglmm

As outlined above, GLMMs are widely used for regression
analysis in different research areas, as they are flexible and
efficient for the analysis of grouped data. Several estimation
methods have been applied to these models. However, for the
non-Gaussian distributed response variables, such as in this
study, there is the restriction that the likelihood cannot be
obtained in closed form. For instance, McCulloch and Searle
(2001) demonstrated that generalising linear mixed models to
non-Gaussian distributed data is questionable because inte-
grating over the random effects proves intractable.

This challenge may be solved with MCMCglmm methods
by sampling from a series of simpler conditional distributions
that can actually be evaluated. This provides an alternative
strategy for marginalising the random effects andmay bemore
robust (Zhao et al. 2006; Brown and Draper 2006).
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In principle,Markov chainMonte Carlo (MCMC)methods
represent a bridge between traditional frequency-based
methods and Bayesian methods: from an iterative estimation
technique, MCMC builds an empirical distribution of statisti-
cal parameter estimates. MCMC provides initial parameter
estimates from a priori information that is used to evaluate
subsequent iteratively remodelled parameter estimates (e.g.
using Bayesian computational methods). This a priori infor-
mation is called “the prior” and is generally extracted from the
data under investigation in the form of a specified distribution
or several distributions if multiple parameters are involved.
The prior represents a reference point against which iteratively
produced parameter estimates are evaluated, thus ensuring
convergence on the best set of estimates possible. The empir-
ical distribution of estimates built through the MCMCmethod
is called the posterior distribution because it is created after the
data has been fitted.

Developing MCMC methods for GLMM has currently
been under intensive investigation (e.g. Zeger and Karim
1991; Damien et al. 1999; Sorensen and Gianola 2002; Zhao
et al. 2006), and several software packages are now available
which implement such techniques. For the purposes of our
study, we used R’s MCMCglmm package (Hadfield 2010).
This package implements Markov chainMonte Carlo routines
for fitting multi-response GLMM. To test the statistical signif-
icance of variance components in MCMCglmm, we used the
deviance information criterion (DIC). The implementation of
DIC in MCMCglmm is further described in R’s reference
manual. By default, DIC values are calculated by
MCMCglmm. DIC balances the model and the parameter
number simultaneously, and small values of DIC are
preferred.

In our study, because the response variable was binary, we
used a binomial model with logit link function. Based on the
nature of the database at our disposal (large number of data,
rather complex structure), we choose an uninformative type of
prior. To examine the significance of fixed effects as main
effects, we used MCMC tests. We calculated the relative in-
fluence for each predictor of our model by fitting a model for
each predictor without the respective predictor. The deteriora-
tion of the fit statistic (DIC value) due to omitting the respec-
tive predictor was used as an indicator of the impact. Dividing
this value by the sum of all deteriorations, we obtained the
relative proportion.

3 Results

3.1 BRT

The optimal number of regression trees was reached at 1,150
regression trees. The final BRT model accounted for 20 % of
the mean total deviance; the value of AUC value was 0.8

indicating that the model discriminates the occurrence of bark
damage very well.

For the BRT fitted here, the six most influential variables
were (1) intensity of removals (28 %), (2) distance of trees to
skid trails (25 %), (3) harvesting system (16 %), (4) mean
skidding distance (13 %), (5) tree height (12 %) and (6) tree
species (6 %).

The information about the distribution of the fitted values
in relation to each predictor, in the case of BRT, was obtained
from term-wise plots of fitted functions versus observed
values (Fig. 1).

The first plot shows that the probability of bark damage
rises with the increasing intensity of removals (Fig. 1a). The
same is true for mean skidding distance as soon as mean
skidding distance exceeds 20 m (Fig. 1d). The second most
influential variable was the distance of damaged trees from
skid trails. The respective plot (Fig. 1b) clearly illustrates that
trees close to skid trails (less than 10 m) are more
likely to be damaged than trees situated further away
from a skid trail. Although there is a trend that trees
taller than 25 m are damaged more often than smaller
trees, tree height in general contributes little to
explaining the likelihood of bark damage occurring
(Fig. 1e). The least influential, significant variable was
tree species. Norway spruce and beech display the same
sensitivity to bark damage, whereas fir, oak, Scots pine
and larch are significantly less affected (Fig. 1f).

The BRTs identified the harvesting system (Fig. 1c) as one
of the most influential variables for the occurrence of bark
damage. Harvesting systems that integrate the use of a cable
yarder or a cable skidder (cable winch only) for skidding logs
are shown to cause more bark damage than skidders using a
grip tong. Likewise, systems harvesting tree-length logs or
full-trees as main products appeared in BRTs as more damag-
ing to the remaining stand than systems harvesting mainly
short-length logs. Furthermore, fully and/or partially
mechanised harvesting operations showed generally relatively
low damage levels. From the performance of an interaction
analysis, it became clear that the most important interaction
was the interaction between “harvesting systems” and “dis-
tance of trees to skid trails”.

In most respects, the results of the BRTs are similar to the
results of Nill’s model (2011). The only major difference is
that in Nill’s model, the harvesting systems were not consid-
ered as having a significant influence on the probability of
bark damage occurrence. That clearly happened because in
BRT analysis, the interactions between the predictors are au-
tomatically included, whereas in GLMM, used in Nill’s
models, they are not. To quantify these interactions, a function
of BRTs was used that creates for each possible pair of pre-
dictors a temporary grid of variables representing combina-
tions of values at fixed intervals along each of their ranges.
This analysis showed that the most important interaction was
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the one between “harvesting systems” and “distance of trees to
skid trails”.

3.2 GLMM

Fitted fixed effects comprised overall effects of the harvesting
system, mean skidding distance, distance of tree to skid trail,
intensity of removals, tree species and stand height. Random
effects were quantified for the variation of the fixed-effect

parameters across the stands. The final “full”model is present-
ed in Table 2.

Judged by the proportion of their relative impact, the seven
most influential variables in GLMMwere (1) distance of trees
to skid trails (33 %), (2) intensity of removals (18 %), (3)
harvesting system (14 %), (4) interaction distance of trees to
skid trails with harvesting system (10 %), (5) tree species
(10 %), (6) mean skidding distance (9 %) and (7) tree height
(6 %). Thus, the results of the GLMMs are quite similar to the

Fig. 1 BRT fitted functions for each term in the BRT main effects model ranked by relative influence value
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BRTs. In both modelling approaches, the variables describing
the intensity of removals, distance of trees to skid trails, har-
vesting systems and the interaction term “distance of trees to
skid trails with harvesting systems” together have the relative-
ly strongest impact (ca. 75 %) on the occurrence of bark dam-
age. The only difference in these two modelling approaches is
the relative influence of the variable “tree species”.

Themodel fit had an adjustedR2 of 0.24 and anAUCvalue of
0.745, indicating that the GLMMdiscriminates well with respect
to the occurrence of bark damage (Table 2). Examining
overdispersion indicated that there was no overdispersion in the
model. The validation of the model disclosed a success index5 of
0.75, a specificity of the model of 85 % (percentage of correctly
predicted undamaged trees), a sensitivity of 65 % (proportion of
correctly predicted damaged trees) and that a total 85 % of the
trees were correctly classified (Table 3).

Figure 2 depicts the influence of the different predictors on
the occurrence of bark damage. This information was obtained
by examining the term-wise plots of fitted values versus the

predictors. The fit of the model showed that not only the
variable “distance of tree to skid trail” was significant as a
main effect (being the most influential single variable), but
the interaction of this term with two different harvesting sys-
tems was highly significant too.

Although trees that are situated close to skid trails usually
carry a higher probability for occurrence of bark damage
(Fig. 2c), the first plot (Fig. 2a) shows that in particular for
harvesting system no. 6, the opposite effect exists, which ex-
plains in this case the significance of the interaction between
this harvesting system and the “distance of tree to skid trail”.
The other significant interaction is the one found for harvesting
system no. 9 and the “distance of tree to skid trail”. Harvesting
system no. 9 generally causes less bark damage than other

5 The success index weights equally the ability of the model to detect
correctly occurrences and non-occurrences of events. This index takes
values from 0 to 1 with ideal value 1 (Bennett et al. 2013).

Table 2 Parameters of the GLMM model for bark damage on the basis of harvesting operations

Independent variables Parameter Standard error p value p value
global effect

Harvesting system 1 (MM, long, cl + gt, ≥40 m) −3.982 0.388 <2e-16*** <2.2e-16***
Harvesting system 2 (MM, long, cl, ≥40 m) −3.764 0.393 <2e-16***

Harvesting system 3 (MM, long, full-tree, tree-length, cy, ct) −4.052 0.447 <2e-16***

Harvesting system 4 (MM, short, cl + gt, 40 m) −4.886 0.465 <2e-16***

Harvesting system 5 (MM, tree-length, cl + gt, ≥40 m) −3.804 0.420 <2e-16***

Harvesting system 6 (MM, full-tree, cl+gt,>40 m) −3.955 0.524 4.53E-14***

Harvesting system 7 (PM, short, cl + gt, 40 m) −3.859 0.348 <2e-16***

Harvesting system 8 (PM, short, gt, 40 m) −4.024 0.343 <2e-16***

Harvesting system 9 (PM, long, cl + gt, ≥40 m) −1.580 0.504 0.00174**

Harvesting system 10 (FM, short, gt 20 m) −4.025 0.362 <2e-16***

Tree height 0.026 0.009 0.004113** 0.004113**

Spruce, beech 0 5.828e-11***
Fir, Oak −0.416 0.096 1.52E-05***

Douglas fir, pine, larch −0.811 0.138 4.86E-09***

Intensity of removals 0.052 0.007 7.13E-13*** 7.135e-13***

Distance of tree to skid trails −0.033 0.003 <2e-16*** <2.2e-16***

Mean skiding distance 0.025 0.006 0.000241*** 0.000241***

Distance tree to skid trails: harvesting system 6 0.028 0.012 0.025088* 0.025088*

Distance tree to skid trails: harvesting system 9 −0.215 0.040 1.06E-07*** 1.06E-07***

Random effect in stand level 0.3

Adjusted R2 fix effects
Adjusted R2 fix and random effects

0.165
0.239

AUC 0.745

*p<0.05; **p<0.01; ***p<0.001

Global effects are represented in bold

Table 3 Validation of the GLMMmodel for bark damage on the basis
of harvesting operations

GLMM model (%)

Correctbark damage 65.3

Correctno bark damage 85.0

Correcttotal 84.8
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systems, but especially for this system, the probability of bark
damage occurring was very high for trees with positions closer
than 10 m to skid trails. This effect is clearly illustrated by the
interaction plot (Fig. 2b). Figure 2d shows that that the proba-
bility of bark damage rises with increasing intensity of re-
movals. The same can be stated for increasing mean skidding
distance (Fig. 2e). Although statistically significant, tree height
has no important impact on the magnitude of the occurrence of
bark damage (Fig. 2f). Likewise, the variable tree species de-
livers no clear differentiation related to bark damage: spruce
and beech appeared about equally vulnerable, whereas fir,
oak, pine and larch showed slightly less bark damage (Fig. 2g).

The harvesting system (Fig. 2h) as a main effect (without
interaction with other variables) was one of the most influen-
tial variables for the occurrence of bark damage. Harvesting
systems that include a cable yarder or a cable skidder (cable
winch only) for skidding cause significantly more bark dam-
age than systems employing skidders using a grip tong.
Likewise, harvesting systems based on tree-length logs or
full-trees as the main assortment appeared in GLMMs as
clearly more damaging to the residual stand than systems har-
vesting mainly short-length logs. Furthermore, fully and/or
partially mechanised harvesting operations were generally as-
sociated with lower damage levels.

a b c

d e f

g h

Fig. 2 GLMM fitted functions for each effect in the model
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3.3 MCMCglmm

The fixed effects in the MCMCglmm approach quantify the
overall effects of harvesting systems, mean skidding distance,
distance of tree to skid trail, intensity of removals, tree species
and stand height. The random effects quantify the variation
across the stands of the fixed-effect parameters. After computa-
tion of variance components and confidence intervals for the
random effects and the use of DIC and AUC value as model
selection criteria, we decided on the final “full”model presented
in Table 4.

The results of MCMC tests show that all fixed effects incor-
porated in the full model were statistically significant. The seven
most influential variables, as determined by the calculation of the
relative influence, were (1) interaction distance of trees to skid
trails with harvesting systems (20%), (2) distance of trees to skid
trails (18 %), (3) intensity of removals (15 %), (4) harvesting
system (15 %), (5) tree species (14 %), (6) mean skidding dis-
tance (12 %) and (7) tree height (6 %).

The model fit has an AUC value of 0.7 (Table 4).
Furthermore, the summary plot of the variance compo-
nent associated with the random effect in stand level
(ID) clearly showed that the variance values of the ran-
dom effects do not meet the zero line, meaning that the
random effect observed for the stand level is significant.
The validation of the model results in a percentage of
correctly predicted undamaged trees of about 85 % and

a proportion of correctly predictedAlthough trees that
are damaged trees of about 40 %. Altogether, a total
of about 85 % of the trees can be correctly classified
(Table 5).

Figure 3 depicts how the occurrence of bark damage
is influenced in the MCMCglmm by the different pre-
dictors. This information was gained by examining the
term-wise plots of fitted values versus the predictors.
The fit of the model shows, like the GLMM, that not
only the “distance of tree to skid trail” as a main effect
was significant (the most influential variable) but also
the interaction of this term with two different harvesting
systems, no. 6 and no. 9, was highly significant as well.
Further results are very similar to those stated already
for the GLMM model. They are visualised in detail in
Fig. 3.

The MCMCglmm approach also disclosed the predictor
“harvesting system” as one of the most influential variables
for the occurrence of bark damage either in interaction with
the predictor “distance of tree to skid trail” or as a predictor on
its own. Several effects associated with “harvesting systems”
become evident:

& Systems including either a cable yarder or cable tractors
equipped only with cable winches for skidding cause more
bark damage than skidding operations using skidders ad-
ditionally equipped with a grip tong.

Table 4 Parameters of the
MCMCglmm model for bark
damage on the basis of harvesting
operations

Independent variables Parameter p value p value

global effect

Harvesting system 1 (MM, long, cl + gt, ≥40 m) −4.1839 <0.001*** <0.001***
Harvesting system 2 (MM, long, cl, ≥40 m) −3.9258 <0.001***

Harvesting system 3 (MM, long, full-tree, tree-length, cy, ct) −4.1971 <0.001***

Harvesting system 4 (MM, short, cl + gt, 40 m) −5.0539 <0.001***

Harvesting system 5 (MM, tree-length, cl + gt, ≥40 m) −4.0044 <0.001***

Harvesting system 6 (MM, full-tree, cl + gt, >40 m) −4.0661 <0.001***

Harvesting system 7 (PM, short, cl + gt, 40 m) −4.0087 <0.001***

Harvesting system 8 (PM, short, gt, 40 m) −4.1955 <0.001***

Harvesting system 9 (PM, long, cl + gt, ≥40 m) −1.7677 <0.001***

Harvesting system 10 (FM, short, gt 20 m) −4.1725 <0.001***

Tree height 0.0274 <0.001*** <0.001***

Spruce, beech 0 <0.001***
Fir, oak −0.4076 <0.001***

Douglas fir, pine, larch −0.8623 <0.001***

IntRem 0.0536 <0.001*** <0.001***

Distance tree to skid trails −0.0324 <0.001*** <0.001***

Mean skidding distance 0.0261 <0.001*** <0.001***

Distance tree to skid trails: harvesting system no. 6 0.0250 0.03* 0.03*

Distance tree to skid trails: harvesting system no. 9 −0.1996 <0.001*** <0.001***

Random effect in stand level 0.3832

AUC 0.7
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& Systems based on either tree-length logs or full-trees as the
main assortments cause significantly more stand damage
than those focused on short-length logs.

& The lowest damage levels appear to be associated with
fully mechanised harvesting systems and systems

harvesting mainly short-length logs employing skidders
using a grip tong (Fig. 3).

4 Discussion

The objective of the presented study was to provide a precise
quantitative analysis of impact factors relevant to the occurrence
of bark damage during harvesting operations. The final goal is to
provide forest managers with decision support for an effective
and economically rational management with regard to the occur-
rence of newly inflicted bark damage during harvesting. For this
purpose, three methodologically different modelling approaches

Table 5 Validation of the MCMCglmm model for bark damage on the
basis of harvesting operations

MCMCglmm model (%)

Correctbark damage 40.3

Correctno bark damage 84.8

Correcttotal 84.5

a b c

d e f

g h

Fig. 3 MCMCglmm fitted functions for each effect in the model
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were applied to develop and test an improved model from an
existing database and precursor model. The main focus was to
investigate if these different modelling approaches would yield
consistent results and if the newly developed model would actu-
ally improve model performance compared to the existing pre-
cursor model developed by Nill (2011).

In the present study, models were evaluated comparatively,
with the newer BRT and MCMCglmm approaches compared
to traditional GLMM.

The boosted regression tree approach was applied because
of its advantages (Elith et al. 2008):

& Robust parameter estimation, using the stochastic gradient
boosting algorithm to minimise variance and bias

& Reduced risk of misspecification, as the model “learns”
from the data

& All the benefits of tree-based models in handling model
predictors (e.g. automatic fitting of complex interactions
and unaffected by multicollinearity, missing predictor
values or outliers)

The GLMMs are widely used for regression analysis. They
are flexible and efficient for the analysis of grouped data and
they are widely applied. However, McCulloch and Searle
(2001) showed that generalising linear mixed models to non-
Gaussian data may prove difficult because integrating over the
random effects is intractable. Therefore, techniques that approx-
imate these integrals have become popular, and the conve-
nience of using the Laplace approximation method for estimat-
ing GLMM (Breslow and Clayton 1993) is routinely practiced
in most software, such as the lme4-package in R. However,
such approximation can lead to estimators that are asymptoti-
cally biased towards zero (Breslow and Lin 1995). Markov
chain Monte Carlo methods (MCMCglmm) help solve this
problem by sampling from a series of simpler conditional dis-
tributions that can be evaluated. Thus, the MCMCglmm proce-
dure provides an alternative strategy for marginalising the ran-
dom effects that may be more robust (Zhao et al. 2006; Brown
and Draper 2006) and was, for this reason, applied in this study
along with the traditional GLMM approach.

All three modelling approaches showed quite similar results
and thus fulfilled the required consistency. The fit of the models
under all three approaches showed satisfactory results with AUC
values ranging from 0.7 (MCMCglmm) to 0.8 (BRT), which
means that all the models can successfully discriminate the oc-
currence of bark damage. Likewise, the validation of the models
showed that GLMM as well as MCMCglmm could correctly
classify 85 % of the trees. If one had to choose from the three
tested modelling approaches, we would recommend the GLMM
approach based on its superior fit (compared to theMCMCglmm
approach) and the more robust model predictions (compared to
the BRT approach) (Tables 3, 4 and 5). As a consequence, the
interpretation of the GLMMmodel’s outputs is less complicated.

Summarising the assessment of the models allows for an
evaluation of the significance of those factors that are most in-
fluential for the infliction of bark damage during harvesting op-
erations. In the GLMM and MCMCglmm approaches, the vari-
able “distance of trees to skid trails”was not only significant as a
main effect but also as an interaction term with the variable
“harvesting systems”. In particular, GLMM and MCMCglmm
showed that the interaction “distance of trees to skid trails” with
harvesting system no. 6 (partially mechanised, full tree-length,
cable and grip tong, >40m) and no. 9 (partiallymechanised, long
logs, grip tong, 40 m) was highly significant and proved to be
one of the most influential variables. In the results of the BRT
analysis, interactions terms could not appear as significant for the
principal reasons that in BRT analysis consideration of interac-
tions between predictors is automatically included and cannot be
specified as a separate source of influence. Nevertheless, after
performing the interactions analysis function, it became clear that
in BRT, like in GLMM or MCMCglmm, the most important
interaction was the interaction between “harvesting systems”
and “distance of trees to skid trails”.

The high significance of the interaction terms between
these two harvesting systems (no. 6 and no. 9) and the variable
“distance of tree to skid trail” can be explained by the techni-
cal characteristics of these harvesting systems:

Harvesting system no. 6 is a cable logging system in which
ground hauling is used for full-trees. The felled tree is pulled by a
cable winch through the stand and at the stand edge is manipu-
lated with a grip tong onto the skid trail. Consequently, the trees
that were located far away from skid trails suffered more in this
system from bark damage than the ones closer to skid trails.

Harvesting system no. 9 is used for long logs. For this system,
the probability for the occurrence of bark damage was very high
for trees with locations closer than 10 m to skid trails. That
happened because when the long logs had to be extracted with
the harvester, some of them had to be moved into the stand
located on the other side of the skid trail before depositing them
parallel to the skid trail.

All three modelling approaches show that increasing intensi-
ties of removals lead to an increased probability for bark damage.
This result was not unexpected, as it concurs with empirical
knowledge of forest practitioners and research studies (Nill
et al. 2011; Han and Kellogg 2000; Meng 1978). However, the
consistency of this result throughout all three modelling ap-
proaches should be emphasised as well as the fact that thinnings
which remove >30 % are associated with high probabilities of
bark damage.

The effect of the influence of the mean pre-skidding distance
(up to the skid trail) on bark damage shows a similar trend.
Increasing pre-skidding distances led to higher probability of
bark damage. In particular, when the mean pre-skidding distance
exceeded 20 m, there was a clear trend of rising probability of
newly inflicted bark damage, but it should be acknowledged that
in this study, there was only one combination of harvesting
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system with a mean pre-skidding distance of 20 m, and for this
reason maybe, there are limitations to our results. But the
relationship described is a clear indication not only from our
modelling approaches but was also observed in several studies
like the one by Froese and Han (2006) of CTL thinning in mixed
conifer stands in Idaho, USA.

The variable “harvesting systems” was one of the most influ-
ential variables for the occurrence of bark damage throughout all
three models. Harvesting systems that include the use of a cable
yarder or a cable skidder (cable winch only) for hauling logs
were clearly identified to cause more bark damage than skidders
using a crane with a grip tong for smoothly manipulating logs
between the trees remaining in the stand. This principal finding is
confirmed by various case studies including forest machines
combining forwarder and classical hauling solutions with
strong cranes and grip tongs. Also Stuhlmann and Findeisen
(2009) as well as Sauter et al. (2004) emphasise that these ad-
vantages become even more obvious under difficult conditions
like with large trees, steep terrain, mixed stands or stands with
already established advanced regeneration. Likewise, systems
which harvest tree-length logs or full-trees as themain assortment
appeared more detrimental to the remaining stand than systems
harvesting mainly short-length logs. Furthermore, fully and/or
partially mechanised harvesting operations were generally asso-
ciated with low damage levels. Herewith, the results of the
models underline results from several harvesting studies from
different countries like Austria (Limbeck-Lilienau and Stampfer
2004; Limbeck-Lilienau 2003; Stampfer et al. 2002), Oregon,
USA (Han and Kellogg 2000), Maine, USA, (Ostrofsky et al.
1986) aswell as fromGermany (Sauter andGrammel 1996). The
higher occurence of bark damage was obviously caused by the
length of the logs or whole trees independent of the harvesting
machine used.

Tree height does not show a clear impact on the occurrence of
bark damage. The variable “tree species” in GLMM and
MCMCglmm show a significant global effect on the occurrence
probability of bark damage. Comparison between tree species
indicates that spruce and beech appeared equally vulnerable to
suffering bark damage, whereas fir, oak, pine and larch were
significantly less vulnerable. These differences between the spe-
cies could be because of their different bark characteristics (e.g.
thin bark in spruce and beach).

Finally, the results of the three introduced modelling ap-
proaches and their results provided important information for
optimising Nill’s prototype GLMM-based bark damage prog-
nosis model (Nill 2011; Nakou et al. 2013). Specifically, the
predictor variable “sampling point is located on skid trail”,
representing in Nill’s model proximity to a skid trail,
displayed significant collinearity in the new model with the
variables “mean skidding distance” and “distance of tree to
skid trail” and was therefore subsequently removed. The im-
proved modelling approach made the relevance of the chosen
harvesting systems to the occurrence of bark damage evident

and so far provides better fits with higher AUC value and
adjusted R2 than that of Nill (2011). According to the new
model, up to 85 % of the bark damage can be correctly clas-
sified instead of only 76 %.

Thus, we believe the final GLMM model presented in this
study includes the relevant major factors impacting on the
infliction of bark damage during practical harvesting opera-
tions. Furthermore, as the model allows for assessing the mag-
nitude of different factors’ impacts in a quantitative manner, it
provides managers with a rational and conclusive tool for
optimising harvesting operations with respect to bark damage.
Thus, the current situation, which appears rather unsatisfacto-
ry, might be advanced by selecting, designing and/or applying
improved harvesting operations.
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