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Abstract Lactic acid bacteria (LAB) and propionic acid bacteria (PAB) are
widely used in the manufacture of cheeses and other fermented dairy products.
Bacterial species used as starters are mainly chosen according to their intrinsic
properties: the milk acidifying capacity for LAB starters and the aromatizing
properties of PAB, for example. Beyond the general characteristics of a bacte-
rial species, many key phenotypic traits determining their interest for dairy
applications depend on the strain within a given species. Through some exam-
ples, this review illustrates how the choice of a bacterial strain with specific
technological characteristics, within a given species of LAB or PAB, can
determine the final properties in the end product. This concerns the technolog-
ical properties of cheeses, such as flavour, texture, and opening formation, and
their functional properties, such as inhibition of undesirable microorganisms and
health properties. When known, the genetic determinants of the diversity are
presented. This review emphasizes the importance of preserving and exploring
microbial resources at the intraspecific level, as an unending source of diversity
for innovation in food fermentation.
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1 Introduction

Microorganisms are key agents in the manufacture of fermented foods, where they
generate a wide variety of flavours, textures, and appearances. Historically, milk
fermentation was spontaneous and resulted from the presence of indigenous bacteria
in milk and in the environment. Thanks to our increased knowledge of the fermentation
process and of the bacterial groups involved in cheese manufacture, selected starters
and ripening cultures are nowadays widely used to standardize the fermentation and
reach the targeted properties for the final products. For this, bacterial species are chosen
for their intrinsic species properties. For example, mesophilic or thermophilic species of
lactic acid bacteria (LAB) are chosen according to their ability to acidify milk in the
range of temperatures used in a given process. Likewise, some starter LAB species are
chosen for their aromatizing or debittering properties, propionic acid bacteria (PAB) are
used in Swiss-type cheeses to generate holes and specific flavour notes, and surface
bacteria contribute to the characteristic flavour and colour of smear-rind cheeses. Many
of these properties depend on the strain within a species, and the choice of a selected
strain is thus a means to modulate the final cheese properties.

A bacterial species is defined on the basis of phenotypic properties and whole-genome
DNA-DNAhybridization, which is a reference tool inmicrobial species delineation (Auch
et al. 2010; Stackebrandt et al. 2002). In practice, the use of a polyphasic approach
including an almost complete and high quality 16S rRNA gene sequence combined with
a robust phenotypic description is widely accepted for strain identification up to the
species level (Stackebrandt et al. 2002). Within a bacterial species, a strain is defined as
“the descendant of a single isolation in pure culture and usually made up of a succession of
cultures ultimately derived from an initial single colony” (Staley and Krieg 1984).
Although the strains of a given species share many phenotypical and genomic properties,
they also exhibit some marked differences due to the genomic plasticity. Bacterial
genomic plasticity is provided by two mechanisms: vertical transfer, which is related to
the transfer of genetic information from one generation to the next, and horizontal gene
transfer (HGT), which occurs between even non taxonomically related organisms of the
same generation (Rossi et al. 2014; Cavanagh et al. 2015). It is largely responsible for
bacterial adaptation (Ryall et al. 2012).

The adaptation to diverse ecological niches is genetically determined by the acqui-
sition of new genes by HGT, in parallel to the decay and loss of non-essential genes as
highlighted by comparative genomic analysis in LAB and PAB (Cai et al. 2009;
Cavanagh et al. 2015; Kelleher et al. 2015; Loux et al. 2015; Papadimitriou et al.
2015). Many examples of HGT in food-related LAB species have been reported (Rossi
et al. 2014). For example, the extracellular protease PrtS and the glutamic acid
decarboxylase GadB in Streptococcus thermophilus have both been acquired by
HGT (Rossi et al. 2014). Many technologically important traits are plasmid-encoded
in Lactococcus lactis (Kelleher et al. 2015). Most dairy-associated isolates of L. lactis
carry extensive plasmid complements, which can constitute up to 9% of the genetic
material (Ainsworth et al. 2014). Transposable elements are commonly found in the
chromosome and plasmids of L. lactis, and insertion sequences (IS) are involved in
mutations resulting in gene activation or deactivation (Cavanagh et al. 2015). An
extensive gene decay is observed in food-related LAB, resulting in up to 10% of
pseudogenes in the genome (Papadimitriou et al. 2015).
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The intensive selection of LAB on properties for their dairy industrial use led to an
increased specialization of so-called “domesticated” strains with an exacerbation of the
targeted quality, such as fast acidification and a concomitant loss of other useless
characteristics, compared to the “wild-type” ancestral strains. For example, the tradi-
tional division into dairy strains and non-dairy strains of L. lactis has recently been
replaced by a new classification that distinguishes ecotypes corresponding to “domes-
ticated” and “environmental” strains (Passerini et al. 2010). In Lactobacillus
rhamnosus, the integration of genomic and phenotypic data of 100 strains isolated
from various ecological niches revealed the presence of two prevailing geno-pheno-
types, characterized by traits explaining their adaptation to dairy-like environments or
to the intestinal tract, respectively (Douillard et al. 2013). Some pheno-genomic
markers, such as carbohydrate metabolism, were proposed to characterize the ecology
of L. rhamnosus strains. All the strains domesticated to the dairy environment share
common properties, but they can also differ in the phenotypic traits of importance for
their use in the dairy industry due, for example, to point gene mutations.

This review illustrates how the strain-dependent phenotypic variability can deeply
impact the final properties of cheeses. This paper will preferably report on the results of
studies that have demonstrated the impact of strains in situ in cheeses or in other dairy
products including those in model dairy systems, when available, rather than in classical
laboratory media. The mechanisms that explain the observed differences will also be
presented whenever they are known. This paper provides some examples illustrating the
extent of variations in the final properties of cheeses (e.g. organoleptic, techno-functional,
safety, and health properties) that can result from the choice of selected strains within a
LAB or PAB species.

2 Technological properties

This section gives examples of the strain-dependency of activities in LAB and PAB
species that generate various metabolites involved in the formation of cheese flavour,
texture, and techno-functional properties.

2.1 Flavour properties

The formation of flavour results from the conversion of milk lactose, citrate, caseins
and lipids into taste and aroma compounds during the fermentation of dairy products.
This section, through three examples, illustrates how the strain-to-strain variations in
LAB and PAB species can strongly impact the formation of important flavour com-
pounds in cheese. Some of the examples cited below are further detailed in Tables 1 and
2 illustrating the results of screening studies of LAB (Table 1) and PAB (Table 2).

2.1.1 Formation of flavour compounds by L. lactis

“Wild” strains of L. lactis produce a larger number of compounds in comparison to
industrial dairy strains and may generate an unusual flavour, either desirable or
undesirable (Alemayehu et al. 2014; Ayad et al. 1999; Cavanagh et al. 2014;
Cavanagh et al. 2015).
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Many flavour compounds in cheese results from amino acid catabolism by LAB,
generating a range of flavour notes in cheese (Yvon and Rijnen 2001). The amino acid-
converting ability of LAB varies greatly from strain to strain (Smit et al. 2005). Two
thirds of the wild strains of L. lactis grown in milk produced an unusual flavour
compared to those produced by the industrial reference strains (Ayad et al. 1999).
Tested in Gouda cheese manufacture in association with a reference industrial starter
strain, some selected strains generated varied flavour notes, such as malty/chocolate,
fruity and H2S (Table 1). Some “wild” non-dairy strains of L. lactis have been shown to
produce glutamate dehydrogenase (GDH), an enzyme that converts glutamate to α-
ketogluturate, thus enhancing the first rate-limiting reaction of the amino acid conver-
sion to flavour compounds, an aminotransferase reaction, which requires an amino
group acceptor such as α-ketoglutarate (Tanous et al. 2002).

Lactococcus lactis subsp. lactis biovar diacetylactis strains are used in the dairy
industry for generating acetoin and notably diacetyl, which imparts a buttery flavour
note (Curioni and Bosset 2002). An elegant study recently highlighted the large strain-
dependency in the production of acetoin and diacetyl in a collection of 35 L. lactis
strains from diverse origins (Passerini et al. 2013). Dairy domesticated strains of the
biovar diacetylactis harbour a citP plasmid gene encoding citrate permease and a
chromosomal region citM-citI-citCDEFXG involved in citrate metabolism. These
strains produce diacetyl or acetoin at a high level during early growth. Two out of
the 11 environmental strains tested also produced a significant amount of these aroma
compounds, although they do not use citrate (Passerini et al. 2013). In these strains,
pyruvate flux was rerouted through the acetoin–diacetyl pathway and resulted in a
production at a lower rate compared to citrate positive strains. Ten out of the 11
environmental strains were citrate-negative but produced acetoin or diacetyl through
this pathway, in a highly strain-dependent manner, with final aroma concentrations
varying from 2 to 20 mM (Passerini et al. 2013). In another study, the 15 L. lactis
strains tested produced different profiles of flavour compounds in fermented milk, with
a clear distinction between the 3 dairy strains and 12 plant-derived strains. For example,
the production of diacetyl and acetoin varied by a factor >20 and 200, respectively
(Alemayehu et al. 2014). Differences between the amounts of acetoin produced by wild
strains of L. lactis were also observed in miniature Chihuahua-type cheese (Nájera-
Domínguez et al. 2014).

2.1.2 Hydrolysis of caseins by LAB: a complex proteolytic and lytic system implied
in the formation of sapid peptides

Proteolysis is a complex series of reactions which hydrolyses caseins, the main milk
proteins, into peptides and free amino acids. It involves proteinases and peptidases from
different origins: milk, coagulants added during process and microorganisms. The
production of peptides by LAB cell envelope proteinases (CEP) is highly variable,
both quantitatively and qualitatively, but gives fingerprints of overall proteolysis that
are distinguishable among the various dairy fermented products. The size of peptides
produced from casein hydrolysis ranges from 3 to more than 45 amino acid residues,
due to the very broad specificity of the proteinases on caseins.

Either a unique or multiple CEP is present in LAB, depending on the species. For
example, a unique CEP, PrtP, is present in L. lactis (Monnet et al. 1987), PrtS in

898 A. Thierry et al.



S. thermophilus (Fernandez-Espla et al. 2000), PrtB in Lactobacillus delbrueckii (Laloi
et al. 1991), and PrtR in L. rhamnosus (Pastar et al. 2003), whereas up to four CEPs are
present in Lactobacillus helveticus, referred to as PrtH to PrtH4 (Broadbent et al. 2011;
Sadat-Mekmene et al. 2011b). Moreover, the activity and specificity of CEP can also
vary within a given species. For example, the PrtP proteases of the two strains of
L. lactis subsp. cremoris WG2 and SK11 possess distinct specificities towards the
peptide αs1-casein (f1–23) and were classified as type PI and PIII, respectively
(Exterkate 1990; Exterkate and Alting 1995). The PrtP of L. lactis subsp. lactis
NCDO 763 was classified as intermediate type PI/PIII (Monnet et al. 1992). The
strain-dependency of casein hydrolysis is still higher within the L. helveticus species.
The specificity of cleavage of β- or αs1-caseins varies from strain to strain and also
depends on the substrate (purified caseins or casein micelles in milk) (Sadat-Mekmene
et al. 2011b). The 15 strains studied in vitro rapidly hydrolysed pure β-casein, but
differed in the hydrolysis kinetics of αs1-casein, depending on their number of CEPs
(Sadat-Mekmene et al. 2011a). Moreover, in cheese, the degree of proteolysis differed
by a factor of 1.5 in Emmental cheeses manufactured using either L. helveticus
ITGLH77 with only PrtH2 and a low level of lysis, or L. helveticus ITGLH1 having
at least PrtH and PrtH2 encoding genes and a high lytic activity (Sadat-Mekmene et al.
2013). The kinetics of αs1-casein hydrolysis in these cheeses was in agreement with the
results observed in vitro.

As a consequence of CEP diversity, the peptide profile is highly dependent on the
LAB species used as a starter. Some of the numerous peptides produced, rich in
hydrophobic amino acid residues, confer bitterness to dairy products and notably in
cheese, depending on their size, sequence and amount (Lemieux and Simard 1992;
McSweeney 1997; Vassal and Gripon 1984). Proteolysis is a continuous process, and
these hydrophobic bitter peptides can be further hydrolysed by bacterial intracellular
peptidases released in cheese through LAB autolysis. The smaller peptides and free
amino acids produced are associated with other taste compounds (sour, sweet, acid,
brothy) and are precursors of flavour compounds (Yvon and Rijnen 2001). These
peptidases are active throughout the ripening time in cheese, as shown in different
cheeses (Emmental, Gagnaire et al. 1998; Valence et al. 2000, Cheddar, Sheehan et al.
2006, and semi-hard cheese, Boutrou et al. 1998). In semi-hard cheese manufactured
using with five single strains of L. lactis with different lytic and proteolytic properties,
good flavour scores and in particular non-bitter cheeses were only obtained with the
strains both lytic and with a high proteolytic potential (Boutrou et al. 1998). It should be
underlined that testing the in vitro proteolytic potential of LAB gives only a partial
view of what can be expressed in situ in cheese. For example, the proteolytic potential
of starter strains measured in vitro for cell-free extracts was not found to be correlated
with the activity released in Cheddar cheese (Sheehan et al. 2006). The impact of strain-
dependency due to the differences in L. lactis CEPs was shown in 50% reduced-fat
Cheddar cheese manufactured using isogenic single strains of L. lactis that had CEP
with different substrate specificities and a CEP-negative strain (Broadbent et al. 2002).
Cheeses made with the CEP-negative strain did not develop bitterness, whereas the
other cheeses developed slight to moderate bitterness depending on CEP specificity
(Broadbent et al. 2002). This could be related to the starter peptidase activity that could
be reinforced in a CEP-negative strain (Farkye et al. 1990) compared to a CEP-positive
strain. Therefore, the higher production in CEP-negative strains in Cheddar cheese of
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small peptides and amino acids that are precursor of in flavour compounds in cheese
during ripening could have explained the different development of flavour in both types
of strains having or not having CEP.

Bacterial lysis mainly concerns the LAB species used as starters, such as L. lactis,
S. thermophilus, L. helveticus, and L. delbrueckii and, to a lesser extent, non-starter
lactobacilli, such as Lactobacillus casei, Lactobacillus paracasei and Lactobacillus
plantarum, and PAB. The molecular mechanisms responsible for different abilities to
lyse are diverse and not all elucidated. Lysis results from the activity of peptidoglycan
hydrolases (PGH) on the bacterial cell wall. It can also result from the induction of a
prophage in L. lactis and L. helveticus but this is not a general mechanism (Lortal and
Chapot-Chartier 2005; Deutsch et al. 2002, 2003). In L. helveticus, which exhibits a
large range of autolytic abilities (Valence et al. 1998), the nine PGH genes are
ubiquitous and transcribed early during growth in all the strains (Jebava et al. 2011).
The differences of autolytic properties of strains would result from differences in cell
wall composition (Vinogradov et al. 2013) (see Table 1 for further details).

2.1.3 Formation of flavour compounds by propionibacteria

Propionibacterium freudenreichii is used in the manufacture of Swiss-type cheeses, in
which it is responsible for the formation of the typical flavour. It grows during the
ripening, with lactic acid as the main carbon source, which is converted into propionic
acid, acetic acid and CO2, responsible for hole formation (Fröhlich-Wyder and
Bachmann 2004; Langsrud and Reinbold 1973). This ability is present in all
propionibacteria strains. However, their growth and fermentation rates in cheese
depend on the conditions, in particular, the NaCl content of the cheese (Richoux
et al. 1998).

P. freudenreichii produces flavour compounds in cheese from three main pathways:
lactate fermentation, amino acid catabolism, and fat hydrolysis (Thierry et al. 2011a).
Regarding amino acid catabolism, P. freudenreichii mainly produces branched-chain
(BC) volatile fatty acids from BC precursors. These BC volatile fatty acids are flavour-
active compounds in many cheeses where they bring typical flavour notes of old cheese
(Urbach 1997; Yvon and Rijnen 2001). Since the biosynthesis of BC volatile fatty acids
is closely related to that of membrane fatty acids, this activity is constitutive and
observed in all strains. However, the amounts of BC volatile fatty acids produced are
highly strain-dependent. For example, the concentrations of BC volatile fatty acids
ranged from 6 to over 50 mg.mL−1 in the cultures of 40 strains of P. freudenreichii
grown in cheese-like conditions (Dherbécourt et al. 2008). They ranged from 19 to
114 mg.kg−1 at the end of ripening in eight experimental Swiss cheese manufactured
using a single strain culture of P. freudenreichii (Thierry et al. 2004a). The formation of
many other amino acid-derived aroma compounds varied significantly depending on
the PAB strain, in P. freudenreichii as well as in the three other dairy PAB species (Yee
et al. 2014). The ability to produce aroma compounds was not correlated with the
subspecies of P. freudenreichii (De Freitas et al. 2015). The mechanism responsible for
this strain-dependency is still unknown.

Fat hydrolysis during cheese ripening is another important aspect for flavour
formation, because the free fatty acids (FFA) released are important flavour compounds
in most cheeses. In Swiss-type cheeses, P. freudenreichii is the main agent of lipolysis
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(Chamba and Perreard 2002; Dherbécourt et al. 2010). However, the intensity of lipolytic
activity ofP. freudenreichii, again, is highly strain-dependent. In experimental Swiss cheeses
manufactured using five different strains of P. freudenreichii, the net increases in FFA
concentrations ranged from 0.2 to 3–4 mg.g−1 cheese, compared to the control cheeses
manufactured without propionibacteria (Chamba and Perreard 2002; Dherbécourt et al.
2010; Thierry et al. 2005). In a model medium supplemented with an emulsion of milk fat,
19 strains out of the 21 tested strains released FFA, with a net production of FFA ranging
from 0.137 to 1915 mg.g−1, whereas two strains did not display any detectable lipolytic
activity (Abeijon Mukdsi et al. 2014). Interestingly, the intensities of lipolysis by
P. freudenreichii were similar in this model medium and in cheese. In both non-lipolytic
strains, the lipase gene responsible for lipolysis possesses a non-sense mutation leading to
non-functional enzyme (Abeijon Mukdsi et al. 2014).

2.2 Texture and exopolysaccharide production

The production of exopolysaccharide (EPS) within LAB has been widely studied as a way
to improve the texture of dairy products, such as low fat cheeses, and to reduce syneresis in
fermented milks. The relationships between the amount and molecular characteristics of
EPS and their functionality in the dairy products remain difficult to establish. However it
clearly appears that the strain has a great impact on the final characteristic of the dairy
products, since the production of EPS differs from strain to strain. Hence, some strains do
not produce EPS, while other strains within the same species produce different molecules.

In fermented milks, it has been demonstrated that a reduced syneresis can be obtained by
a discerning choice of the LAB strains implemented. Five EPS-producing or non-EPS-
producing LAB (S. thermophilus, L. delbrueckii subsp. bulgaricus and L. lactis) were
studied by Purohit et al. (2009). All the EPS-producing strains reduced the syneresis of
fermented milks, whereas only some of these strains reduced the syneresis after cutting the
products, indicating that the effectiveness of EPS-producing cultures depends on the type of
EPS produced.

Fermented milks manufactured using 28 EPS-producing strains of Lactobacillus (14
L. plantarum strains, 9 L. kefiranofaciens strains and 5 L. paracasei strains) differed in their
rheological properties (Hamet et al. 2015). The analysis of the EPS produced highlighted
large variations between strains in terms of concentration and molecular weight of the
molecules produced.

The relationship between the EPS structure and its function in situ has been investigated.
The rheological properties of fermented milks made with strains of LAB producing EPS
with known properties of charge, flexibility and degree of branching were affected. This
indicates that the rheological properties of dairy products are affected by the structural
characteristic of the molecules, especially the anionic charges (Gentès et al. 2011). These
examples highlight that, with a careful selection of the strain, it is possible to improve the
rheological and textural characteristics of dairy products.

2.3 Opening and gas formation

Propionibacterium freudenreichii has a key role in the formation of the typical round
holes (eyes) in Swiss-type cheeses. The correct formation of holes depends on physico-
chemical factors, such as the presence of nucleation sites for hole development, an
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appropriate cheese structure, a massive production of carbon dioxide (CO2) that
induces a local saturation of gas leading to the formation of holes. During the ripening
in the warm room, P. freudenreichii produces CO2 from lactate fermentation, thus
producing the main part of the CO2 formed in cheese, the remaining part being formed
by facultative heterofermentative lactobacilli from citrate fermentation and amino acid
catabolism (Thierry et al. 2010).

Some P. freudenreichii strains express an aspartase activity, responsible for aspartate
deamination. These strains co-ferment lactate and aspartate into propionate, acetate,
succinate and CO2, which result in a higher ratio of CO2 produced per mole of
fermented lactate (Wyder et al. 2001; Fröhlich-Wyder and Bachmann 2004). The
screening of aspartase activity of P. freudenreichii strains isolated from cheese showed
a very large strain-dependency (Table 2). The activity of cell-free extracts of eight wild
strains of P. freudenreichiiwas shown to vary by a factor >200. In another study, half of
the 100 strains tested exhibited <100 units (quantity of enzyme producing 0.01 nmol of
NH3. min-1.mg-1 of protein), while the activity of the other strains ranged from <150 to
>1500 units (Blasco et al. 2011). The molecular bases of these strain-to-strain variations
have not been investigated. Emmental cheeses manufactured using two multi-strain
PAB cultures with high and low aspartase activity, respectively, were compared (Wyder
et al. 2001). The PAB cultures with a high aspartate activity generated cheeses with no
residual aspartate and aspargine, a higher content in succinate (×3), and a greater
number and size of holes. These types of strains induced an accelerated ripening of
cheese, but also an increased risk of late fermentation associated with “split defect” in
Swiss-type cheeses (Daly et al. 2010; Fröhlich-Wyder and Bachmann 2004).

2.4 Techno-functional properties

2.4.1 Stretchability

Some techno-functional properties of cheese, such as stretching after the culinary
preparation of Mozzarella or Swiss-type cheese is related to proteolysis.

In the case of Mozzarella cheeses, LAB starters are S. thermophilus and L. helveticus
or L. delbrueckii subsp. bulgaricus. Oberg et al. (1991) used two strains of L. helveticus
highly (Prt+) or weakly (Prt−) proteolytic as a single starter strain or in combination
with S. thermophilus and evaluated the consequences on stretching, melting and
browning. Melting properties did not significantly differ depending on the starters
used (Oberg et al. 1991). In contrast, stretching properties were higher in cheeses
made with L. helveticus Prt− strain, compared to the Prt+ strain.

In Emmental cheese, Richoux et al. (2009) compared the stretchability of three
strains of L. helveticus or L. delbrueckii subsp. lactis. Cheeses were manufactured with
a single strain of L. helveticus or L. delbrueckii subsp. lactis, or a combination of one
strain of each species. Only the cheeses manufactured with L. helveticus were able to
make long strands (>350 mm). In cheeses manufactured with L. delbrueckii subsp.
lactis alone or in combination with L. helveticus, the ability to stretch was at least
decreased by a factor of two. It was not correlated to the total amount of peptides but to
a balance between hydrophobic and hydrophilic peptides (Richoux et al. 2009). The
relation with the number and/or activities of L. helveticus CEP and the ability of strains
to lyse and to release their intracellular peptidases was a determinant in the
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stretchability, and differences in strand length between strains of more than 100 mm
were observed (Sadat-Mekmene et al. 2013). Such a difference was correlated with a
peculiar type of peptides, i.e. hydrophobic ones and with a size over 20 amino acid
residues (Sadat-Mekmene et al. 2013).

2.4.2 Cheese quality and galactose catabolism

Galactose accumulation in cheese can favour the growth and CO2 production by
undesirable non-starter bacteria capable of galactose utilization (Wu et al. 2015). It
can also induce the browning of Mozzarella cheese (Johnson and Olson 1985). LAB
such as L. delbrueckii subsp. bulgaricus and most S. thermophilus strains are unable to
metabolize galactose (Gal−), whereas L. helveticus strains are Gal+. Gal− strains
release in the medium or cheese the galactose moiety after cleavage of lactose by a
β-galactosidase. However, some S. thermophilus strains able to catabolise galactose
have been identified. The use of both Gal+ strains of Streptococcus spp. in combination
with L. helveticus strains in the starter culture was probably responsible for the low
residual galactose in Mozzarella cheese (Mukhurjee and Hutkins 1994). Gal+ strains of
S. thermophilus were also utilized to reduce the quantity of residual galactose in yogurt
(Umamaheswari et al. 2014). A yogurt prepared using a Gal+ S. thermophilus strain
(NCDC 659) associated with L. delbrueckii subsp. bulgaricus contained 0.37% galac-
tose compared to 0.98% in a reference yogurt inoculated with a Gal− S. thermophilus
strain (Anbukkarasi et al. 2014). Galactose catabolism by LAB mainly relies on
chromosome located-genes encoding the tagatose-6P and/or Leloir pathways (Wu
et al. 2015), but the genetic basis for strain-dependency of this trait is still unclear.

3 Functional properties

In this section, we will consider the strain-dependency of functional properties of LAB
and PAB, considering the inhibition of deleterious microorganisms, with the example
of bacteriocin production by PAB, the inhibition of pathogenic bacteria, through the
production of inhibitory compounds, the inhibition of virulence expression through the
perturbation of quorum sensing systems and the probiotic effect regarding the
immunomodulation related to surface proteins of PAB and antihypertensive peptides.

3.1 Inhibition of spoilage and pathogenic microorganism growth

Beyond their direct implication in the fermentation process of fermented dairy prod-
ucts, LAB and PAB are also used for their protective potential against spoilage and
pathogenic microorganisms. Although this inhibitory potential is one important crite-
rion for the selection of LAB and PAB starters, only a few studies addressed the
intraspecific variations in the inhibitory potential. In a study on the antibacterial activity
of L. plantarum, 347 food-derived isolates were tested against five foodborne patho-
gens. About 3–6% of isolates exerted a high antibacterial activity against at least one
indicator bacterium (Li et al. 2015). The effect was observed for seven out of the nine
selected L. plantarum strains tested in fermented milk co-inoculated with a commercial
yogurt starter (Li et al. 2015). In this section, we will consider the strain-dependency of
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such properties, considering the inhibition of deleterious microorganisms, with the
example of fungi in milk products, the inhibition of pathogenic bacteria, through the
production of inhibitory compounds, and the inhibition of virulence expression through
the perturbation of quorum sensing systems. Each of these potentials can be associated
with the ability of the strains to produce a given compound, such as bacteriocins,
organic acids, hydrogen peroxide, or must be considered as the combinatorial effect of
several factors.

3.1.1 Bacteriocin production

Bacteriocins are ribosomally encoded peptides or proteins produced by bacteria to limit
or totally inhibit the growth of competitor bacteria that are most often phylogenetically
closely related. LABs have been screened for bacteriocin production for decades and
several bacteriocins were discovered in LAB originating from various ecosystems and
foodstuffs. Production and potential utilization of LAB-produced bacteriocins were
recently reviewed in detail (see Bali et al. 2014; Perez et al. 2014).

PAB strains also produce bacteriocins (reviewed by Jan et al. 2007; Thierry et al.
2011b), including three antimicrobial peptides that display some quite unique traits
compared with bacteriocins from LAB, propionicin T1, protease-activated antimicrobial
peptide (PAMP) and propionicin F (Faye et al. 2011). The propionicin T1 peptide is
produced by some strains of Propionibacterium thoenii and Propionibacterium jensenii,
and is bactericidal towards all tested species of propionibacteria exceptP. freudenreichii.
The encoding gene (pctA) is widely distributed within P. jensenii and P. thoenii (Faye
et al. 2004). However, only 5 of 13 pctA-positive P jensenii strains produced antimi-
crobial activity corresponding to propionicin T1. The PAMP antimicrobial peptide is
secreted in large amounts as an inactive precursor pro-PAMP protein, which is converted
into PAMP upon proteolytic processing. The Pro-PAMP protein is produced by most
strains of P. jensenii and P. thoenii but their sensitivity to PAMP varies quite extensively
(Faye et al. 2004). Propionicin F is a hydrophobic and negatively charged bacteriocin
produced by P. freudenreichii. It displays an intraspecies bactericidal inhibition spec-
trum, killing only strains of P. freudenreichii (Brede et al. 2004).

3.1.2 Organic acid production

Organic acids have deleterious effects on many neutrophilic bacteria and can signifi-
cantly reduce their growth and threaten their viability (Lund et al. 2014). The produc-
tion of organic acids, and the resulting acidification, is a major parameter in the
inhibitory potential of starter LAB. For instance, Staphylococcus aureus growth is
completely stopped in milk acidified at pH 4.4–4.5 by lactic acid (Charlier et al. 2008).
Only a few studies investigated the strain-dependency of this potential. In a panel of 75
L. lactis strains, 93% (n=70) presented a strong inhibition against the growth of the
Gram positive pathogen S. aureus in milk, whereas 7% (n=5) were poor inhibitors,
demonstrating that the inhibitory potential among L. lactis strains was not homogenous
(Charlier et al. 2008). These results contrast with previous studies, which concluded
that such a potential was homogenous (Haines and Harmon 1973a, b). Of note, these
studies were based on a smaller panel of strains (n=5) and tested the inhibitory
potential in laboratory conditions.
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PAB also produced organic acids. In addition to their main fermentation end-
products, propionic, acetic and succinic acids, they also produce other organic acids
with antifungal activities, 2-pyrrolidone-5-carboxylic, 3-phenyllactic, and
hydroxyphenyllactic acids (Thierry et al. 2011a).

3.1.3 Other compounds and combination of several compounds

Hydrogen peroxide (H2O2) is often cited as one of the inhibitory molecules produced
by LAB. The ability of LAB to produce H2O2 appears to be strain-dependent. Ito et al.
(2003) evaluated the ability of 193 LAB strains isolated from various food products to
produce H2O2 and found strong variations between strains. The scarce studies on H2O2

production by LAB in a food context report the ability of LAB isolated from food
products, including dairy products, to produce H2O2. However, H2O2 production
assays are generally performed in laboratory conditions (Ito et al. 2003; Enitan et al.
2011) rather than in situ in dairy products, probably because of the difficulty to quantify
this unstable metabolite.

H2O2 production by a Lactococcus garvieae strain was recently demonstrated in a
cheese matrix and this was in part responsible for S. aureus growth inhibition (Delbes-
Paus et al. 2010).

Diacetyl is a volatile compound produced by some LAB. It was shown to have an
inhibitory activity against foodborne pathogens (Jay 1982; Kang and Fung 1999).
Combinations of diacetyl with other antimicrobials such as nisin, an L. lactis bacteri-
ocin, have shown a synergistic antimicrobial effect against foodborne pathogens
(O’Bryan et al. 2009; Lee and Jin 2008). Only citrate-utilizing LAB can produce
diacetyl and, in L. lactis, the citrate permease gene is plasmid-encoded. Likewise, a
nisin operon is transposon-borne and thus, is not present in all L. lactis strains. Both
diacetyl and nisin production are thus highly strain-dependent in this species. Such a
synergistic effect of diacetyl and reuterin, a bacteriocin produced by some
Lactobacillus reuteri strains, was recently demonstrated against several foodborne
pathogens (E. coli O157:H7, Listeria monocytogenes, and Salmonella enterica subsp.
enterica serovar Enteritidis (Langa et al. 2014)).

3.1.4 Phenomena related to competition for nutrients

While the inhibitory properties of LAB are frequently related to the production of
inhibitory molecules, the involvement of nutrient-related phenomena should also be
considered. Screening of 75 L. lactis strains revealed that strains exhibiting strong
inhibitory properties, with regard to S. aureus growth in milk, included strains with
both high and low acidifying properties, and a residual inhibition occurred when pH
was regulated at neutral pH (Charlier et al. 2008). This remaining inhibition strongly
depended on the medium used. Whether these nutrient-related phenomena were a direct
nutritional competition or limitation, or an indirect inhibitory effect remains unknown.

3.1.5 Antifungal properties

The ability of LAB and PAB to exert antifungal activities is now well established.
These properties are most of the time multifactorial and result from the production of
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different metabolites by bacteria, such as organic acids, H2O2, CO2, ethanol, and
proteinaceous compounds (peptides, cyclic dipeptides) (Crowley et al. 2013; Dalié
et al. 2010). The production of most of these compounds is strain-dependent as
illustrated later in this section. L. plantarum is the LAB species that is the most
documented for antifungal properties, as well as, to a lesser extent, other lactobacilli,
e.g. L. brevis, L. casei, L. pentosus, L. reuteri, and species of the genus Pediococcus
(Schnürer and Magnusson 2005). There is abundant literature on in vitro screening
studies in order to find specific LAB strains with antifungal properties and even if the
number of strains tested within a species is generally low, strain-dependency has been
reported. Up to 75% of variation was observed, for example, between the five strains of
L. casei tested for their potential to inhibit the growth of four spoilage moulds (Cortés-
Zavaleta et al. 2014). Both the level of the antifungal activity and the spectrum of the
fungal targets inhibited varied from strain to strain in LAB and PAB species tested in
dairy models (Valence and Mounier, unpublished results).

3.2 Inhibition of virulence expression of pathogens by LAB strains

From a regulatory point of view among foodborne pathogens, toxin-producers like S. aureus
can be tolerated in some foodstuffs (e.g. in rawmilk cheeses) as long as it does not exceed a
population level favouring the production of toxins (Cretenet et al. 2011a). The latter may
indeed remain active in the end product even though the producer strain has disappeared.
Besides inhibiting the pathogen growth, controlling the toxin production can thus be of
special interest. The example of S. aureus enterotoxin production is of particular interest in a
food context. It was shown that, when co-cultured with S. aureus, L. lactis strains are able to
inhibit virulence expression in various S. aureus strains. The phenomenon is observed in
laboratory conditions and in a model cheese where both species can grow at high levels
(Even et al. 2009; Cretenet et al. 2011b). It is now known that L. lactis presence dramatically
inhibits the accessory gene regulator (agr) system in S. aureus. This system tightly controls
virulence expression in S. aureus and, notably, the expression of agr-dependent staphylo-
coccal enterotoxins (SEs), such as SEC. This feature is of great interest to control SE,
although some SEs like SEA, whose expression is agr-independent, do not respond to this
inhibitory activity. The mechanism involved in the inhibition is multifactorial and involves
both the acidification and reducing properties ofL. lactis (Nouaille et al. 2014). Although the
strain-dependency of this inhibitory activity has not been investigated in depth, one might
consider that it is not highly strain-dependent. Indeed, when considered individually, the
properties involved in the inhibition (reducing capacities and acidification) reportedly vary
with the strains (Charlier et al. 2008; Charlier et al. 2009; Michelon et al. 2013), but they
clearly overlap here in the virulence inhibition exerted by L. lactis. In this system, a low
reducing capacity might likely be compensated by the acidification of the medium and thus
might not result in a complete alleviation of the inhibition.

3.3 Immunomodulation by dairy bacteria

Some dairy-related bacterial species are “2-in-1” bacteria that can be involved in both
the elaboration of fermented dairy products such as cheeses and in beneficial health (so-
called probiotic) effects on the host. As an example, the most used PAB species,
P. freudenreichii, was shown to display anti-inflammatory properties, in a very strain-

910 A. Thierry et al.



dependent manner (Foligné et al. 2010). Out of a selection of 23 strains of
P. freudenreichii, a continuum from strains having no immunomodulatory effect to
strains with a very marked anti-inflammatory one was observed ex vivo on fresh human
peripheral blood mononuclear cells (PBMCs) using Il-10 induction as a marker
(Foligné et al. 2013). Accordingly, the strain inducing the highest level of IL-10
ex vivo protected mice from induced colitis in vivo, either consumed as a pure culture
(Le Marechal et al. 2015) or as an experimental semi-hard cheese (Plé et al. 2015). In
contrast, strains which failed to induce IL-10 ex vivo also failed to protect from colitis
in vivo (Jan, unpublished results, ANR project ANR-2010-ALIA-016 “SURFING”).
The surface compounds involved in this immunomodulation are strain-specific surface
proteins of the S-layer-type (Le Marechal et al. 2015). By contrast, some
P. freudenreichii strains produce a surface beta-glucan exopolysaccharide after growth
in a dairy-based medium and display no immunomodulatory properties, while the
mutational inactivation of this exopolysaccharide capsule leads to anti-inflammatory
properties of the mutant strains (Deutsch et al. 2010, 2012). Accordingly, pure cultures
of P. freudenreichii ET-3 in whey exerted protective effects in experimental colitis in
mice (Okada et al. 2006; Uchida and Mogami 2005). A pilot clinical study on
ulcerative colitis also suggests a beneficial effect of this strain in humans (Suzuki
et al. 2006). The development of an experimental cheese, fermented by a selected anti-
inflammatory strain of P. freudenreichii exclusively, and protective against colitis,
recently evidenced that the choice of the starter strain(s) determines the probiotic effect
of the cheese (Plé et al. 2015).

Similar strain-dependent immunomodulation was also reported for lactic acid dairy
starters including Lactobacillus debrueckii (Santos-Rocha et al. 2012), S. thermophilus
(Del Carmen et al. 2015), and L. helveticus (Hosoya et al. 2014; Yamashita et al. 2014).
A yogurt containing anti-inflammatory L. debrueckii and S. thermophilus accordingly
exerted preventive effect in ulcerative colitis patients (Magee et al. 2005). Furthermore,
cheese made with L. helveticus LH2171 alleviated symptoms of experimental colitis
(Hosoya et al. 2012), while another strain MIMLh5 displayed pro-inflammatory
properties (Taverniti et al. 2013).

3.4 Production of antihypertensive peptides by lactic acid bacteria

Peptides have numerous bioactivities and among them, antihypertensive activity has
been more particularly studied in milk and cheeses according to strain-dependency.
Thus, Fuglsang et al. (2003) showed that among the 10 strains of L. helveticus and 11
strains of L. lactis that have antihypertensive activity after milk fermentation, two
strains of L. helveticus were able to decrease blood pressure in rats after feeding with
fermented milk, in contrast to L. lactis strains. Another predominant action of
L. helveticus and L. delbrueckii was also shown in Swiss-type cheeses, in which the
levels and dynamics of the ACE inhibitory activity varied according to the combination
of lactobacilli strains used, up to sixfold at the end of the ripening time (Gagnaire et al.
2012). Among the 18 combinations of starters strains used, only one containing one
strain of L. helveticus and one of L. delbrueckii, both with a moderate proteolytic
activity, led to a high ACE inhibitory activity. The latter was not predictable from the
intensity of proteolysis observed, showing that the quality of the proteolysis prevails on
the quantity of the peptide produced (Gagnaire et al. 2012).
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As a conclusion, the choice of dairy starters, taking into account their bioactive
profile, may orientate a fermented food product towards probiotic effects, depending on
the targeted specific population.

4 Conclusions and perspectives

This review illustrates how the choice of a bacterial strain within a given species can
induce a great extent of differences for important properties of fermented dairy
products. On one hand, and for some peculiar characteristics, the technological,
probiotic, or inhibitory potential towards undesirable microorganisms of LAB or
PAB is clearly strain-dependent, especially when it is based on the presence of a gene
(or an operon) as it is for bacteriocin or diacetyl production. On the other hand, when
the potential of interest relies on metabolic activities and overlapping properties (e.g.
antifungal activity, inhibition of virulence expression in S. aureus by L. lactis), the
strain-dependency may be lower, even though each of the features involved can be
strain-dependent. However, only a few studies have tested large numbers of strains of
the same species, preventing any definitive conclusion.

Some properties that were initially considered as constant features for a given species
based on screening of a few strains can later appear to be highly variable and strain-
dependent when a higher number of strains are investigated. Therefore, general conclu-
sions on the compared properties of different species should not be drawn until a
sufficient number of strains of each species are tested. The great impact of the intraspe-
cific diversity on the final quality of fermented dairy products also stress the importance
of an adequate preservation of microbial resources, which should be made accessible to
the scientific community to facilitate their screening and valorisation. The Organization
for Economic Cooperation and Development (OECD) has established the concept of
Biological Resource Centre (BRC) and edited specific guidelines (OECD 2007).
Microbial BRC, in particular, have been described as a factor in economic development
(Smith et al. 2014). Microorganisms have both a patrimonial value and a potential for
innovation. The larger the number of strains for a specific species, the greater the
possibility of discovering strains with a specific potential for innovation. Interestingly,
79% of newmicrobial species described in 2009 are based on one unique strain, the type
strain (Stackebrandt 2011). This underlines the role of food-related microbial BRCs,
who continuously enlarge collections of microbial resources and are a major actor for
innovation in the dairy industry. The concomitant development of high-through se-
quencing and screening facilities will help in linking phenotypic properties of interest
with genomic and molecular features. Once established, these links will greatly enhance
our understanding of strain-dependency as well as our screening procedures for the
rational selection of LAB or PAB strains with a property of interest for the dairy industry.
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