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Abstract
Plant diversification contributes to the ecological intensification of agroecosystems through pest biocontrol services provi-
sion. However, the existing evidence for the effectiveness of plant diversification in enhancing pest biocontrol services is 
highly uncertain across features of plant diversity and biodiversity characteristics. We undertook a comparative meta-analysis 
focusing on three essential crops (wheat, maize, and soybean) to investigate how diversification schemes in-field (intercrop-
ping) and Agri-environmental scheme (AES) around the field (flower strip, hedgerow and field margin) affect arthropod 
abundance. A random effects analysis was used to determine the role of 10 key factors underlying the effectiveness of plant 
diversification including biodiversity level and habitat, main and companion plant species, intercropping arrangement, the 
growth stage of the main crops, type of AES planting scheme, AES planting width, distance from AES plantings and geo-
graphical latitude. The overall results revealed that intercropping reduced herbivore and boosted predators and parasitoids 
abundance significantly, while AES successfully increased predators but not herbivores. Maize intercropping with legume 
and non-legume plants and row intercropping allowed for effective pest management. The abundance of predators increased 
in wheat fields immediately adjacent to planting around the field (AES), but this effect declined beyond 5 m from the flower 
strips. Our results suggest that the response of arthropod abundance to plant diversification is a compromise between spatial 
management scale, ecological characteristics of arthropod and plant diversification features. These results offer promising 
pathways for optimizing plant diversification schemes that include functional farm biodiversity across spatial and temporal 
scales and designing multi-functional landscapes.
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1 Introduction

Agroecosystems in the context of current discussion on 
socio-ecological transitions are increasingly expected to 
integrate biodiversity conservation alongside demands to 
meet current and future food needs (Chappell and LaV-
alle 2011; Fischer-Kowalski et al. 2012; Darvishi et al. 
2020; Yousefi et al. 2020). The existing evidence implies 
that the strategies to address both conservation and food 
production are not necessarily mutually exclusive and can 
be reconciled using the adaptation of appropriate agri-
cultural habitat measures (Chappell and LaValle 2011; 
Yousefi et al 2021; Darvishi et al 2022). Diversified farm-
ing systems (DFS) are increasingly argued to be a cred-
ible alternative to conventional intensified agriculture 
by facilitating a more sustainable and secure global food 
system (Feliciano 2019; Jones et al. 2021; Rosa-Schleich 
et al. 2019). Agrobiodiversity is promoted by DFS at mul-
tiple spatial scales, including within fields (e.g. compost-
ing, intercropping, agroforestry), across entire fields (e.g. 
crop rotations, cover cropping, fallowing) and along field 
margins (e.g. hedgerows, border plantings, grass strips) 
(Kremen et al. 2012). Plant diversification as one of the 
DFS’ strategies has been shown to restore vital ecosystem 
services such as pest regulation by supporting arthropod 
community trophic structures (Albrecht et al. 2020; Puliga 
et al. 2022; Arnott et al. 2022), which are at risk of deteri-
orating or becoming less effective in response to future cli-
mate changes (Lin 2011). Arthropod communities play a 
crucial role in agroecosystems, particularly in the context 
of biological pest control, which involves the interaction 

between agricultural pests, such as herbivores, and their 
natural enemies (Gurr et al. 2019; Lu et al. 2022). Plant 
species diversity in agroecosystems can minimize the 
impact of pests by several mechanisms, including physi-
cal barriers, inappropriate landing, emissions of volatile 
organic compounds (VOCs), supporting natural enemies 
and interference with ovulation and migration (Figure 1).

Physical barriers mechanism Theoretically, companion 
plants might function as physical barriers and conceal the 
host crop from herbivores. This barrier effect limits coloni-
zation and explains the pattern of decreased arthropod activ-
ity (CÁrcamo and Spence 1994). It makes the host plants 
harder to find and alters their recognition (Poveda and Kes-
sler 2012).

Inappropriate landing Some herbivores may have difficulty 
locating their host plants that are intercropped or mixed with 
others when companion nonhost plants are cultivated with 
the main crop. Plant diversification effects host plant find-
ings by giving arthropods a choice of appropriate and inap-
propriate plants (Parsons et al. 2007). They have to spend 
additional energy and time looking for it on the wrong host 
plant, which is more challenging to locate. In this context, 
Finch and Collier (2000) described this host plant selection 
mechanism as the appropriate/inappropriate landings theory.

Volatile organic compounds (VOCs) emission Plant diversifi-
cation affects host plant selection by disrupting host habitat 
location and host acceptance process, mainly attributed to 
releasing repellent VOCs by companion plants (Ben-Issa 
et al. 2017; Bianchi and Wäckers 2008; Zhou et al. 2013a). 

Fig. 1  The schematic illus-
tration shows an intercrop-
ping field with AES and the 
mechanisms of the effect of 
plant diversification on farm 
arthropods (source: authors, 
created with BioRe nder. com).

http://www.BioRender.com
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Volatiles are the metabolites that plants emit into the atmos-
phere and have given plants ways to overcome the difficul-
ties of being immobile and grounded in the soil (Baldwin 
2010). Hence, the behaviour of arthropods and their natural 
enemies is frequently influenced by nonhost plants’ volatiles 
(Zhou et al. 2013a).

Resources for natural enemies Root (1973) detected fewer 
pests in weedy plantings and hypothesized plant diversi-
fication may support natural enemies and provide shelter 
and resources to reproduce and reinforce herbivore control 
(Bianchi and Wäckers 2008; Blubaugh et al. 2021; Schütz 
et al. 2022; Yang et al. 2022). These suggested mechanisms 
have played a significant role in managing agroecosystems 
to advance biological control and conservation (Ben-Issa 
et al. 2017).

Interference with ovulation Arthropods need specific con-
ditions for ovulation and oviposition, and nearby nonhost 
plants may change their ovulation behaviour. They also may 
alter their distribution, position or quantity of eggs laid on a 
plant when other nonhost plant species are present (Hooks 
and Johnson 2003). Microclimate parameter changes may 
also disturb herbivores’ feeding and reproductive behaviour 
(Baldwin 2010).

Immigration and emigration Some herbivores are less 
likely to remain near their host habitat when surrounded by 
nonhost plants. They may relocate to another environment 
with more resources and host plants after interacting with 
plenty of nonhost plants (Hooks and Johnson 2003; Man-
sion‐Vaquié et al. 2020; Lopes et al. 2015).

However, the microhabitat parameters such as soil mois-
ture, solar radiation temperature, wind speed and light pen-
etration may change due to intercropping, making the habitat 
less appropriate for particular species (Knörzer et al. 2011; 
Lopes et al. 2016). Since insects are ectotherms, even little 
changes in the air temperature can significantly impact their 
metabolic, activity, and feeding rates (Liu et al. 2018).

Previous studies have reported positive effects of plant 
diversification on farm biodiversity (Beillouin et al. 2019; 
Beillouin et al. 2021; Rosa-Schleich et al. 2019). How-
ever, some studies have also found that the effects of plant 
diversification may depend on ecological characteristics of 
arthropod, trophic level (Letourneau et al. 2011), host spe-
cialization (Chaplin-Kramer et al. 2011; Dassou and Tixier 
2016), specialization (which shows whether the arthropod 
is a specialist or a generalist) (Dassou and Tixier 2016) and 
arthropod habitat (vegetation, ground, or soil-dwelling) (Liu 
et al. 2018; Marja et al. 2022). For instance, Dassou and Tix-
ier (2016) emphasized that specialist and generalist arthro-
pod differed in their response to plant diversification. They 

showed that only the abundance of generalist predators had 
a significant positive response to plant diversification. Marja 
et al (2022) found that the abundance of vegetation-dwelling 
but not ground-dwelling arthropods increased under agricul-
tural landscape diversification.

The role of moderator factors such as crop species and the 
design of plant diversification schemes could be overlooked 
in an evaluation of the biodiversity response only based on 
arthropod characteristics (Albrecht et al. 2020, Brooker et al. 
2015; Lopes et al. 2016; Zhou et al. 2013b). For instance, 
Albrecht et al. (2020) showed that the effectiveness of plant 
diversification might decline with increasing distance from 
an agroecological intervention. Moreover, uncertainty exists 
over the effectiveness of plant diversification in crop diver-
sification strategies (Kebede et al. 2018) and spatial scales 
(e.g. in- and around-crop fields) (Letourneau et al. 2011). 
Limited understanding of the relative significance of the 
diversification scheme and its contribution to farm biodiver-
sity resilience and pest control potential makes the develop-
ment of reliable strategies challenging and is a critical obsta-
cle to farmer adoption (Albrecht et al. 2020; Kleijn et al. 
2019). This highlights the need to investigate the role of 
plant diversification effectiveness drivers in enhancing pest 
regulation based on arthropod and diversification features.

In the current study, we aimed to rigorously explore 
the effects of in-field and around-field plant diversifica-
tion schemes on arthropod abundance in wheat, maize, 
and soybean crops. To achieve this goal, we conducted a 
comprehensive comparative meta-analysis, based on two 
sets of databases. The first set encompassed global stud-
ies comparing monocropping and intercropping as in-crop 
field schemes, while the second set included studies from 
around the world comparing monocropping with flower 
strips, hedgerows, and field margins as plant diversification 
around-crop field schemes (hereafter agri-environmental 
scheme (AES)).

Moreover, we evaluated key factors underlying the effec-
tiveness of plant diversification on arthropod abundance. 
These factors include ecological characteristics of arthro-
pods (biodiversity level and habitat), features of plant diver-
sification (main and companion plant species, intercropping 
arrangement, the growth stage of the main crops, type of 
AES planting scheme, AES planting width, distance from 
AES plantings) and geographical latitude.

The features of plant diversification and ecological char-
acteristics of arthropods were strategically selected due 
to their associations with established mechanisms such as 
physical barriers, inappropriate landing, VOC emissions and 
resource provisioning for natural enemies. By anchoring our 
study in these mechanisms, we sought to reveal the intricate 
relationships between plant diversification, arthropod traits 
and underlying ecological processes. The inclusion of geo-
graphical latitude adds an additional layer of complexity, 
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allowing us to explore how regional variations may influence 
the outcomes of plant diversification strategies on arthropod 
abundance.

The findings of this study help to predict the most reliable 
plant combination, intercropping design and type of AES 
planting in order to achieve the desired outcome.

2  Methods

2.1  Data collection

We systematically searched in April 2022, following the 
guidelines of PRISMA guidelines (preferred reporting 
items for meta-analyses). We used Web of Science Core 
Collection, Scopus and Google Scholar search engines to 
find studies based on the search syntax outlined in Table 1. 
The search yielded 1557 publications (Web of Science 
(580), Scopus (677), Google Scholar (300)). We focused 
on the first 300 relevant Google Scholar results to reduce 
the proportion of grey literature in the search results 
(Haddaway et al. 2015; Sinthumule 2023). The titles and 
abstracts of all studies were independently checked for 
relevance by two qualified reviewers during the primary 
screening and a total of 227 publications were retained 
based on the title and the abstract screening. The full texts 
of these articles were read in detail and a total of 43 (21 
studies on intercropping and 22 on AES) articles were 
included in the synthesis. Paper screening and selection 
procedure are presented in PRISMA diagram (Fig. S1) (see 
the maps showing the distribution of location in Fig. S2). 
Our inclusion and exclusion criteria were as follows: The 
studies comparing monoculture (as the control system) 
and intercropping (as the treatment system) were consid-
ered. We also selected studies comparing fields adjacent 
to AES treatment to fields without AES as the control sys-
tem. Wheat, maize and soybean had to be included in the 
crop system. Only data from the primary agricultural field 
experimental studies were included. We excluded stud-
ies published in languages other than English, as well as 
those lacking new experimental data such as reviews or 

book chapters. We excluded primary studies conducted in 
laboratories or greenhouses, single observations or miss-
ing an appropriate control. The articles described the plant 
diversification experiment and reported a quantitative 
comparison of plant diversification outcomes compared 
to a relatively simplified farming system or natural habitat. 
The studies that did not provide enough information to 
differentiate the intervention were excluded. Other farm 
practices such as applying fertilizer, pesticides, crop irri-
gation, crop rotation, crop residue management and soil 
tillage regime had to be similar between plots, ensuring 
that the treatments were affected only by intervention. We 
limited our search to studies published after 1999 because 
most countries started reforming their agricultural policies 
in the 1990s (McGurk et al. 2020), and the lack of prior 
research before this date hinders the credibility and scope 
of our study. The studies that examined intercropping 
between different cultivars were excluded. We excluded 
the studies that failed to report mean values, the number 
of replicates and at least statistical parameters (standard 
deviation or error, confidence intervals).

The following additional criteria were also considered: 
if the study was conducted in multiple geographical areas, 
multiple companion crops, multiple AES types and multiple 
arthropod sampling dates in different growth stages of the 
main crops, we extracted each as a separate record. If the 
article did not specify the sampling date or, in the case of 
replicating the sampling procedure, we considered the mean 
of the first and last sampling date. If the study examined 
transgenic and non-transgenic crop species, we extracted 
data from non-transgenic species. If the study reported the 
results in multiple years, we extracted last year’s data.

We extracted data from text, tables or graphs using Web-
PlotDigitizer (Rohatgi 2015). Table 2 shows a summary 
of variables that have been extracted from the studies. We 
generated two additional moderators based on the arthro-
pods’ functional levels. The moderators included the level of 
biodiversity (community and species level) and arthropods’ 
habitat (vegetation and ground-dwelling) since plant diver-
sification schemes influence functional groups differently 
(Marja et al. 2022).

Table 1  The literature search syntax.

Plant diversification scheme Search syntax

Intercropping (in-field) “intercrop*” OR “crop diversification*” OR “polyculture” OR “crop mixture” OR “mixed crop*” OR “crop 
divers*” OR “crop* strip”

AES (around-field) “agri-environment*” OR “flower strip” OR “riparian buffer” OR “riparian zone” OR “set aside” OR “hedgerow” 
OR “field margin” OR “buffer strip.”

Biodiversity “arthropod*” OR “insect*” OR “beetle*” OR “carabid*” OR “spider*” OR “hoverfl*” OR “syrphid*” OR “para-
sitoid*” OR “wasp” OR “pollinat*” OR “bee” OR “bumble*” OR “syrph*” OR “butterfl*” OR “predat*” OR 
“biological control*” OR “pest control*” OR “natural en*” OR “pest manag*”

Main crops “Wheat” OR “maize” OR “soybean” OR “corn”
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2.2  Effect size

The log response ratio as a measure of effect size was 
used to estimate the outcome of an experiment as the log-
proportional change between the means of treatment and 
the control group. The log response ratio has a variety of 
advantageous properties as an effect size measure. First, 
the log response ratio is related directly to the percentage 
change between the measure and the control experiment 
(Hedges et al. 1999). Moreover, the log response ratio is 
comparatively unaffected by the method used to assess 
the outcome variable. For instance, some studies used a 
2-week study period, while others used a several-month 
study period or reported the abundance of biodiversity in 
different units (e.g.  m2, per crop, per ten crops).

The following formulas were used for calculating the 
log response ratios ( Rb) (Hedges et al. 1999):

where XT is mean of treatment and XC is mean of the control 
group.

2.3  Correction for effect size

The log response ratio is biased when quantifying the out-
come of studies with small sample sizes (in this study 
replication number). This can yield erroneous variance 
estimates when the scale of study parameters is near zero. 
Therefore, we used variance correction based on Lajeu-
nesse (2015).

Correction for effect size
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Corrections for the variance for small sample size (based 
on Lajeunesse 2015)

2.4  Publication bias
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ity analysis (Lin et al. 2018), are not currently supported 
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metafor (Viechbauer 2010) when using the rma.mv function 
(Anton et al. 2019). Therefore, possibility of publication bias 
was assessed based on Egger’s regression test (Egger et al. 
1997; Sterne and Egger 2005) by modifying the models to 
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Table 2  Summary of moderator variables.

Moderator Intercrop AES Definition Data type/unit

Geographical latitude ✓ ✓ Geographical latitude of the experimental site Numerical (decimal degrees)
Main crop species ✓ ✓ Maize, soybean or wheat Categorical
Companion crop ✓ ✓ Whether companion crop species are legume or non-legume Categorical
Spatial intercropping arrangement ✓ In which way the two species were intercropped:

- Strip intercropping: two species cultivated in alternative 
strips and at least one strip includes more than one row;

-Row intercropping: two species cultivated in alternate 
rows;

-Fully mixed intercropping: two species cultivated in the 
same field without any distinct row or strip pattern.

Categorical

Growth stage of the main crops ✓ Sampling date after planting the main crop (week) Numerical (week)
Functional level ✓ ✓ Herbivore, predators, pollinator, parasitoide, detritivores Categorical
Type of plant around the field ✓ flower strip, hedgerows and field margin Categorical
AES width ✓ 1–5, 5–10, >10 Categorical
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incorporate the standard error of the log RR as a moderator. 
Egger’s regression test is one of the most commonly used 
methods to examine funnel plot asymmetry (Pustejovsky and 
Rodgers 2019).

The possibility of publishing bias was identified for each 
functional group separately (herbivores, predators and para-
sitoids) if the intercept of the regression test considerably 
differed from zero at P≤0.05. If possible, bias was identified, 
using the rstandard function in R, we investigated the effect 
sizes with standardized residual values greater than three to 
check for possible influential outliers (Habeck and Schultz 
2015). The potential influential outliers were eliminated to 
adjust for publication bias. We then again re-ran the mixed-
effects model to evaluate the sensitivity of the model by 
comparing fitted random effects models with and without the 
potential outliers. However, the outcomes of the models did 
not change when we tested. Finally, our sensitivity analyses 
revealed that the results are robust to publication bias.

2.5  Meta‑analysis

Standard meta-analysis models assume that the observed 
effect sizes or results from a collection of studies are inde-
pendent of one another. In reality, this presumption is fre-
quently violated. In the current study, multiple treatment 
groups (main crops, location and sampling distance towards 
the field centre) are compared to a common control group or 
extracted from the same publication. Such data are applied 
repeatedly to calculate the observed effect sizes. In this cir-
cumstance, sampling errors may be correlated in multiple 
treatment experiments (Viechtbauer and Viechtbauer 2015). 
To overcome this issue, multivariate/multilevel models were 
developed based on rma.mv function, which uses a Wald-
type test to establish statistical significance. The metafor 
package (Viechbauer 2010) in R was used to conduct two 
separate meta-analyses in and around the field.

To account for heterogeneity both between and within 
studies (in case multiple observations were extracted from 
the same publication), we specified the effect size and the 
study identification (ID) as random effects in our model 
(Tamburini et al. 2020). The model that included a nested 
random structure random=list(~1| Study ID,~1| Effect 
size ID) yielded the lowest Akaike information criterion 
(AIC) score (Burnham and Anderson 2002) compared with 
the other candidate structures, and was therefore retained 
(table S1).

Twenty-one published articles comprising 198 obser-
vations were recorded, consisting of field experiments on 
intercropping as treatment and sole cropping as control. 
The functional groups of this dataset included detritivores, 
herbivores, predators and parasitoids. We excluded detriti-
vores and parasitoids from further analysis due to the lim-
ited number of observations. In intercropping, soybean has 

been utilized as a companion crop, not as the primary crop. 
Hence, we could not identify any record for soybean as the 
main crop. Different types of intercropping were imple-
mented, depending on the species used. Row intercropping 
was the most common type, followed by strip cropping.

Another meta-analysis was conducted based on 22 papers 
and 122 observations, comparing AES schemes vs mono-
cropping. Herbivores, predators, and parasitoids were iden-
tified as functional groups, Due to the limited number of 
observations, we had to limit our further analysis to preda-
tors. Enhanced plant diversification under AES was reported 
mainly through flower strips (more than half of the studies), 
followed by grass margins and hedgerows.

To understand the key factors that may influence the 
response of farmland arthropods, we performed subgroup 
analysis for categorical variables as fixed factors in the 
mixed-effects model to investigate possible variation in 
the pooled effect size. This analysis included the following 
variables: main crop species, companion crop, intercrop-
ping arrangement, AES planting width (can influence the 
extent to which they provide habitat and resources for arthro-
pods), and type of AES planting, where at least three studies 
reported data to ensure adequate sample size. As only one 
study considered mixed intercropping and only one reported 
the abundance of predators at the species level, we did not 
include these variables in our intercropping subgroup analy-
sis. Furthermore, we did not perform a subgroup analysis 
within the parasitoid functional group due to the limited 
number of observations.

Additionally, we ran meta-regression models to investi-
gate the possible correlation between arthropod abundance 
and the growth stage of the main crops in intercropping 
experiments and between arthropod abundance and sam-
pling distance from AES plantings.

According to the latitudinal biotic interaction hypothesis 
(LBIH), which revealed the intensity of biotic interactions is 
maximum in tropical areas and decreases from low to high 
latitudes (Zvereva et al. 2020; Zvereva and Kozlov 2021), we 
also investigated how arthropod abundance change across 
latitude under intercropping (in each hemisphere separately). 
We did not examine the effect of latitude on AES effective-
ness because the majority of the observations in AES man-
agement were conducted in Europe.

3  Results

3.1  Overall effects of diversification schemes 
on herbivores, predators and parasitoids

Overall summary effect size in intercropping across all 
arthropod functional groups (detritivores, herbivores, preda-
tors and parasitoids) revealed a negative but non-significant 
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effect (Figure 2). Further investigation based on functional 
groups demonstrated that herbivore abundance was signifi-
cantly lower under intercropping, which greatly affected the 
negative pooled effect size. The abundance of predators and 
parasitoids increased under intercropping.

Overall, AES significantly boosted the abundance of 
arthropods. Most observations were found for predators, 
which significantly increased under plant diversification 
schemes. However, the abundance of herbivores varied 
widely and was not significantly different between diversi-
fied and simplified farming systems.

3.2  The role of plant diversification 
and ecological characteristics of arthropod 
under intercropping

Intercropping in maize fields strongly suppressed her-
bivores and increased predator abundance (Figure  3 
and Table S2), suggesting that diversification schemes 
achieved the desired outcome in maize intercropping. 
However, the effect of intercropping in wheat fields was 
variable and statistically non-significant for both herbi-
vores and predators. Both non-legume and legume inter-
crops showed a significant positive impact on herbivore 
suppression. Non-legume intercrops significantly sup-
ported predators. In contrast, legume crops appeared to 
have a variable influence on predatory arthropods. More-
over, row intercropping reduced herbivores’ outbreaks 
and enhanced predator abundance. There was no agree-
ment between studies, which reported the effect of strip 
intercropping on herbivores and predator abundance.

The results from our meta-analysis demonstrated that 
ground-dwelling predators and herbivores’ abundance 
were more likely to change under intercropping. How-
ever, vegetation-dwelling arthropods showed no signifi-
cant change under intercropping measures. Intercropping 
significantly decreased herbivores on community species 
and levels (Table 2S).

3.3  The role of plant diversification and ecological 
characteristics of arthropod under AES

Plant diversification under AES in wheat fields positively 
affected predators, but evidence from maize and soybean 

Fig. 2  Mean effect size (log scale  response ratio) and ± 95% con-
fidence intervals of arthropod abundance depends on the functional 
group classified by herbivores, predators, and parasitoids across inter-
cropping and AES. The dashed line indicates zero effect size. The 
number in the parentheses indicates the number of observations for 
each comparison. The observations of detritivores in intercropping 
and parasitoids in AES were removed due to limited sample size.

Fig. 3  Intercropping mean effect size (log scale response ratio) and ± 95% confidence intervals of arthropod abundance depends on moderators 
across herbivores (a) and predators (b). The dashed line indicates zero effect size. The number in the parentheses reflects the number of observa-
tions for each comparison.
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field experiments failed to show statistically significant 
effects (Figure 4 and Table S3). Predator abundance was 
significantly higher in fields with flower strips, while 
the mean effect sizes of hedgerows and grassy margins 
were highly variable between studies. The abundance of 
predators increased in a 5-m-planting width; however, 
this effect declined beyond 5 m from the AES plant-
ings. Both vegetation and ground-dwelling predator taxa 
showed positive mean effect sizes, though the effect was 
significant only for vegetation-dwelling taxa.

3.4  The role of the growth stage of the main 
crops, sampling distance from AES plantings 
and geographical area

The correlation between the main crop growth stage and 
arthropod abundance under intercropping did not show a 
consistent result across studies (P = 0.9813), while arthro-
pod abundance tended to decrease with the sampling dis-
tance from AES plantings (0.0192) (Figure 5 and Table S4).

We explored the effect of plant diversification across lati-
tudinal gradients as the sources of variation in response ratio. 
There was no indication that the effect of plant diversifica-
tion varied across latitudinal gradients in the Northern (P = 
0.4392) and Southern (P = 0.746) hemispheres (Table S4).

4  Discussion

4.1  The effect of plant diversification on arthropod 
abundance in‑ and around‑crop fields

Our quantitative synthesis demonstrates a generally positive 
effect of plant diversification on herbivore suppression and 
predator enhancement under intercropping. AES manage-
ment increased predator abundance, but the effect on herbi-
vore suppression was highly variable. This result aligns with 
Letourneau et al (2011), who showed that flowering plants in 
or around the crop field significantly increase natural enemies. 
In our meta-analysis, stronger negative effects on herbivores 
under intercropping than AES were detected, which is con-
sistent with Dassou and Tixier (2016). Moreover, the positive 
effects of diversification schemes on predators were stronger 
in intercropping than AES. This highlights the general effect of 
scale and type of diversification on the response by arthropods.

Fig. 4  AES mean effect size (log scale  response ratio) and ± 95% 
confidence intervals of arthropod abundance caused by different 
types of the main crop, type of AES, and width of AES and habitat 
of arthropods. The dashed line indicates zero effect size. The number 
in the parentheses reflects the number of observations for each com-
parison.

Fig. 5   a The main crop growth 
stage (week). b Distance from 
AES plantings for the overall 
data set. Linear meta-regres-
sions are shown as solid black 
lines and grey area represents 
95% Cis.
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4.2  The role of moderator factors in intercropping

Intercropping in wheat fields failed to reduce pests or 
increase predators. Bulson et al. (1997) argued that wheat 
intercropping provided other benefits such as increased land 
utilization efficiency or weed suppression. Possible expla-
nations for this result include the date of cultivation and 
resource concentration theory. The cultivation date deter-
mines whether companion plants grow and bloom at a time 
relevant for pest suppression or control (Altieri et al. 1978); 
if there are flowers to serve as a source of nectar for insects 
and other arthropods (Hatt et al. 2019).

Resource concentration theory (Root 1973, Skelton and 
Barrett 2005) explains that monophagous or specialized her-
bivores are more likely to survive and reproduce near host 
crops and monocultures.

In this study, the majority of studies reported arthropod 
abundance at the community level, which may choose com-
panion crops as hosts and wheat as nonhost plants. There-
fore, there may not be a difference in herbivore abundance 
between intercropping and monoculture wheat-based sys-
tems, or it may even be greater in intercropping systems 
based on wheat.

Plant diversification based on both legume and non-
legume companion plants increased herbivore suppression. 
However, predator abundance was not significantly different 
between crops with non-legume companion crops. The spe-
cies of non-legume plants and the lack of temporal overlap 
between the main crops and companion crops may dissipate 
the natural enemies (Hatt et al. 2019; Parajulee and Slosser 
1999) and may also explain part of the high variability 
observed across studies.

While we did not detect consistent effects in strip design, 
the positive effect of the row intercropping pattern on pest 
control services provision was found in support of the 
resource concentration hypothesis (Root 1973). When food 
sources are not concentrated, as they are in monoculture, it 
is difficult for a herbivore to discover its target host plant 
when two plant species are grown in alternate rows. On the 
other hand, based on supporting natural enemies mechanism, 
plant diversification provides the amount of food and shelter 
available to predators, as well as enhancing their host range 
and host-finding abilities (Smith and McSorley 2000).

This can justify the effectiveness of row intercropping 
because arthropods showed a significant positive change 
compared to strip intercropping. This emphasizes the neces-
sity to discover the drivers that cause intercropping to suc-
ceed or fail in promoting pest control services.

Both ground and vegetation-dwelling herbivores were 
affected by intercrops. However, there was wide variabil-
ity in the response of ground-dwelling herbivores. We did 
not detect a consistent effect on vegetation-dwelling preda-
tors while ground-dwelling predators increased under plant 

diversification. The largest change in ground-dwelling spe-
cies was with intercropping. One of the possible reasons 
is that plant diversification reduces arthropods’ movement 
rates and decreases their colonization due to the physical 
barrier mechanism (CÁrcamo and Spence 1994).

The most effective mechanism in vegetation-dwelling 
herbivores decline can be inappropriate landing in which 
herbivores have trouble host‐plant findings by giving arthro-
pods a choice of companion crops (Parsons et al. 2007). 
However, the response of herbivores to plant diversifica-
tion was different at the community and species levels. The 
response was negative and significant at both levels, but it 
was stronger at the community level. We could not deter-
mine the influence of plant diversification based on gener-
alist herbivores or predators because most articles reported 
arthropod abundance on the community level.

There was no conclusive evidence that plant diversifi-
cation impacts herbivores and predator variation over the 
main crop growth stages. One possible explanation for 
this finding is that we investigated it for the entire dataset, 
which may differ between main crop species or functional 
groups. However, because of the lack of sufficient observa-
tions for some moderators, we could not proceed further.

A non-significant but marginal increase in arthropods 
was seen as latitude increased in the intercropping studies. 
However, it must be addressed in future studies before hard 
conclusions can be made.

4.3  The role of moderator factors in AES

Although we found a positive effect of plant diversifi-
cation on predator abundance under AES, the effect in 
maize and soybean fields adjacent to AES was highly 
variable. This is a crucial finding as it offers empirical 
evidence that AES scheme can increase natural enemies 
of pests adjacent to specific crops. Koji et  al (2007) 
showed that while AES supported a higher abundance of 
predators, they are not necessarily inclined to move to the 
adjacent maize fields. The observed variability might also 
be attributed to different predator behaviours at different 
maize growth stages. For instance, Varchola and Dunn 
(2001) found that carabid emergence rates varied with 
corn maturity. Our meta-analysis demonstrated a positive 
effect of flower strips on predator enhancement compared 
to hedgerows and grassy margins. Flower strips are often 
selected based on the requirements of the target natural 
enemy, while this is usually not a consideration when 
implementing hedgerows or grassy field margins (Albre-
cht et al. 2020; Tschumi et al. 2016). Moreover, AES 
planting width of up to 5 m leads to a consistent increase 
in the abundance of predators in crops, but larger widths 
did not have a consistently positive effect on enhanced 
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predators in crops. This might be because predators might 
preferentially remain in the larger AES plots instead of 
moving into the crop field. The wide confidence interval 
for AES interventions with widths larger than 10 m might 
also be due to the relatively small number of observations, 
and hence this conclusion should be treated with caution. 
The result of the model for sampling distance from plant-
ing schemes showed that the abundance of arthropods 
declined as the sampling distance increased. A similar 
pattern was observed by Albrecht et al (2020), who stated 
that pollination declined with increasing distance to AES. 
Batáry et al. (2012) emphasized that AES at the edges 
offer additional food supply and niches for different spe-
cies to live in, attributable to the diversity and abundance 
of plants. Hence, this is where the highest abundance of 
arthropods would be expected.

4.4  The role of moderator factors in intercropping 
and AES

Understanding the complex mechanisms influencing arthro-
pod dynamics in both intercropping and AES, involves an 
exploration of spatial arrangements, temporal variations 
and the distinct characteristics of interventions. Regarding 
the spatial arrangement factor, the higher efficiency of row 
intercropping over strip intercropping is paralleled by the 
significant influence of distance to AES. This calls for an 
exploration of how similar spatial dynamics in across diverse 
agricultural practices, and affect arthropod behaviour. Exam-
ining temporal considerations reveals that the cultivation 
date in intercropping plays a pivotal role, determining the 
presence of flowers for arthropod sustenance. AES inter-
ventions, on the other hand, show different results in differ-
ent stages of maize growth, highlighting the significance of 
comprehending predator behaviours across growth stages. 
Furthermore, the positive effect of flower strips on predator 
abundance contrasts with the varied impact of non-legume 
companion crops in intercropping. Here, we explore how the 
selection of interventions based on the requirements of natu-
ral enemies influences outcomes. The efficiency of row inter-
cropping echoes the positive effect observed with shorter 
distances to AES. Both scenarios concentrate resources, 
facilitating herbivore suppression and predator enhance-
ment. This points to the significance of resource concentra-
tion in determining the success of pest control strategies. 
While predators benefit from AES, their response differs 
in intercropping with wheat. Potential factors contributing 
to this distinction include resource availability, habitat suit-
ability or the scale of interventions. Investigating these dif-
ferences sheds light on the nuanced interactions between 
predators and interventions.

Our exploration of arthropod dynamics reveals intercon-
nected themes across intercropping and AES. By considering 

spatial, temporal and intervention-specific factors, we gain a 
holistic understanding of the intricate relationships between 
herbivores, predators and agricultural practices.

4.5  Limitations of the study

In the selected studies, we identified two predominant exper-
imental scenarios: either no fertilizers, pesticides or insec-
ticides were applied, creating a controlled environment for 
studying the effects of plant diversification; or, in contrast, 
all fields were conventionally treated with pesticides. There-
fore, our analysis was constrained by the available data and 
the role of pesticides or insecticides as confounding factor 
was not considered.

In our study, we aimed to maintain a focused and stream-
lined analysis by employing one moderator in each meta-
analysis. While we recognize that interactions among vari-
ous factors can add complexity to the interpretation, our 
decision to use a single moderator enhanced clarity and 
reduced the risk of overfitting the model.

While we acknowledge AES age and plant species on 
the outcomes of the plant diversification schemes, there can 
be a time lag between AES implementation and observable 
ecological benefits. However, in the context of our study, the 
inclusion of these factors was not possible due to limitations 
in available data.

5  Conclusion

Our meta-analysis revealed how arthropod functional groups 
changed under agricultural diversification across a broad 
range of cropping systems and types of plant diversification. 
Our results lend some support to the theoretical prediction in 
terms of pest regulation services such as the resource con-
centration hypothesis (Root 1973) and inappropriate landing 
(Finch and Collier 2000). Here, we show for the first time 
that the effect of plant diversification on biological control 
services is a compromise between the spatial scale of inter-
ventions, ecological characteristics of arthropod and plant 
diversification features. This emphasizes the need to inves-
tigate these factors when designing agricultural schemes to 
support pest regulation services. The quantified ecological 
effects of intercropping and AES on pest regulation services 
provided in this study open up several promising pathways 
toward optimizing agricultural measures: stakeholders must 
consider the appropriate spatial scale to foster suitable farm 
biodiversity strategies; different combinations of plant spe-
cies diversity and design have very variable outcomes for 
arthropod abundance and pest control, and this needs to be 
considered in the context of the impact on crop production. 
Our findings highlight the potential benefits of implementing 
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in-field and around-field plant diversification strategies in 
assisting policy makers in enhancing biodiversity alongside 
demands to meet current and future food demands.
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