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Abstract
Intensive agriculture in Germany is not only highly productive but has also led to detrimental effects in the environment. Crop
diversification together with new field arrangements considering soil heterogeneities can be an alternative to improve resource
use efficiency (RUE), ecosystem services (ESS), and biodiversity. Agroecosystemmodels are tools that help us to understand and
design diversified new field arrangements. The main goal of this study was to review the extent to which agroecosystem models
have been used for crop diversification design at field and landscape scale by considering soil heterogeneities and to understand
the model requirements for this purpose. We found several agroecosystem models available for simulating spatiotemporal crop
diversification at the field scale. For spatial crop diversification, simplified modelling approaches consider crop interactions for
light, water, and nutrients, but they offer restricted crop combinations. For temporal crop diversification, agroecosystem models
include the major crops (e.g., cereals, legumes, and tuber crops). However, crop parameterization is limited for marginal crops
and soil carbon and nitrogen (N). At the landscape scale, decision-making frameworks are commonly used to design diversified
cropping systems. Within-field soil heterogeneities are rarely considered in field or landscape design studies. Combining static
frameworks with dynamic agroecosystems models can be useful for the design and evaluation of trade-offs for ESS delivery and
biodiversity. To enhance modeling capabilities to simulate diversified cropping systems in new field arrangements, it will be
necessary to improve the representation of crop interactions, the inclusion of more crop species options, soil legacy effects, and
biodiversity estimations. Newly diversified field arrangement design also requires higher data resolution, which can be generated
via remote sensing and field sensors. We propose the implementation of a framework that combines static approaches and
process-based models for new optimized field arrangement design and propose respective experiments for testing the combined
framework.
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1 Introduction

Agriculture in Germany is highly productive and character-
ized by increasingly mechanized large farms (average farm
size in 2020 was 64 ha), producing 50 billion Euros in goods
per year (Destatis 2021). Crop rotations have been simplified
in the last decades (Barbieri et al. 2017) due to the introduction
of mineral fertilizers, plant protection products (PPPs), and
progress in plant breeding, which allows farmers to rely less
on crop rotations for pest and weed control (Andert et al.
2016; Melander et al. 2013). Crop production patterns have
been additionally influenced by farm specialization, market
demands, priority for short-term profitability, availability of
labor (Gutzler et al. 2015), and agricultural policies (Bauböck
et al. 2014; Steinmann and Dobers 2013). The resulting sys-
tems are heavily dependent on external inputs and have led to
a series of environmental problems jeopardizing the ecosys-
tem service (ESS) delivery, related to provisioning of food,
fiber, fuel, soil fertility, and water quality (Barbieri et al. 2017;
Stoate et al. 2001). Excessive PPP application has caused
detrimental effects to biodiversity and pollution of water bod-
ies (Concepcion et al. 2020; Dudley et al. 2017; Tang et al.
2021). Moreover, the yield losses and yield variability

associated with climatic extremes increased in recent years
(Luttger and Feike 2018; Olesen et al. 2011; Webber et al.
2020).

Spatial and temporal crop diversification of cropping sys-
tems offer multiple benefits to the delivery of ESS, with most-
ly positive impacts on soil fertility and structure (Tamburini
et al. 2020), crop yield (Anderson 2005), yield stability
(Gaudin et al. 2015; Weih et al. 2021; Zampieri et al. 2020),
nitrogen (N) cycling (Luce et al. 2020), carbon sequestration
(Hazra et al. 2019; Tamburini et al. 2020), pest control
(Letourneau et al. 2011; Lin 2011), biodiversity (Beillouin
et al. 2021), and reduced yield risk (Feliciano 2019; Gaudin
et al. 2015). Realizing greater benefit from crop diversification
in these regards can be supported with the development of
field robotics in the coming years allowing smaller field sizes
and diversified agricultural landscapes. The resulting multi-
functional landscapes would balance benefits and tradeoffs
in ESS through consideration of natural variabilities in soils
and other site characteristics (Basso and Antle 2020). Smaller
field sizes (i.e., patches) are associated with multiple benefits
to ecosystems, especially for biodiversity and species richness
(Concepcion et al. 2020; Fahrig et al. 2015; Torres et al.
2020). Diversified landscapes via smaller patches (field units
with a particular structure and function within the landscape),
and additional landscape elements (i.e., hedgerows, flower
strips) promote farmland biodiversity and pest regulation
(Albrecht et al. 2020; Fahrig et al. 2015; Salek et al. 2018;
Scheiner and Martin 2020; Sirami et al. 2019; Tscharntke
et al. 2021). Spatial and temporal diversification in new field
arrangements considering soil heterogeneity across land-
scapes can be an option to improve resource use efficiency
as resources can be allocated according to the specific field
characteristics in turn improving the delivery of ESS (Basso
et al. 2013; Kersebaum et al. 2005; Tripathi et al. 2015).

Agroecosystem models are mathematical tools that simu-
late crop growth and development and soil processes in re-
sponse to environmental conditions (radiation, temperature,
water availability and retention, atmospheric CO2, and nutri-
ent availability from soils) and management practices (crop-
cultivar selection, sowing dates, fertilizer applications, irriga-
tion, etc.), typically using daily time step routines (Muller and
Martre 2019; Rotter et al. 2015). They started to be developed
in the 1960s and have evolved to include more complex ap-
proaches with improved representation of soil-plant-
atmosphere dynamics. Agroecosystem modelling can be a
powerful complementary method to field experiments, as vir-
tual experiments can inform subsequent field experimentation
(Boote et al. 2010; Kersebaum et al. 2015; Lobell et al. 2009).
Such models are also helpful to scale up impacts from local
(field experimentation) to landscape and regional levels (Duru
et al. 2015). In this context, the main goal of this study is to
review the extent to which agroecosystem models have been
applied to (1) understand and design new arrangements of
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crops to increase crop diversity at the field and landscape scale
by considering natural field heterogeneities in various soils;
(2) quantify the effects of new arrangements of crops on re-
source use efficiency, ESS, and biodiversity; and (3) to spec-
ify requirements of models needed to be useful for these
applications.

2 Methodology

In a first step, the definitions of the scales of crop diversifica-
tion were defined from available publications (Andrews and
Kassam 1976; Gliessman 1985; Hufnagel et al. 2020; Lin
2011). Most definitions within the sources were similar,
though discrepancies were sometimes found. For example,
for the intercropping definition, references agree that it is a
measure of simultaneously growing two or more crops in the
same field, but Hufnagel et al. (2020) consider proximate rows
arrangement while Gliessman (1985) also considers
intercropping when growing two crops with no distinctive
row arrangement. Thus, intercropping in this review was de-
fined as crops simultaneously growing in the same field with
or without distinctive row arrangement. Despite that a wide
range of agroecosystem models exist with varying structure
and complexity, we selected some widely used agroecosystem
models based on their ability to simulate a degree of spatial
and/or temporal crop diversification. We note that many other
models with varying complexity and structure could have also
been considered. Themodels were selected by first identifying
agroecosystem models used in model intercomparison publi-
cations, projects, and expert knowledge reported in the Web
of Knowledge and Google Scholar . Most of the
agroecosystem models considered in this review are process-
based and comprise the soil-plant-atmosphere compendium
for arable crops (examples for agroforestry were also included
as they are an example of spatial crop diversification). They
explicitly include daily dynamics for crop phenology, crop
growth, soil water, N balance dynamics, and soil carbon and
with multiple parameterized crop species. They have been
developed with the objective to describe (in an explanatory
or “mechanistic” manner) either the impact of climate vari-
ables, soil and cropmanagement or a combination of all on the
growth and productivity of crops and cropping systems at the
field scale, assuming homogeneous soil conditions. In a next
step, we considered if the models had publications in their
application relevant to crop diversification either in system
design or evaluation. As for the quantification of ESS consid-
ered in the models, we described them according to the pro-
cesses and variables simulated by the models. It should be
noted that many models considered as agroecosystem models
in this study are widely known as crop and cropping system
models. Differences among these models and agroecosystem
are not further addressed here as they are not crucial for the

aim of this review. As these model categories are also often
used interchangeably, all models are referred to as
agroecosystem models. Very specialized models simulating
only, for example, pesticide leaching (Bergstrom and Jarvis
1994; Gassmann 2021), soil erosion by water (Jarrah et al.
2020; Raza et al. 2021), or soil carbon sequestration
(Falloon and Smith 2002; Foereid and Hogh-Jensen 2004;
Jenkinson and Coleman 2008) were not considered in this
review as they are too limited in the range of ESS that can
be simulated. Other simulation approaches such as functional-
structural plant models (Vos et al. 2010) were not included in
this review as they typically exclude nutrient or water dynam-
ics. At the landscape scale, a similar approach was used, but it
yielded limited results. Therefore, the search was extended to
the use of decision support tools, decision-making frame-
works, and landscape generators that also focused on the de-
sign of spatio-temporal crop diversification. The selection of
frameworks includes some of the most popular frameworks
for the design of crop diversification at the farm and regional
scale.

3 Spatial and temporal crop diversification
at the field and landscape level

3.1 Concepts of crop diversification

Definitions around the spatial and temporal diversification of
cropping systems at field scale as considered for the current
review are described in Figure 1. Spatial crop diversification
can be achieved by growing different crop cultivars and spe-
cies in different configurations at the same time in a given
field. Temporal crop diversification involves the implementa-
tion of crop rotations or crop sequences (growing a sequential
set of crops in the same land). A definition of landscape can be
ambiguous and depends on the context of the study. Forman
(1995) defined landscapes as a mix of local ecosystems or
land use types that is repeated over a certain area of land.
Marshall (2008) defined them as mosaics of farm fields,
semi-natural habitats, human infrastructures, and occasional
natural habitats. Meeus (1995) defined landscapes as recog-
nizable parts of the Earth surface, which have a characteristic
composition, structure, and scenery. Depending on the region,
in Germany, landscapes in the west of the country are charac-
terized by small farms (average size of about 60 ha) whereas
in the east they are characterized by bigger farms (about 230-
ha size on average) due to historical management reasons. For
our review, the landscape scale is considered for simulation
approaches that attempt to design diversified cropping sys-
tems in an area encompassing at least several crop fields (a
single field is delimited by barriers such as field hedges,
hedgerows, or streets) and farms, though we recognize that
in actual assessments of cropping system diversification at
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landscape scale other social, ecological, and economic char-
acteristics of landscapes require consideration. Spatial crop
diversification at the landscape scale is typically described
by landscape configuration and composition. Landscape con-
figuration refers to the spatial pattern of the landscape in terms
of size, shape, and spatial arrangement of structural elements
(e.g., fields, semi-natural habitats, and hedgerows), while
landscape composition refers to the type and abundance of
the spatial elements within the landscape. Similar to the field
scale, temporal crop diversification at the landscape scale is
also achieved by the diversity of crop rotations and sequences
at the field scale.

3.2 Approaches to simulate spatial diversification of
crop species

The benefits of spatial crop diversification at the field and
landscape scale have been widely studied. Crop mixtures gen-
erally show improved nutrient use efficiency due to their com-
petitive and facilitative species interactions that result in
higher crop yields per unit area than sole cropping (Zhang
and Li 2003). Legume presence in intercropping is known to

be beneficial due to the biological N fixating characteristics
and their contribution to P mobilization. The later arises with
the acidification of the rhizosphere caused by the legume (faba
bean in particular) root release of organic acids and protons
(Li et al. 2007). Diversified systems increase stability in terms
of grain yield and gross margin income even in low input
systems (Bedoussac et al. 2015; Brooker et al. 2015). They
contribute to weed suppression due to resource competition,
allelopathic interference, soil disturbance, and mechanical
damage (Liebman and Dyck 1993). Intercropping reduced
disease incidence by more than 70% when comparing
monocrops vs intercropped systems (Boudreau 2013).

A wide repertoire of agroecosystem models have been de-
veloped over the last decades, but few of them are capable of
simulating spatial crop diversification that includes the inter-
action of different crop species (Gaudio et al. 2019). While
there is no single smallest spatial scale for agroecosystem
models, as they generally simulate canopy characteristics
expressed on a per 1m2 basis, plant level characteristics at
finer scale can be achieved when using 3D functional-
structural plant models (Evers et al. 2019; Vos et al. 2010).
These later models simulate plant structures and their

CATEGORIES OF CROP 
DIVERSIFICATION IN THE SAME 

FIELD

Genetic diversity: 
same crops, 

diverse cultivars

Sequential 
cropping: two 
or more crops 

per year 
(double, triple, 

ratoon)

Crop rotation: 
two or more 

crops/multiple 
crop specific 

combinations in 
consecutive 

growing seasons

Mixed cropping, 
intercropping or 

crop mixture: two or 
more crops in the 

same field

Mixed 
intercropping: at 

least two crops 
with no distinct

row arrangement

Temporal diversification: several 
crops in sequence in the same field

Spatial diversification:
two or more crops 

simultaneously growing in 
the same field

Strip intercropping: two or 
more crops in different strips 

wide enough to allow 
independent cultivation but 

narrow enough for crop 
interaction

Row 
intercropping: two 
or more crops with 
one or more crops 

planted in rows

Relay 
intercropping: two 

or more crops 
during part of each 

one’s life cycle 

Additive intercropping: 
Growing one crop as main 
crop (100% stand) and a 

second as intercrop.

Agroforestry: woody 
perennials growing in 

the same land unit 
with agricultural crops

Alley cropping: arable 
and perennial  crops in 
different broader strips

Structural diversity: 
same crop, different 

sowing-harvest periods

Fig. 1 Categories of spatial and temporal crop diversification (also defined as polyculture) at the field scale, alternative to sole cropping (growing a single
crop in a field) and monocropping (growing a single crop in an entire field overtime).
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physiological interactions at the individual plant level and also
offer the possibility to theoretically explore specific genetic
traits related to plasticity, competition, and niche complemen-
tarity (Gaudio et al. 2019). However, they generally do not
account for crop management practices, which is a strength in
agroecosystem models.

Genetic diversity in a field (Figure 1) can be simulated by
all agroecosystem models considered for this study, typically
by using a set of parameters to define the crop phenology (as
affected by temperature, photoperiod, and vernalization) and
yield potential for specific cultivars. The approach has been
used for major crops such as wheat, barley, and rice to identify
cultivars better adapted to specific environmental conditions
(Casadebaig et al. 2016; Semenov and Stratonovitch 2015;
Tao et al. 2017). For mixed cropping or crop mixtures (i.e.,
simultaneous growth of at least two crops sharing partially the
same space at the same time, Figure 1), some models can
simulate diverse spatial configurations depending on the de-
gree of crop interaction; species consideration depends on the
specifics of each model. For crop mixtures with sufficient
space between adjacent crops such that competition of re-
sources is limited (e.g., alley cropping, row, or strip
intercropping), it is possible to simulate them with
agroecosystem models intended for sole crops. However, for
crop mixtures where crops are close enough to interact (e.g.,
intercropping, relay intercropping, or additive intercropping),
only seven models of the selection considered here (APSIM,
CropSyst, Daisy, DNDC, EPIC, FASSET, and STICS) are
capable of simulating such systems, albeit with relatively sim-
plified assumptions about above and below ground crop inter-
actions of light, water, and nitrogen recourses (Table 1). Light
competition is often implemented by dividing the crop canopy
in compartmental layers (minimum two layers) and assigning
dominant and shaded canopy structures; the total simulated
canopy is proportional to the canopy contribution of each
species; the dominant specie is determined typically by plant
height and it is constant during the cropping cycle, though in
reality crop dominance may switch during the season (Spitters
and Aertes 1983). Belowground competition for water and
nutrient uptake are mostly based on relative root length of
the interacting crops, soil water, N availability, and crop de-
mand. The parameters required for the simulation of
intercropping systems in the models considered are generally
crop species specific, and limited to combinations of two
crops, restricting the number of crops available for possible
intercropping arrangements. Generally, no further interactions
beyond resource competition (e.g., root exudates influencing
microbial activity) are considered. Another form of
intercropping is agroforestry, where trees and crops are grown
together to benefit from the neighboring above- and below-
ground interactions for resources (Ong et al. 1991). Available
agroforestry models include WaNulCAS and Hi-sAFe
(Table 1), which are reviewed in detail together with other

available agroforestry models by Luedeling et al. (2016).
Part of their limitation relies on the lack of model flexibility
to be adapted to different environments, the extensive param-
eterization and sometimes the lack of model maintenance,
which are issues that need to be addressed for future model
applications.

Depending on the agroecosystem model, it is possible to
dynamically simulate a set of provisioning and regulating ESS
(Table 1) for spatially diversified cropping systems. For in-
stance, all considered models can simulate the provisioning of
food, feed, fiber, or fuel (via biomass simulation). The GHG
regulation through the simulation of soil carbon sequestration
is widely considered in the selected models, but N2O emis-
sions are considered in just thirteen of the selected
agroecosystem models (Table 1), examples are CropSyst,
DNDC, STICS, EPIC, and APSIM. Furthermore, no models
consider measurable particulate and mineral-associated organ-
ic matter pools that are widely considered in the soil organic
matter modelling community, and rather simulate conceptual
carbon pools that follow first order decay functions.
Simulation of water quality by simulating soil N retention
(via N leaching dynamics) is possible for most models con-
sidered here, except for AquaCrop which lacks an explicit
component to simulate N balance. Pesticide fate is considered
in few of the selected models (CropSyst, Daisy, EPIC,
FASSET, and APSIM), as well as soil conservation by quan-
tifying soil erosion (SWIM, CropSyst, EPIC and Hi-sAFe).
One of the drawbacks when using agroecosystem models for
crop mixture design is the limited understanding and model
representation of species-specific ecological and physiologi-
cal processes, such as niche complementarity, phenotypic
plasticity, facilitation, and competition (Gaudio et al. 2019;
Malezieux et al. 2009). No ESS related to pest control, polli-
nation, and biodiversity are considered for the set of studied
models.

For spatial crop diversification at the landscape scale, the
minimum scale of diversification is typically a whole field or
“patch” (Langhammer et al. 2019). Landscape generators are
tools used in Ecology to generate virtual agricultural land-
scape maps for exploring spatio-temporal dynamics of land
use change. A landscape generator typically considers differ-
ent agricultural land use systems including natural, semi-
natural habitats, crop land, and landscape elements. The most
common approaches to create such landscape maps are either
pattern based (using generic algorithms that generate realistic
virtual maps with no consideration of ecological processes) or
process based (generate maps given a specific ecological pro-
cess to be addressed) (Langhammer et al. 2019). For both
approaches, the crop types and their spatial allocation are con-
ducted using stochastic or static approaches or assembling
crop generators. Crop-related processes for either sole crops
or intercropping are poorly or not represented. Other models
are built and applied for specific ecological questions. For
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example, BEEHAVE considers field arrangement design for
landscape configuration and composition for foraging crops,
used as pollen sources for bees (Becher et al. 2014, 2018).
Holzkamper et al. (2006) implemented a spatial optimization
model for land use change tradeoffs between species habitat
suitability and management, with the implementation of a ge-
netic algorithm approach to identify the optimum land use
configuration of grassland, cropland (with no crop specifica-
tion), and forests for specific bird species in Northwest
Saxony, Germany. The optimum set-up for species habitats
and management was provided by smaller patches and greater
diversity of land use including more forest lands and de-
creased grassland and cropland.

3.3 Approaches to simulate temporal crop
diversification

Temporal crop diversification through crop rotations or se-
quences offers multiple benefits for agricultural systems such
as improved resource use efficiency (Anderson 2005; Pierce
and Rice 1988), improved soil structure from incorporated
crop residues, soil bio-pores and soil microbial dynamics
(Ball et al. 2005), reduced weed and pest incidence (Brust
et al. 2014), and reduced risk of crop failure (Helmers et al.
2001). Crop rotations have an impact on short- and long-term
legacy effects of water and nutrient balances, soil carbon stor-
age, and crop productivity (Basso et al. 2020). Crop sequence
effects on yield can persist for 3–4 years in dry years or semi-
arid environments as a result of water and nutrient legacies
(Kirkegaard and Ryan 2014). Grass et al. (2015) investigated
the opportunities of using double cropping systems for bio-
mass production and found increasingwater limitations for the
second main crop under projected climate change. Carry-over
effects for water may play an increasing role in crop rotation
design even in presently humid climates, e.g., limiting estab-
lishment of catch crops in dry summers. Crop rotation legacy
also includes effects of inoculum survival and subsequent in-
festations of crops with fungal diseases. There is evidence that
herbicide and fungicide use is lower in more diverse crop
sequences (Andert et al. 2016).

Agroecosystem models can be used to simulate some of
these crop rotation effects on crop yields, resource use dynam-
ics, and their efficiency. To date, their primary contribution to
system design is on the evaluation perspective for particular
crop rotations selected by the model user; one rare example is
the SWIM model, which includes a crop rotation generator
(Krysanova et al. 2015). More than twenty of the selected
models can dynamically simulate crop rotations. Many allow
simulation of multiple crops including major cereals (wheat,
maize, barley, rice, sorghum, millet), legumes (soybean and
cover crops), oil (sunflower, rapeseed), and sugar producing
crops (sugarcane and sugar beet) (Table 1). The models can
simulate reasonably well the soil N and water dynamics over aT
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full rotation period. The selected models vary with respect to
the set of ESS they can simulate. All include simulation of
provisioning of food supply, feed, fiber, or fuel (Table 1). The
majority can account to some degree from climate change
mitigation through simulation of soil carbon sequestration (ex-
cept forWOFOST), while about half of the models include the
regulation of GHGs by simulating N2O emissions (e.g.,
APSIM, DSSAT, EPIC, STICS, and WOFOST). Water qual-
ity through pesticide fate (APSIM, CropSyst, DAISY, EPIC)
and soil conservation by quantification of soil erosion (Hi-
sAFe, SWAT, SWIM, EPIC, and CropSyst) are not often
considered in the models (Table 1). None of the models in-
cluded in this review accounts for phytosanitary aspects, e.g.,
rotation design and management effects on the survival of
pests and diseases.

Model capacity can be limited when simulating crop rota-
tion dynamics for the long term, particularly for soil N, C, and
water. Kollas et al. (2015) performed a fifteen-model inter-
comparison exercise to simulate crop rotations (including ten
crop types) for five locations in Europe. Agroecosystem
models performed slightly better when considering carry-
over effects (initializing the model just at the beginning of
the rotation period) of the rotations. However, model limita-
tions with regard to N release from residue mineralization,
dynamics of soil organic matter, tillage effects, and number
of crops often limited model performance. Model skill may be
also limited by the lack of catch or cover crops parameteriza-
tion (Kollas et al. 2015; Yin et al. 2017) and the representation
of fallow processes, where experimental data has typically not
been available for model calibration. This highlights both the
need of high-quality data as well as model improvement for
further applications around designing temporal crop
diversification.

At the landscape scale, examples of the applications of
agroecosystem models in combination with land use models
or water basin models for the optimization of crop rotations
are available. For example, Lawes and Renton (2015) com-
bined the Land Use Sequence Optimizer (LUSO) model,
which is a bioeconomic framework, with the APSIM
agroecosystem model in the optimization of crop rotations.
Johnson et al. (2009) combined the SWAT model with the
ALMANAC agroforestry model to improve the simulation
of agroforestry system within a water basin. The DSSAT
model has been implemented at regional scales for the evalu-
ation of crop rotations (Gao et al. 2022; Hu et al. 2014). The
ACLIReM (a statistical tool), CropRota (a rotation generator),
and the EPIC model were combined for the optimization for
cropping systems including crop rotations at the spatial scale
(Mitter et al. 2015). The approach just involves crop rotation
optimization; smaller degree of crop diversification within a
field is not considered.

Other non-dynamic approaches at the landscape involve
static-rule frameworks that can support the design of temporal

crop diversification at larger spatial scale (Table 2). Most fol-
low an optimization criterion based on agronomic or econom-
ic factors, others additionally include environmental and so-
cial components. A predetermined list of crops, with their
respective site-specific management information, is typically
included in the framework. Crop selection and allocation are
either based on common crop rotations for the specific study
area or inclusion of a new crop to the rotations (e.g.,
CropRota). The rotation length can be restricted by the user.
Within-field heterogeneities are not directly considered as typ-
ically the crop category would be assigned to a full plot with
no finer subdivisions. Rotation length is based either on the
site-specific data or restricted by the user. CropRota
(Schonhart et al. 2011) and ROTAT (Dogliotti et al. 2003)
are similar tools that optimize crop rotations based on agro-
nomic criteria, but they differ as the CropRota tool limits the
number of crop rotation options based on the common rotation
set-up for a determined location, and it offers more flexibility
to adapt the tool to different management options and envi-
ronments. The ROTOR tool (Bachinger and Zander 2007)
was created to design crop rotations for organic farms focus-
ing on N and phytosanitary criteria for system optimization.
The LUSO framework (Lawes and Renton 2010) additionally
accounts for the optimization of crops rotations based on man-
agement or profitability as affected by weeds, diseases, and N
supply. The assessment framework by Reckling et al. (2016)
was designed with the main objective of introducing legumes
to crop rotations and evaluating their performance with a set of
environmental, economic, and phytosanitary indicators.
Nemecek et al. (2015) developed a method for crop rotation
design based on the life cycle assessment method, where crop
combinations can be either common or new to the area of
interest; they are evaluated based on agronomic criteria, pest
incidence, and soil nutrient use. Other economic models such
as the frameworks developed by Liu et al. (2016) and Li et al.
(2015a) are frameworks to optimize crop rotations based on
economic return but they also require information with
regards to crops, management practices, and plant protection.
Another recent framework based on economic optimization is
the tool “Fruchtfolge” a web-based decision support system
for Germany based on big data and spatially explicit model-
ling (Pahmeyer et al. 2020). Its aim is to suggest crop rotations
and crop allocation based on field specific location factors,
labor endowments, field-to-farm distances, and policy restric-
tions from the EU Common Agricultural Policy. The
SYSTERRE® online tool (Berrodier and Jouy 2013) and
MAELIA (high-resolution multiagent platform) also can be
applied to study diversified cropping systems at the landscape
scale, but their objective is the evaluation of spatial and
temporally diversified cropping systems based on a set of
technical, economic, and environmental factors. Even
simpler approaches for landscape design such as sketch
design exist. For example, Lovell et al. (2010) used this
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methodology to improve farm functionally through consider-
ation of site mapping and surveys (biological, cultural heri-
tage, and visual aspects) to determine the possibilities to inte-
grate elements beneficial for the delivery of certain ESS by
incorporating knowledge of landscape architects and ecolo-
gists. Few of these platforms include integration with
agroecosystem models. However, the generated information
can also serve for decision-making of cropping system design.

3.4 Crop species allocation considering within-field
soil heterogeneities.

Spatial and temporal within-field soil heterogeneities lead to
different patterns of crop growth response in agricultural fields
(Hoffmann et al. 2017; Rossel and McBratney 1998). This
remains underexplored in both experimental and modelling
studies, particularly for understanding how to exploit this het-
erogeneity in allocating crops within a field or at landscape
scale. Some areas may be more suitable for a given crop or
crop rotation whereas other areas may be unsuitable for crop
production due to a shallow ground water table, water log-
ging, presence of deep sandy soils or rock fragments, and
could be assigned for flower or non-vegetation crops to pro-
mote beneficial insects (Basso and Antle 2020; Koszinski
et al. 1995; van der Kroef et al. 2020). One of the few exam-
ples at field scale for designing diversified cropping systems
considering within-field heterogeneities is the approach used
by Apeldoorn et al. (2019), who developed a model platform
to evaluate and design strip cropping systems by using the soil
organic matter content in combination with long-term crop
yield data. Area configurations were evaluated using the bio-
economic FarmDESIGN-model (Groot et al. 2012) and the
ROTAT (Dogliotti et al. 2003) crop rotation model was used
to generate the crop rotations for the selected configuration.
Finally, the StripRotation app considers the multifunctionality
of crop rotations to evaluate and select optimal crop and field
configuration. This type of decision support framework can be
very useful as it combines decision-making tools, although it
may be more limited when exploring interactions of the diver-
sified system with crop management practices that may affect
resource use efficiency and ESS delivery.

3.5 Spatial structural diversity of landscape elements
of non-crop vegetation strips

Landscape elements, such as hedgerows and flower strips, are
important contributors to biodiversity conservation as they
increase plant diversity, facilitate species movement, and
serve as a habitat for pollinators and beneficial insects for pest
control (Hatt et al. 2017; Morandin et al. 2016; Tschumi et al.
2015; Vanneste et al. 2020). Landscape elements also play an
important role in the regulation of wind and water erosion
(Burel 1996). For landscape design, consideration offers an

opportunity to use areas with poor or degraded soils to pro-
mote biodiversity (Basso and Antle 2020). Depending on their
proximity to the crop, they facilitate infiltration of soil water to
the crop, reducing erosion with loss of soil and nutrients. This
effect can be simulated by agroforestry models, in which the
dynamics of tree growth, crop growth, and above and below
tree-crop interactions are considered. Efforts to couple
agroecosystem models with agroforestry models have been
carried out previously with the APSIM model (Huth et al.
2002, b; Keating et al. 2003; Luedeling et al. 2016). The
challenges relate to the fact that trees typically have a larger
vertical and horizontal influence than a typical crop
(Luedeling et al. 2016). Additionally, there is a mismatch in
the temporal resolution of simulations as the time-step of the
simulation for trees can often be a year (Malezieux et al.
2009). In the case of flower strips, agroecosystem models
are able to capture crop dynamics, but to date, few if any
model evaluation studies have been reported. Particularly un-
clear is the modelling of gradient impacts from the strip bor-
ders into crop fields for crop yield as well as ESS and
biodiversity. Schmidt et al. (2017) estimated that at the land-
scape scale, the effects of micro-climate and litter transfer to
alter conditions in soils of transition zones to be 10–20 m and
25–50 m for above-ground space.

4 Required modelling capabilities for newly
diversified field arrangements
in heterogeneous fields and landscapes

4.1 Crop species/cultivars options in agroecosystem
models

According to the FAO (1996), from 250,000 known plant
species, about 120 plant species are cultivated for food with
nine and three accounting for providing 75% and 50% of
global food, respectively. For the studied agroecosystem
models, the number of simulated crops for intercropping sys-
tems remains small. Spatial crop interactions are crop specific
and their investigation is limited to a few common combina-
tions due to their complexity and time needed to study these
interactions through field experimentation. For temporal crop
diversification at field or landscape scale, the number of avail-
able crops is higher with coverage of 10 to 70 crops depending
on the model. In general, the number of available crops for
simulation is higher for temperate and sub-tropical regions
than those for tropical regions. There are fewer options for
simulating less studied orphan crops, tuber and root crops,
fodder crops, or newly introduced catch or cover crops as
was also mentioned earlier (Kollas et al. 2015; Luedeling
et al. 2016; Malezieux et al. 2009; Silva and Giller 2021),
stressing the need to extend models for such crops.
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4.2 Field classification into smaller units considering
soil heterogeneities for site-specific management

Site-specific crop management can provide improved re-
source use efficiency, economic benefits and reduce environ-
mental impacts (Basso et al. 2016; Kersebaum et al. 2002;
Stadler et al. 2015). Agroecosystem models have the ability
to simulate crop responses in heterogeneous fields with appro-
priate the input data, calibration procedures, and particular soil
conditions. However, as models have limited skill in simulat-
ing effects of excess water, their performance is poorer under
such conditions (Groh et al. 2020; Tewes et al. 2020b; Wallor
et al. 2018). In precision agriculture, the term “management
zones” is a popular approach for delineating fields into sub-
units for site-specific management to achieve increased re-
source use efficiency (Vrindts et al. 2005). An increasing
number of methods are available for this approach as remote
sensing technologies continue to evolve in their capabilities
and availability for users. Site information that can be used for
management zone delineation include geomorphology, soil
chemical and physical data, soil classes, hydrological data,
yield and biomass maps, crop coverage, and maps derived
from proximal soil sensors. Statistical analyses for zone clus-
tering are conducted to identify the optimal number of classi-
fication zones (Nawar et al. 2017). Additional factors relating
to economic feasibility and machinery capability may be con-
sidered to define zone classes and size. Management zoning
based on yield maps (Basso et al. 2011; Cammarano et al.
2020), multispectral images (Karydas et al. 2020), and soil
proximal sensing (Davatgar et al. 2012; Peralta et al. 2015)
have been previously explored in major cereal crops that are
predominantly grown in sole stands to improve nutrient use
efficiency. For diversified cropping systems at the landscape
scale, Donat et al. (2022) applied a cluster analysis methodol-
ogy using yield maps and proximal sensed soil characteristics
to delineate “patch” units (~0.5 ha patch units, restricted to
current machinery size) and classify patches into high and low
yield potential zones, to design diversified cropping systems
with smaller spatial arrangements to improve the
agroecosystem functionality. The management zone concept
can also be useful for diversified cropping systems through
assigning crop species or cultivars according to the zone spec-
ification. For example, high yielding crop cultivars and spe-
cies can be assigned to stable zones with optimum or close to
optimum growing conditions. Zones prone to water stress,
poor soil nutrient conditions, or salinity can be planted with
tolerant crop cultivars or species or be assigned as biodiversity
spots to improve overall field productivity and provisioning of
ESS (Basso and Antle 2020).

At present, the minimum field size unit is restricted to ma-
chinery size. However, in the future, with the development of
smaller and automated machinery, it may be possible to re-
duce field sizes without increasing labor costs, effectively

redefining the scale of management zoning. However, the
delineation ofmanagement zones based on small-scale hetero-
geneity of soil properties may be challenging for
agroecosystem models and require inclusion of other soil-
related processes relevant for crops under a large range of soil
conditions. Vereecken et al. (2016) reviewed the capabilities
of cropping system models with respect to their capabilities to
simulate crop-related soil processes. They concluded that be-
sides N, the simulation of the dynamics of other macro- and
micronutrients in the soil is very limited in crop simulation
models. Modelling of soil conditions that are unfavorable for
crop growth like salinization (Webber et al. 2010), aluminum
toxicity or water logging, and quantification of their impacts is
currently limited. The simulation of some processes like water
logging or shallow ground water may require extensive pa-
rametrization of hydraulic conductivity as well as the inclu-
sion of two and three-dimensional soil water fluxes within the
landscape.

4.3 Impact of diversified field arrangements on biotic
stressors

Agroecosystem simulation models typically simulate crop
dynamics based on environmental conditions and manage-
ment practices (sowing, tillage, cultivar selection, fertilizer,
and irrigation practices), without considering pest, disease,
and weed damage (Ewert et al. 2015; Webber et al. 2019).
Diversified cropping systems can reduce incidence through
interrupting the respective pest life cycles, by providing food
for beneficial insects in the field, and limited movement of
pest from one crop to another. Break crops may differ in the
extent to which they influence the populations of specific
rhizosphere organisms, which may compete, antagonize, or
suppress pathogens (Kirkegaard et al. 2008). The value of
break crops will depend on the pathogen presence in partic-
ular cropping systems. Increase of soil organic matter and
biological activity is reported to suppress soil-borne dis-
eases, although inconsistent results hinder their practical ap-
plication (Bonanomi et al. 2010). Tillage practices and res-
idue management, e.g., mulching, affect soil water which in
turn influence C and N dynamics as well as the survival of
pests and soil pathogens. Modelling the effect of pests and
diseases on plant growth and yield implies modelling (i) the
causes of plant injuries (pest and disease life cycle) and (ii)
the consequences of these injuries on crop performances to
effectively link pests and disease damages relevant for un-
derstanding economic consequences (Esker et al. 2012).
However, this is challenging to quantify in field experiments
and include into agroecosystem models. Examples of com-
mon non-dynamic approaches for modelling pest damage to
crops is the use of generic damage mechanisms (Boote et al.
1983; Rabbinge and Vereyken 1980), which were imple-
mented in the DSSAT models for peanut and soybean leaf
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diseases (Batchelor et al. 1993; Boote et al. 1983), CERES
for rice (Pinnschmidt et al. 1995), WHEATPEST
(Willocquet et al. 2008), and recently in four other crop
s imu l a t i on mode l s (HERMES , WOFOST_GT ,
SSM_WHEAT, DSSAT-NWheat; (Bregaglio et al. 2021;
Ferreira et al. 2021) for wheat. Other examples linking
agroecosystem models with pest and disease population
models are the coupling of CERES-Rice to BLASTSIM, a
rice leaf blast epidemic simulation model (Luo et al. 1997),
using APSIM models coupled with the DYMEX population
modelling platform to simulate the reduction of green leaf
area due to leaf rust. The DYMEX platform can also be
used to simulate weed and insect population dynamics
(Whish et al. 2015). One of the few examples of pest and
disease modeling for diversified cropping systems is
reported by Poeydebat et al. (2016) who developed a generic
process-based agroecosystem model including a pest and
disease model to study diversified cropping systems
including a three crop plant association to quantify pest
regulations and yield tradeoffs. Donatelli et al. (2017) con-
ducted a review on the current state of coupling pest and
disease models with agroecosystem models and proposed a
roadmap to improve their capabilities of simulating biotic
stress. For this, they note that availability and quality of data
observations for model input, model improvement, and eval-
uation are critical as is the establishment of a modelling
community focused on pest and disease model development.

4.4 Agriculture 4.0

Agriculture 4.0 refers to the application of smart technolo-
gies based on Big Data, artificial intelligence, internet of
things, cloud computing, and remote sensing, among others,
to enhance production efficiency and promote agricultural
practices for more sustainable and resilient agriculture
(Rose and Chilvers 2018; Zhai et al. 2020). Combining
agroecosystem models with smart technologies can further
contribute to the improvement of model performance for the
design and evaluation of the spatio-temporal dynamics of
cropped fields. For instance, LAI data assimilation of field
observations (Tewes et al. 2020a) or remotely sensed canopy
state variables (Tewes et al. 2020b) into agroecosystem
models can help to improve model performance. Remote
sensing technologies can also help to further understand
and estimate biotic (Dutta et al. 2008; Yuan et al. 2017)
and abiotic stresses (De Canniere et al. 2021; Liu et al.
2019). The addition of soil property input data (soil texture,
hydraulic properties), which can be challenging to physically
collect in the field. This can be derived from proximal sens-
ing technologies (Brogi et al. 2020; Wallor et al. 2019), and
can help to better capture within-field heterogeneity as they
may provide finer data resolution. Moreover, a combination
of technologies such as artificial intelligence and machine

learning can be applied to identify field heterogeneities and
improve resource use, reduce environmental risks, and im-
prove farm profitability (Hatfield et al. 2020). Although,
there are still challenges to improve the robustness of new
technologies in terms of available, accurate, ground truth
data, model and user requirements (Dorigo et al. 2007;
Hatfield et al. 2020), there is a great potential for them to
contribute towards the design of multifunctional agricultural
systems at farm and landscape scales (Asseng and Asche
2019; Basso and Antle 2020).

4.5 Ecosystem services and biodiversity

Depending on the model structure, agroecosystem models
can dynamically simulate a diverse set of regulating and
provisioning ESS, the most common are related to the pro-
visioning of food, feed, fiber and fuel, the regulation of
greenhouse gas emissions, water quality, and soil erosion.
A strength of agroecosystem models is their flexibility to
dynamically explore and quantify how the provision and
regulation of ESS can be affected by specific crop manage-
ment practices or climatic conditions, allowing the optimiza-
tion of ESS delivery from agroecosystems. With the need to
move towards multifunctional diversified agroecosystems, it
is important to include biodiversity-related dynamics and
additionally quantify their ESS (pest regulation, pollination,
provision of functional botanical and fauna biodiversity).
Regulation of ESS related to soil degradation processes are
also important to consider, as not all models do. To study
the impacts of crop diversification at the landscape scale, we
propose a framework that combines both static frameworks
and process-based models (Figure 2). In a first static step,
the field is subdivided into management zones according to
the physical and chemical characteristics. At the same time,
the range of possible crops based on past crops and newly
introduced crops is defined. Then, a range of crop arrange-
ment scenarios can be defined and simulated with improved
agroecosystem models. Post model evaluation evaluates the
synergies and tradeoffs of the newly diversified crop ar-
rangements, based on a set of criteria including the provision
and regulation of ESS, resource use efficiency, and biodi-
versity, weighted as required by the relevant context. As
current agroecosystem models are not fully capable of sim-
ulating or representing all processes, future model improve-
ment is required. Considering soil heterogeneities in the
framework can aid field arrangement design to improve re-
source use efficiency and assign areas with poor soil quality
for biodiversity enhancement and conservation. This frame-
work can serve as an exploratory tool for the design of field
arrangements under the assumption that in the future small
field robots will be able to manage fields with small, diver-
sified patches (or management zones).
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5 Concluding remarks

Previous agroecosystem model–based applications have primar-
ily focused on crop growth and yield optimization, and to a lesser
extent soil C and N dynamics, by simulating crop and soil pro-
cesses as affected by management and weather variables without
consideration of pest, weed, or disease limitation. With sustain-
ability challenges in agriculture becoming even more critical,
there is a need for assessments of new options for multifunctional
diversified landscapes. For agroecosystem models to contribute
to such assessments, there is an urgent need for improvements as
well as their integration with other approaches and novel data
sources to assess the provisioning of ESS and biodiversity.
Agroecosystem models have been previously applied to explore
spatial crop diversification at the field scale; however, limitations
have been identified regarding the representation of crop interac-
tions at the interface between strips or patches grown with dif-
ferent crops. In addition, simulation capabilities of above and

below ground crop interactions are available for only few crop
combinations, restricting their use to design diversified cropping
systems. For temporal crop diversification, typically
agroecosystem models can simulate a wide range of crop rota-
tions as they include a variety of major sole crops, yet limitations
exist for uncommon or newly introduced crops due to the lack of
field observations required for model calibration and evaluation.
The simulation of soil N- and C-related dynamics can be poor
depending on model structure and calibration. With regard to the
consideration of within-field heterogeneities, limited model ap-
plications were found for diversified cropping systems.
However, examples can be drawn from sole cropping, where it
has been demonstrated that agroecosystem models can simulate
the effects of spatial heterogeneities on crops and some soil-
related ESS.Uncertainties caused bymodel structure, calibration,
and site-specific conditions are frequently reported. This suggests
that a closer look is needed for the modelling of agroecosystem
soil nutrient and water dynamics. Structural elements in the field

NEW FIELD ARRANGEMENT
DESIGN FOR DIVERSIFIED CROPPING 

FIELDS IN HETEROGENOUS SOILS
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• Historical yield maps
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Fig. 2 Proposed framework for
field arrangements design
considering crop diversification
within field with heterogenous
soils. In a first step, the
agricultural field is classified into
different clusters (management
zones) and a range of crops for the
spatio-temporal crop
diversification are selected (static
step). The dynamic section
includes the implementation of
agroecosystem models to
optimize the range of crops and
rotations in diverse field
arrangements. In a third static
step, a post model evaluation is
carried out for the selection of the
best combination of crops and
field arrangements given by a set
of ESS and biodiversity
parameters.
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such as hedgerows and flower strips are important sources of
biodiversity in the field and can also affect crop yield and ESS
by providing competitive and complementary interactions. Part
of the resource competition can be modelled with agroforestry
models, but lack of model flexibility when applied to different
environments limits their application.

When moving to farm and landscape scale, decision-
making frameworks and landscape generators are typically
applied. Here, spatial diversification (landscape configuration
and composition) is typically applied by using landscape gen-
erators, but cropland representation is rather simplified with
no consideration for specific crop dynamics. Temporal crop
diversification design is a static, rule-based process to opti-
mize crop rotations based on agronomic, economic, social,
or environmental indicators. Depending on the framework,
common crop rotations for a particular area can be explored,
but they may also have the flexibility to add new crops to the
rotation set. Configuration within the farm would depend on
soil characteristics and other pre-crop limitations but crop as-
signation is typically given to a whole field plot without fur-
ther consideration of within-field heterogeneities. The
smallest unit for crop diversification is also a field plot mean-
ing that intercropping systems cannot be explored with these
modelling frameworks. They are also limited on dynamically
exploring climate, crop, and management interactions.
Examples of combining s ta t ic f rameworks wi th
agroecosystems models for the design and evaluation of tem-
poral crop diversification were found, although the minimum
scale of diversification is restricted to a field (i.e., a sole crop
per field). To move towards a model-based platform for crop
diversification design at field and landscape scale, we need to
conduct further model improvements that additionally ac-
count for a more complex view of the agroecosystems includ-
ing the addition of uncommon crops, further improvements
for crop interactions when cultivated under intercropping, an
external or internal processing framework for designation of
management zones (by the use of field-collected or remote
sensed data) that can be used for specific crop assignation,
management and impact assessment of the practices on rele-
vant ESS. Moreover, biodiversity and biotic stressor consid-
erations need to be considered in agroecosystem modelling,
but model improvements need to be linked to field experimen-
tation that provides high-quality quantitative data to integrate
into agroecosystem models. Biodiversity dynamics of plant
and fauna diversity are widely studied in Landscape
Ecology, and they can be an important source of information
to improve and validate the agroecosystem models for a more
integrated system approach. Remote sensing and field sensors
can greatly contribute to the generation and collection of high-
resolution input data. For example, for the generation of soil
maps combining soil physical and chemical properties that
serve as model input can be combined with air-borne records
of spatio-temporal dynamics of crop canopy growth patterns

for model calibration, validation, and improvement. Remote
sensing can also serve to improve the understanding of envi-
ronmental stress. Artificial intelligence and machine learning
can further contribute to develop strategies to identify patterns
of field heterogeneities and improve resource use, reduce en-
vironmental risks, and improve farm profitability. Diversified
cropping systems that maximize provisioning and regulating
ESS, resource use, economic and ecological tradeoffs are a
promising alternative to intensive simplified crop production
systems. Additionally, promoting the provision and regulation
of ESS in agriculture may require policies that reward the
benefits of ESS to compensate for the tradeoffs of high pro-
ductivity versus increased ESS and farm biodiversity.

The consideration of causal relationships among system
processes in process-based, dynamic models (in contrast to
pure statistical input-output relations) allows to obtain a mech-
anistic understanding of the impacts of changes in boundary
conditions (model inputs) on the outputs (e.g., crop yield, ESS
delivery), which is the basis to develop demand tailored and
sustainable management options. Thus, the complexity of a
model is driven by the objectives of its end use (in our case
understanding of bio-physical processes and their interactions
in complex cropping systems). However, we are aware that
there may be a trade-off between model complexity and the
precision or accuracy in the outputs (Ahmad and Mahdi
2018). On the other hand, high-end observation and pheno-
typing methods for field and landscape experimentation (for
example, within the platform of the PhenoRob project in
Germany) offer a great opportunity to gather high-quality
quantitative data to integrate into agroecosystem models and
aid the model improvement process. Moreover, the imple-
mentation of finer degrees of crop diversification and smaller
field arrangements is limited bymachinery size, and a possible
increase in economic costs as having more crops in a field can
also imply more use of input resources such as energy and
labor. Other issues such as soil compaction may arise due to
increased traffic of heavy machinery, which can be also re-
duced with the use of smaller tractors and robotics that may be
able to automatically handle the management of such systems
and make the system more sustainable and profitable. It is
important however to generate information and knowledge
that contributes towards diversified cropping system planning.
We propose a framework that combines static approaches and
process-based models for the new field arrangements design.
Different crop combinations can be assigned and combined
with different spatial patterns depending on soil heterogene-
ities. The diverse crop-arrangement combination can be then
optimized using an improved agroecosystem model. Model
system evaluation can be conducted by identifying trade-offs
and synergies based on criteria including the provision and
regulation of ESS, resource use efficiency, and biodiversity.
While there is an ongoing generation of data we emphasize,
that it would be important in the future to explore the
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economic viability of the degrees of crop diversification by
also evaluating the earnings from ESS and biodiversity in the
field which may not have a direct economic return, but they
influence the system. Modelling frameworks can be powerful
tools that generate useful knowledge as they allow us to ex-
plore diverse combinations of crops, environments, and man-
agement practices that would otherwise be impossible through
field experimentation. This in turn highlights the importance
of continuing to address model limitations, which could be
partly overcome through new technologies that can generate
the data needed to support model improvements. With such
advancements in mind, models have the potential to help us
better explore the benefits of a diverse set of spatial and tem-
poral crop diversification.
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