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Abstract
Common bean (Phaseolus vulgaris) is one of the most important legumes for human consumption. It is highly adaptable to
different edaphoclimatic conditions, being an important crop in addressing global food security challenges. The common bean
production segment has undergone an intense technological advance, with a focus on the use of technologies to increase the
availability of nitrogen (N) and the crops’ seed yield, while enhancing economic and ecological sustainability. Based on this, the
present meta-analysis aimed to evaluate the effects of Rhizobium inoculation (RI), in comparison with mineral-N fertilization
(NF), on the main nodulation characteristics, yield components, and seed yield of common beans. This study represents the
largest assessment yet on this topic. We used data from peer-reviewed publications and, after extensive bibliographic research,
analyzed 68 studies from seven countries. We found that RI increased seed yield (32.96%) but not to the same extent as NF. The
RI is on average 12.31% less efficient thanNF; however, whenwe categorized the factors, such as the time of year when common
beans were grown, the soil management system, and the soil physicochemical characteristics, the RI effects were more prom-
ising. Here we show for the first time that RI was more efficient than NF when common beans were cultivated in the dry season,
under a no-tillage system, and in soils with high organic matter content, with a potentially positive impact on yields. In addition,
the difference in the efficiencies of RI and NF was attenuated when common beans were grown in soils with a clay texture,
eutrophic, with low to neutral acidity, and with an adequate phosphorus availability, and using at least 10 g of rhizobial inoculum
per kg of seeds.

Keywords Sustainable agriculture . Inorganic fertilization . Biological nitrogen fixation . Symbiotic interaction .

Phaseolus vulgaris

1 Introduction

Common beans (Phaseolus vulgaris L.) can be considered an
ally in addressing global food security challenges. Its seeds are
used as a primary source of protein, dietary fiber, and energy
(starch), especially in less developed countries (Araujo et al.

2020; Los et al. 2018). Amongst the bean species cultivated
worldwide, common beans are unique due to their great var-
iations in the color of the seed coat and the characteristics of
the pod (Allen 2013; Sinkovič et al. 2019).

The total bean cultivated area and production from 104
countries in 2019 were 33 million hectares and 29 million
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tons, respectively with an average seed yield of 1557 kg ha-1.
The 10 largest world producers of beans, in descending order,
are Myanmar, India, Brazil, China, Tanzania, Uganda, USA,
Mexico, Kenya, and Burundi. These countries collectively
contribute to 70.8% of the total amount of beans produced
in the world, corresponding to 20.5 million tons (FAO 2021).

In addition to its worldwide importance, the common bean
is capable of growing under different soil conditions and cli-
matic variations (Shamseldin and Velázquez 2020). The crop
is economically important due to its cultivation at all techno-
logical levels of production. The majority of the producers of
this crop are smallholder growers, who have limited resources
for seed production (Castro-Guerrero et al. 2016; Wanjala
et al. 2019). In addition, the legume has a high requirement
for nitrogen (N) (Maia et al. 2017; Soratto et al. 2013; Jena
et al. 2022). The average export of nutrients is about 35.5 kg
of N per ton of seed produced, with greater demand during
flowering and seed filling (Soratto et al. 2013). Therefore, N
deficiency is one of the main factors limiting common bean
yield (Maia et al. 2017; Soratto et al. 2014).

Common bean production value chains have undergone a
paradigm transformation in the last three decades, which has
promoted a significant increase in seed yield (Nassary et al.
2020). In particular, cultivation techniques such as the use of
mineral-N fertilization (NF) have been widely adopted.
Fertilizer application results in taller plants with greater
above-ground biomass and dry matter yields in comparison
with plants grown in the absence of NF (Soratto et al. 2014).
In addition, fertilizer user results in a linear increase in the seed
yield of common bean crops up to maximum rates of 180 kgN
ha-1 (Deresa 2018; Mingotte et al. 2019; Soratto et al. 2017).
Despite its recurrent use, N is easily lost through leaching,
volatilization, and denitrification (Nyawade et al. 2020).
These potential losses represent high economic and environ-
mental costs associated with NF (Figueiredo et al., 2016; Silva
et al. 2020). Consequently, there is debate about the adoption
of more sustainable and economically efficient agricultural
techniques.

Sustainable agriculture is increasingly being recognized as
a tool to address the aforementioned challenges. It focuses on
the use of technologies that aim at increasing the availability
of N and the productivity of legumes, emphasizing the eco-
nomic and ecological aspects of production systems (Araujo
et al. 2020; Raza et al. 2021; Paudyal and Gupta 2018; Soratto
et al. 2022). An example of this is biological N fixation
(BNF), which can be an alternative for the supply of N, reduc-
ing the use of N fertilizers and, consequently, minimizing the
environmental impacts of N leaching in rivers and lakes
(Figure 1) (Shibata et al. 2017).

Symbiotic associations are estimated to be able to fix up to
80% of the N requirement in agricultural areas (Herridge et al.
2008; Mendoza-Suárez et al. 2020). However, the total or
partial replacement of NF by Rhizobium inoculation (RI)

techniques in common bean crops is still very irresolute due
to variations in its impact on seed yield (Hungria et al., 2013).
Herridge et al. (2008), while using the method of the percent-
age of N derived from atmosphere (%Ndfa), found that the
food legumes in the global area can fix about 2.95 Tg of N
year-1. Among the crops, the authors highlighted are chickpea
(Cicer arietinum L.) (0.60 Tg), common beans (0.58 Tg), pea
(Pisum sativum L.) (0.57 Tg), and other pulses (0.47 Tg) are
the predominant contributors. However, compared with the
oilseed legumes, the food legumes have less contribution.
For instance, soybean [Glycine max (L.)Merr.] and groundnut
(Arachis hypogaea L.), together contribute 6.3 times higher
BNF annually (18.5 Tg year-1) (Rao and Balachandar 2017).

Therefore, a better understanding of the factors that limit
common bean seed yield under RI is important, as this infor-
mation will serve to support technical management decisions
based on scientific evidence (Pittelkow et al. 2015).
Considering the growing interest and encouragement of inoc-
ulation techniques with Rhizobium bacteria as a tool to miti-
gate the harmful effects of chemical fertilization on the envi-
ronment, we used this meta-analysis to synthesize scientific
evidence of the effects of RI, compared to those of NF, on the
main attributes of a common bean plant and its seed yield at a
global level.

The objectives of this study were: (i) to evaluate the current
state of inoculation with bacteria of the genus Rhizobium in
common beans globally; (ii) verify the effects of RI, as well as
compare them with those of NF, on the nodulation character-
istics, yield components, and seed yield of common beans;
and (iii) identify the factors that affect the efficiency of RI in
the common bean crop, in comparison with the efficiency of
NF.

2 Materials and methods

2.1 Systematic review and data selection

The selected papers were published between January 2000
and January 2021. Studies prior to the defined minimum year
were excluded because they did not meet the inclusion criteria
that we will discuss. Data from articles and scientific notes
published in scientific journals were collected through the
bibliographic review using the following databases: Web of
Science (https://webofknowledge.com/), SCOPUS (https://
www.scopus.com/), SciELO (https://scielo.org/), and Google
Scholar (https://scholar.google.com/).

As a search strategy, the following keyword combinations
were used: “Phaseolus vulgaris OR common beans”, “inocu-
lation with Rhizobium OR inoculation of rhizobia”, “nitrogen
fertilization OR fertilization N mineral”, and “grain yield OR
seed yield”. We sought to include studies that demonstrated
the response of common beans, in terms of seed yield (main
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variable), to RI and NF.When the studies presented the results
for a control treatment (CK), that is, without RI and NF, these
data were also compiled. When possible, the results of nodu-
lation and yield components of common beans (secondary
variables) were also compiled as a function of the treatments.
The secondary variables selected were the number of nodules
per plant, nodule dry mass per plant in grams, number of pods
per plant, number of seeds per pod, and 100-seed weight in
grams.

2.2 Inclusion and exclusion of studies

A detailed review protocol was developed with some inclu-
sion and exclusion criteria, which were applied to select the
studies found in the databases:

a) Experiments that presented treatments with RI and NF
were included. The treatments with RI and NF should
be the factors studied in isolation. Studies were excluded
when it was not possible to isolate the effects of RI and
NF on the characteristics of the common bean crop.

b) No studies were selected that showed only the effect of
one treatment (RI or NF) on the characteristics of com-
mon beans. In addition to the studies having to present
both treatments, agronomic practices were to be similar
between the plots with RI and NF.

c) Studies that demonstrated the effects of treatments on
seed yield and other evaluated characteristics of common
beans were included. Nonetheless, when the study did not
show the effect of treatments on seed yield, but rather
showed only the results of the other characteristics of
common beans, these were also excluded.

d) Studies that were conducted exclusively under field con-
ditions and that presented the number of repetitions used
to calculate the mean were included in the meta-analysis.

e) The search strategy partly entailed studies conducted in a
single season (growing season) and/or location
(environment) were excluded. Other studies that were ex-
ceptionally accepted included those that had tested differ-
ent cultivars and/or strains of Rhizobium, even though
they were conducted in a single season and/or place. In
this case, studies were included if they demonstrated the
reliability of the results through measures of variability,
such as standard deviation and coefficient of variation.

For the results of the studies that were presented in figures,
such as bar or line graphs, the images were processed in the
Web Plot Digitizer software (version 4.4; https://automeris.io/
WebPlotDigitizer/) to extract the underlying numerical data
and visualize the results.

2.3 Abstraction and organization of data

A selected sample was evaluated by performing a full reading
of the entire work. After the second screening, the studies
were submitted to data abstraction using a spreadsheet editor,
in which all the information of the studies believed to be
important was described. This step was performed manually,
and each study was processed individually (Ahn and Kang
2018).

The information considered important for the present
study, in addition to the variables evaluated included the time
of year when the common bean was grown (growing season),
Köppen-Geiger climatic classification of the region where the
experiment was conducted (climate), classification of the soil

Fig. 1 Main sources of N supply
for common beans and positive
and negative aspects of both
techniques: fertilization with
mineral N (left) and biological N
fixation through diazotrophic
bacteria (right). Photo credit:
Westefann Sousa.
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(soil type) based on the United States Department of
Agriculture (United States Department of Agriculture
(USDA), 2014). The soil-related information was based on
the soil management system used in the experiment (soil man-
agement), percentage of clay in the soil (soil clay content),
base saturation in the soil (BS), soil organic matter content
in g dm-3 (OM), soil hydrogen potential (pH), and soil
available P (in mg P dm-3). With regard to agronomic
management of the crop, we considered inoculant dose
in g kg-1 of seeds (inoculant dose), number of strains in
the composition of the inoculant (number of strains), type
of strain used in the inoculant (strain type), rates of P
fertilization in kg P2O5 ha-1 (P fertilization), and rates of
NF in kg N ha-1 (N fertilization). Information on soil
characteristics was selected from samples extracted at a
depth of 0–20 cm from the soil. After all the studies were
carefully selected, the information was stratified into 14
categories, as performed by Peixoto et al. (2020), and
adapted for the present study (Table 1).

Commercial rhizobia strains, categorized in the meta-anal-
ysis, are those intended for the manufacture of inoculants,
whose efficiency of these strains is already known. The strains
called isolates are those under study, that is, rhizobia isolate
that are characterized and subjected to experiments to validate
their efficiency in the BNF process. Further information on the
various strains and amounts of inoculant used by various stud-
ies and the soil conditions tested is provided in the supplemen-
tal material (Supplementary Table S1). The source used for
NF was not considered as a categorical factor, given that the
number of observations was higher for urea, with 791 of the
total number of observations (96.94%), followed by ammoni-
um nitrate with 17 observations (2.08%) and ammonium

sulfate with eight observations (0.98%). Thus, the meta-
analysis proceeded without categorizing the different sources
used for the NF.

2.4 Data analysis

The response variable used in the present meta-analysis, called
the response ratio (RR), was calculated using the natural log-
arithm of the response ratio (lnRR) (Equations 1a, b, and c),
comparing the measures of effects (ME) of the treatments.
Initially, the effects of RI vs CK, NF vs CK, and RI vs NF
on the nodulation characteristics, yield components, and seed
yield of common beans were compared. Then, the effects of
RI vs NF treatments were compared within the categories
defined in Table 1.

RI vs CKð Þ lnRR ¼ ln
MERI

MECK
ð1aÞ

NF vs CKð Þ lnRR ¼ ln
MENF

MECK
ð1bÞ

RI vs NFð Þ lnRR ¼ ln
MERI

MENF
ð1cÞ

where ln is the natural logarithm, MERI is the measure of the
effect of inoculation with Rhizobium, MENF is the measure of
the effect of treatment with NF, and MECK the measure of the
effect of control treatment.

A few studies have presented measures of variation. Thus,
we chose to weight (w) the individual observations of each
study based on the number of repetitions of the experiment
(Equation 2a, b, and c) (Pittelkow et al. 2014).

RI vs CKð Þ w ¼ nRI � nCK
nRI þ nCK

ð2aÞ

NF vs CKð Þ w ¼ nNF � nCK
nNF þ nCK

ð2bÞ

RI vs NFð Þ w ¼ nRI � nNF
nRI þ nNF

ð2cÞ

where nRI is the number of repetitions for RI, nNF is the num-
ber of repetitions for NF, and nCK is the number of repetitions
of CK.

To evaluate the statistical variability of the sampled data,
the confidence intervals were calculated using the bootstrap
methodwith a 95% probability. This procedure is based on the
creation of new samples, or subsamples, of the same size as
the initial sample through resampling with replacement
(Bishara and Hittner 2016; Michalak et al. 2002). Thus, con-
fidence intervals were generated for lnRR using 5000 boot-
strap interactions. To eliminate abnormal observations in the
data set, which would greatly affect the confidence interval

Table 1 Categories and their respective stratifications (classes) used in
this study.

Categories Classes

Growing season Winter, Rainy season, and Dry season

Climate Tropical, Semi-arid, and Temperate

Soil type Oxisol, Ultisol, and Entisol

Soil management Conventional and No-tillage

Soil clay content (%) ≤30, 30-60, and ≥60
Soil base saturation (%) ≤50, 50-70, and ≥70
Soil organic matter (g dm-3) ≤25 and 25–50

Soil hydrogen potential (pH) ≤5, 5-7, and ≥7
Soil available P (mg dm-3) ≤15 and >15

Inoculant dose (g kg-1 of seeds) <10, 10, and 100

Number of strains 1 and >1

Strain type Commercial and Isolated

P fertilization (kg P2O5 ha
-1) ≤30, 30-60, 60-90, and ≥100

N fertilization (kg N ha-1) ≤40, 40-60, 80-100, and ≥120
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estimate, observations with an lnRR standard deviation greater
than five were excluded (Peixoto et al. 2020; Pittelkow et al.
2014).

Bootstrap resampling was stratified in each category, as
pre-established in Section 2.3., for the main variable (seed
yield). For the secondary variables (nodulation and yield
components), the analysis proceeded in general, not con-
sidering the categories. We proceeded in this way because
the number of observations for the secondary variables
was lower than that for the main variable, in addition to
the data of the secondary variables not encompassing all
categories. The results were considered significant when
bootstrap confidence intervals did not overlap to zero
(Wood 2004).

To facilitate the discussion of the data, all the results of the
variables were reported as the percentage variation of the treat-
ment RI vs CK, NF vs CK, and RI vs NF, using Equation 3
(Peixoto et al. 2020):

RR %ð Þ ¼ explnRR−1
� �� 100 ð3Þ

where RR(%) is the percentage of the response ratio and
explnRR is the exponent of the natural logarithm of the re-
sponse ratio.

All analyses were processed using R software version 4.0.3
(R Core Team 2020), and the following packages were used:
tidyverse, readxl, ggeffects, boot, and broom (Canty and
Ripley 2020; Lüdecke 2018; Robinson et al., 2020;
Wickham and Bryan 2019; Wickham et al. 2019).

3 Results and discussion

3.1 Overview

The search in the databases using the descriptors (keywords)
resulted in a total of 1290 studies. With the application of the
inclusion and exclusion criteria, the number of selected studies
was reduced to 68, which was then processed in the meta-
analysis. From the selected studies, 758 observations were
extracted (a database was provided as a supplementary docu-
ment containing all data extracted from the studies). The lan-
guage used in the publication of the largest number of studies
was English (60%; n = 41), followed by Portuguese (37%; n =
25) and Spanish (3%; n = 2). A greater number of studies were
conducted in Brazil (76.47%; n = 52), followed by Ethiopia
(10.29%; n = 7), Iran (4.41%; n = 3), Spain (2.94 %; n = 2),
Turkey (2.94%; n = 2), Tanzania (1.47%; n = 1), and Peru
(1.47%; n = 1) (Figure 2). In Brazil, almost all studies were
concentrated in the Southeast, South, and Midwest regions of
the country.

3.2 Effects of Rhizobium inoculation on nodulation
characteristics and yield components, in comparison
with those of mineral-nitrogen fertilization

Overall, RI increased nodulation characteristics compared
to the control treatment (CK), with an effect size in the
order of 19.04% and 37.03% for the number of nodules
per plant and nodule dry mass per plant, respectively
(Figure 3a and d). Even with the vast majority of soils
sown with common beans containing indigenous rhizobia
that can interfere with the establishment of inoculated
strains (Vargas et al., 2000), these results demonstrate
the efficiency of inoculants outweighed the competition
with native rhizobia, without major interference in BNF.
As for NF, compared to CK, there was a negative effect
on the number of nodules per plant and nodule dry mass
per plant, with respective reductions of 73.08% and
88.46% (Figure 3b and e). The inhibition of the microbial
activity of rhizobia by NF is already well known in the
literature (Glodowska and Wozniak 2019), which explains
this result in terms of nodulation. Regarding the compared
effects of RI and NF, there was an increase in nodulation
characteristics for RI compared to NF (Figure 3c and f).
This increase was in the order of 72.49% and 43.06% for
the number of nodules per plant and nodule dry mass per
plant, respectively.

Common beans are believed to be an inefficient fixer of
atmospheric N (N2), due to factors, such as the genetic char-
acteristics of the other symbiotic partners, as well as the soil
and environmental conditions (Yadegari et al. 2010). In addi-
tion, promiscuity with a wide range of indigenous rhizobia in
the soil becomes a barrier to the symbiotic effectiveness of the
legume with more efficient rhizobia (Shamseldin and
Velázquez 2020; Zinga et al., 2017). In the present study,
the nodulative aspects of the common beans were benefited
by RI, in comparison with those with NF and/or CK, which
proves the greater responsiveness of common beans to sym-
biosis with N-fixing bacteria of the Rhizobium genus and
greater efficiency of inoculants introduced in the crop cultiva-
tion system.

The increase in nodulation of common beans through RI
provides greater efficiency for BNF (Hungria et al., 2013), as
the N input required by the legume can be supplied, in part, by
the RI. In addition, high NF rates considerably reduce the
nodulation of common beans and, consequently, can suppress
the expression of desirable characteristics associated with
BNF, such as nitrogenase activity (Müller et al. 1993;
Reinprecht et al. 2020; Soares et al., 2016), which is consistent
with the results of the present study for nodulation variables.

As for the yield components, there were significant differ-
ences when comparing the effects of RI vs CK and NF vs CK
(Figure 4). The increases in the number of pods per plant,
number of seeds per pod, and 100-seed weight were 9.75%,
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9.41%, and 8.83%, respectively, in the RI treatment compared
to the CK (Figure 4a, d, and g). Compared to CK, the NF
treatment increased the number of pods per plant, the number
of seeds per pod, and 100-seed weight by 52.52%, 7.87%, and
9.02%, respectively (Figure 4b, e, and h).

The comparison between RI vs NF showed a reduction in
the number of pods per plant (17.14%) in the RI treatment
(Figure 4a). The number of seeds per pod and 100-seedweight
showed no statistical difference between the RI and NF treat-
ments (Figure 4b and c). These results indicate that RI has a
similar effect to NF on the number of seeds per pod and 100-

seed weight of common bean, but a much smaller effect
on the yield component that is most affected by the avail-
ability of N, i.e., the number of pods per plant (Soratto
et al. 2014, 2017). The greater availability of N promoted
by NF, especially at the beginning of the cycle, probably
stimulated greater vegetative growth of common bean
plants. Larger plants with a greater number of branches
produce a greater number of reproductive structures
(Soratto et al. 2014). In addition, it was not possible to
relate the greater nodulation capacity of the plant with the
number of pods per plant (Figures 3 and 4).

Fig. 2 Location of studies used in the meta-analysis that include comparisons between Rhizobium inoculation and mineral-N fertilization in common
bean crops.
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Previous studies have demonstrated that NF has a signifi-
cant effect on the loading of common bean plants (Chekanai
et al. 2018; Fageria et al. 2014a); however, the bean's response
may vary according to the cultivar and environmental factors
(Chekanai et al. 2018). This suggests that some yield compo-
nents are much more subject to being controlled by potential
common bean genes, as well as the influence of environmental
conditions than by the RI and/or NF itself (Fageria et al.
2014b; Morad et al. 2013; Soares et al., 2016). The small
variation observed in the effect of both treatments (RI and
NF) on the number of seeds per pod and the 100-seed weight
demonstrated this.

3.3 Effects of Rhizobium inoculation on seed yield
compared to those of mineral-nitrogen fertilization

The overall seed yield response to RI and NF, both compared
to CK, was significant, with an increase of 32.96% for RI
(Figure 5a) and 46.69% for NF (Figure 5b). It is important
to highlight that some farmers, mainly in developing coun-
tries, do not apply mineral-N fertilizers but rather depend to-
tally on the residual supply of N from the soil and BNF.
Ultimately, this makes the latter a cheaper and more sustain-
able alternative (Samago et al. 2018). Thus, the increase of
33% in common bean seed yield in the presence of RI, in
relation to CK treatment, can guarantee the success of the crop
in smallholder agricultural systems where farmers depend

totally on this biological input. The opposite effect to that
reported was found when comparing RI vs NF, in which RI
had a 12.31% lower seed yield compared to NF (Figure 5c).
This is a reflex of the smaller effect RI has on the number of
pods per plant, compared to NF (Figure 4).

3.3.1 Climatic characteristics, management, and soil type

For cultivation in the dry season, RI showed a 5.76% increase
in the seed yield, in comparison with NF (Figure 6a). In the
cultivation carried out in winter and in the rainy seasons, there
was a lower seed yield for RI compared with NF, with a
difference of 11.88% and 9.42%. As for the results for the
cultivation in the dry season, it is noteworthy that of all the
observations compiled to reach this result (n = 61), they cor-
respond to eight studies conducted without the use of irriga-
tion, with well-distributed rainfall during the cultivation of
common bean and without occurrences of water deficit.
Previous research has demonstrated that plant growth-
promoting rhizobacteria are more effective under drought con-
ditions, which leads to a reduction in the use of NF (Barros
et al., 2018; Rubin et al. 2017). It is also worth noting that in
the period of drought cultivation, NF suffers a greater loss of
N due to the increase in asynchronicity between the release of
N through mineralization and the uptake of N by the crop
(Ullah et al. 2020), which makes RI practices more efficient.
It is also important to mention that, especially in the Central-

Fig. 3 Effects of Rhizobium
inoculation compared to control
treatment (RI vs CK, a and d),
mineral-N fertilization compared
to control treatment (NF vs CK, b
and e), and Rhizobium
inoculation compared to mineral-
N fertilization (RI vs NF, c and f)
on the number of nodules per
plant (a, b and c) and nodule dry
mass per plant (d, e, and f) of
common bean crop. The green
dots depict the observations of the
sampled studies and the values in
parentheses represent the sample
size.
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South region of Brazil, where most studies were conducted,
the dry season (also called the second growing season, with
sowing between January and March), normally has a higher
occurrence of rain, especially in the early stage of the crop
cycle, than in the winter and rainy seasons (CONAB 2021).
The better-distributed rain at the beginning of the common
bean cycle probably promoted a suitable establishment of
the plant-rhizobia symbiosis. In this way, under the aforemen-
tioned conditions, we suggest that in the cultivation during the
dry season, the farmer can invest exclusively in RI to supply
N, which can become more efficient than fertilization with
mineral N, with a significant increase in the common bean
yield.

Regarding the climatic classification of the region, seed
yield in the tropical (-11.81%) and semi-arid (-16.14%) cli-
mates were lower for RI compared with NF. Furthermore, in
the temperate climate, the seed yield with RI was similar to
that with NF (Figure 6b). In the plant-soil ecosystem, the
temperature is an important environmental factor that

influences the different interactions that occur between plants,
soil, and microorganisms. This temperature effect can be in-
direct through its interaction with other environmental param-
eters, such as humidity or oxygen, or direct because it affects
the rate of biological reactions (Prévost et al. 1999). The ideal
growth temperature for most rhizobia is between 25 °C and 30
°C; however, the rhizobia survival in the soil and the symbi-
otic properties of Rhizobium strains are more affected by high
temperatures, particularly under humid conditions, than by
low temperatures (Pinto et al. 1998; Prévost et al. 1999).
This may explain the similar effect of RI, in relation to that
of NF, on the common bean yield in a region with a colder
climate (temperate). It is commonly reported in the literature
that the influence of environmental factors, with more favor-
able conditions of soil temperature and humidity, provide
greater efficiency of BNF (Deak et al. 2019; Onwuka and
Mang 2018; Sánchez et al. 2014). The contrary can also be
true, especially in adverse environments, such as growing
conditions in drought and temperate climatic zones. The

Fig. 4 Effects of Rhizobium inoculation compared to control treatment
(RI vs CK), mineral-N fertilization compared to control treatment (NF vs
CK), and Rhizobium inoculation compared to mineral-N fertilization (RI
vs NF) on number of pods per plant (a, b and c), number of seeds per pod

(d, e, and f), and 100-seed weight (g, h and i) of common bean crop. The
green dots depict the observations of the sampled studies and the values in
parentheses represent the sample size.
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results of this study indicate the potential use of RI in contrast-
ing environmental conditions, whether in low humidity or
cold weather, and this should be used as a reference for future
studies aimed at the management of BNF in common beans,
assuming that these factors affect variations in the RI depend-
ing on the context analyzed.

The effects of RI, compared with those of NF, negatively
interfered with the common bean seed yield in soils of the
Ultisol and Entisol types, with a negative impact of 5.03%
and 11.87%, respectively. However, RI increased the seed
yield compared with that with NF when common beans were
grown in Oxisol, with a 19.09% increase in the seed yield
(Figure 6c). Another important category in this result was
the soil management system used, with opposite results for
the two types of systems, in which the seed yield response
to RI was significantly lower (11.20%) when using conven-
tional management, while the RI increased the seed yield by

5.41% in the no-tillage system, compared with those of NF,
(Figure 6d).

For Oxisols, it is not possible to state that this alone is a
major factor that benefits BNF in common beans, as this re-
quires more detailed studies of the effects of RI, compared
with those of NF. This is particularly due to the different
subdivisions/suborders of Oxisols, which have specific char-
acteristics and can result inmore consistent effects of RI vs NF
on the common bean seed yield. It is worth noting that Oxisols
are very weathered soils, with a small reserve of nutrients for
plants, normally represented by their low to medium cation
exchange capacity. In addition, the vast majority of Oxisols
(more than 95%) are dystrophic and acidic, with pH between
4.0 and 5.5 and extremely low levels of available P, almost
always below 1 mg dm-3 (Bockheim et al. 2014; Hartemink
et al. 2020). These characteristics do not match the results that
we will address below for the physicochemical attributes of
the soil, which leads us to assume that, more important than
the original soil class (inherent unfavorable quality), it is the
proper management of this to improve its physicochemical
characteristics, consequently enhancing the symbiosis be-
tween plants and bacteria.

Furthermore, our finding that seed yield is increased due to
RI, especially under no-tillage cultivation conditions, is con-
sistent with the notion that no-tillage is one of the most effi-
cient ways to protect and improve the physicochemical char-
acteristics of soil, in addition to being an alternative to relieve
certain environmental tensions that may affect the symbiotic
efficiency between plants and bacteria (Buffett 2012;
Kaschuk et al. 2006; Omondi et al. 2014). In a study by
Mulas et al. (2015) which was carried out under different
environments and tillage systems, the BNF of common
bean in no-tillage was higher than in the conventional
planting system. Torabian et al. (2019) also reported in
their study that no-till generally increases nodulation, the
total amount of N fixation, and seed yield, compared with
the conventional soil tillage system.

Other authors have confirmed this beneficial result of no-
tillage, linked to RI, on the seed yield of the common bean
(Giambalvo et al. 2012; Ruisi et al. 2012). These benefits go
far beyond the agronomic part since it has also been reported
that the association of the no-tillage system and RI promotes
economic profitability and environmental benefits in the com-
mon bean cultivation system (Derpsch et al. 2010; Pittelkow
et al. 2015; Soares et al., 2016). However, the effects of soil
management, especially of no-tillage, on BNF vary depending
on the time of implantation of the system and the
edaphoclimatic conditions, which can present contradictory
results for the seed yield of legumes (Torabian et al., 2019).
It is worth mentioning that the benefits of the no-tillage system
are particularly directed to regions with a tropical and temper-
ate climate, as they help to maintain soil moisture, and conse-
quently, favor BNF (Mulas et al., 2015).

Fig. 5 Effects of Rhizobium inoculation compared to control treatment
(RI vs CK, a), mineral-N fertilization compared to control treatment (NF
vs CK, b), andRhizobium inoculation compared tomineral-N fertilization
(RI vs NF, c) on common bean seed yield. The green dots depict the
observations of the sampled studies and the values in parentheses
represent the sample size.
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3.3.2 Physical-chemical attributes of the soil

Overall, seed yield was lower for the RI treatment in most
physicochemical attributes categorized in the present study
(Figure 7). The lowest absolute values for seed yield under
RI, compared to NF, were observed when using soil with clay
content <60% (7.77%, although not significant), base satura-
tion ≤ 50% (24 .64%), organic matter content ≤ 25 g dm-3

(18.66%), pH ≤ 5 and ≥ 7 (14.09% and 13.42%, respectively),
and P availability ≤ 15 mg dm-3 (12.16%). Although the cat-
egories mentioned above did not show positive effects in gen-
eral, we found that the RI performed better in soil with clay
content ≥ 60%, base saturation ≥ 70%, soil pH between 5 and
7, and P availability > 15mg dm-3. This was an indication of a
better performance of Rhizobium, attenuating the negative ef-
fect on seed yield, compared with NF.

In particular, an organic matter content of between 25 and
50 g dm-3 was the only factor categorized among the physi-
cochemical attributes of the soil, which had a positive effect of
RI on seed yield (2.48%), in comparison with that of NF. The
positive effects of soil organic matter are well documented in
the literature, which shows an increase in survival and the
number of rhizobia in the soil, depending on the soil organic
matter content, with an impact on both early nodulation and

fixation efficiency of N2 (Gopalakrishnan et al. 2015;
Mohammadi et al. 2012). Adequate organic matter in the soil
plays an important role in improving the physical, chemical,
and biological properties of the soil and, consequently, im-
proving or maintaining the sustainability of cultivation sys-
tems (Fageria 2012; Mikha and Rice 2004; Nyawade et al.
2019; Maitra et al. 2020), which is consistent with the positive
results previously found for the no-tillage system. That is,
these factors together have great potential to maximize BNF
and reduce the use of chemical N fertilizers.

Many factors are related to the success of BNF in common
beans through RI, mainly the type of regional climate where
the common bean is cultivated. These factors are decisive for
the reduction of BNF limitations, concomitantly improving
the production of common beans (Al-Falih 2002). In addition
to the environmental factors reported throughout this work,
we highlight the typical characteristics of the soil, such as clay
content, base saturation, soil pH, and P availability, which
interfere with the symbiotic efficiency of Rhizobium, which
is consistent with our meta-analysis (Adhikari et al. 2012;
Argaw, 2016; Bambara and Ndakidemi 2010; Ju et al. 2019;
Rego et al. 2015). Thus, our results corroborate previous ev-
idence and indicate an ideal range of physicochemical attri-
butes of the soil, which can be of great benefit to farmers who

Fig. 6 Effects of Rhizobium
inoculation compared with
mineral-N fertilization (RI vs NF)
on common bean seed yield as a
function of growing season (a),
climate (b), soil type (c), and soil
management (d). The error bar
represents the bootstrap
confidence interval of 95% of the
response rate. The green dots
depict the observations of the
sampled studies and the values in
parentheses represent the sample
size. The categories and their
respective classes are described in
Table 1.
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grow common beans using only RI under these specific soil
conditions (Koskey et al. 2017; Makoi et al. 2013; Oliveira
et al., 2017).

3.3.3 Characteristics of inoculation, phosphate fertilization,
and nitrogen fertilization

The inoculant dose of 10 g kg-1 of seed negatively impacted
the seed yield to a lesser degree (-4.06%) than that with the
dose <10 or equal to 100 g kg-1 of seed, with the respective
values of -21.69% and -12.20%, compared with that with NF
(Figure 8a). The amount above a strain in the inoculant com-
position and the isolated type strain used in the inoculant fur-
ther decreases seed yield to a greater degree compared with
that with NF, with reductions of 14.56% and 13.36%, respec-
tively. When using a type of strain in the composition of the
inoculant and strains of the commercial type, the reduction in
the seed yield was mitigated in comparison with that under
NF, with reductions of 5.62% and 9.71%, respectively
(Figure 8b and c).

It is important to mention the possible limitations of these
results for the characteristics of the inoculant, as some studies

have reported inaccurate classification of the inoculant used,
such as not providing the concentration of viable cells, which
should supply at least 1.2 million cells per seed, according to
technical recommendations for common beans. In addition,
inoculants must contain more efficient and competitive strains
of Rhizobium (Hungria et al., 2003; Hungria et al., 2013) and,
not necessarily under all conditions, commercial strains are
more efficient than isolated strains, or that there is a formula-
tion of the inoculant considered excellent for inoculating com-
mon beans. Thus, our results provide an overview of
Rhizobium inoculation and should be carefully observed in
this regard.

Inoculants based on the specificities of the region, taking
advantage of adapted (commercial) strains as references and
prioritizing the composition of the inoculant with only one
strain, as this was the result that reduced seed yield to a lesser
degree than that when more than one strain was used in the
inoculant composition. According to Hassan et al. (2004), a
mixture of strains will not always present results as successful
as those of a single strain, suggesting that this mixture may
cause an antagonistic effect, due to the production of bacte-
riocins, proteins, or protein complexes, with directed

Fig. 7 Effects of Rhizobium inoculation compared with mineral-N
fertilization (RI vs NF) on common bean seed yield as a function of
clay content (a), base saturation (BS) (b), organic matter (OM) content
(c), hydrogen potential (d), and availability of P in the soil (e). The error

bar represents the bootstrap confidence interval of 95% of the response
rate. The green dots depict the observations of the sampled studies and the
values in parentheses represent the sample size. The categories and their
respective classes are described in Table 1.
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bactericidal activity (González et al. 2008; Hafeez et al. 2005).
Thus, the results of the present study can serve as a basis for
using local applications that aim to increase the efficiency of
inoculation with rhizobia, developing an inoculant formula-
tion suitable for local conditions, the so-called tailor-made
inoculant (Mendoza-Suárez et al. 2020).

There was a lower seed yield, compared with that with NF,
when RI was performed with rates of P fertilization ≥ 100 kg
P2O5 ha

-1 (16.90%) (Figure 8d). The negative results in seed
yield promoted by RI were attenuated, especially at P rates
between 60 and 90 kg P2O5 ha

-1 (3.52). Deficiency and excess
of P can reduce BNF by legumes (Demeterio et al. 1972;
Schulze et al. 2006). Excessive P rates can induce zinc-
deficient plants that nodulate less and are less productive
(Demeterio et al. 1972). The effects of the combination of
RI and P fertilization have previously been reported by other
authors, demonstrating a potential effect on the seed yield of
the common bean, as compared with that with NF (Kouki
et al. 2016; Samago et al. 2018). Thus, an alternative that
has been widely debated regarding P fertilization is to maxi-
mize the efficiency of P usage to benefit the symbiotic inter-
actions in the plant's rhizosphere and consequently obtain a

high crop yield, which can potentiate reductions in NF use
(Bindraban et al. 2020).

For the categorization of NF rates, RI promoted a lower
seed yield compared with that with NF (Figure 8e). The
greatest reduction observed for RI regarding seed yield was
obtained in comparison with that for the rates between 80 and
100 kg N ha-1 (26.90%). The effects on seed yield were atten-
uated when comparing RI with rates of NF ≤ 40 and between
40 and 60 kg N ha-1, with reductions of 15.63% and 12.36%,
respectively.We highlight the result obtained for RI compared
with that with NF ≥ 120 kg N ha-1, which resulted in the
smallest reduction in seed yield (1.45%), which we consider
a weak reduction to the point of not economically affecting the
common bean seed yield. This was probably due to the neg-
ative effect of excessive N rates on common bean yield.
According to Soratto et al. (2013), the demand for N by com-
mon beans ranges from 80 to 140 kg ha-1. Mainly in the
vegetative stages, excess of N may excessively increase leaf
area, which may result in self-shading, consequently decreas-
ing the photosynthetic efficiency and transpiration of common
bean plants, and consequently reducing their seed yield
(Soratto et al. 2014; Maia et al. 2017; Nasar et al. 2021).

Fig. 8 Effects of Rhizobium inoculation compared with mineral-N
fertilization (RI vs NF) on common bean seed yield as a function of
doses of Rhizobium inoculant (RI) (a), the number of strains (b), strain
type (c), P fertilization (d), and N fertilization (e). The error bar represents

the bootstrap confidence interval of 95% of the response rate. The green
dots depict the observations of the sampled studies and the values in
parentheses represent the sample size. The categories and their
respective classes are described in Table 1.
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Araujo et al. (2020) reinforce this discussion from an envi-
ronmental point of view, stating that the environmental energy
demand for the manufacture of an inoculant unit (defined as
the inoculant needed for 1 ha), is less than 1% of that corre-
sponding to the production of mineral-N fertilizer; that is,
agricultural practices with RI constitute a more economical
and sustainable environmental process than that for NF
(Argaw and Muleta, 2018). However, our study revealed that,
despite RI increasing the common bean seed yield, it does not
have technical efficiency comparable to adequate rates of NF
(Figures 5 and 8e).

The agronomic practices of mineral fertilization, regardless
of P or N, should be further investigated considering the gen-
eral economic aspects of the cultivation of common beans, as
well as the cost/benefit ratio, variations in the cost of chemical
fertilizers in countries that import a major part of these, mainly
nitrogenous ones, and environmental costs affected by the
adoption of NF (Hungria et al., 2013; Soares et al., 2016;
Steiner et al., 2019). Added to this is the technological level
at which the common bean producer is inserted because de-
pending on the financial resources to which it has access, N
inputs can become much more expensive than microbial in-
oculants (Hungria et al., 2013; Thilakarathna et al. 2019).
Previous research adds to this discussion, stating that rhizobial
inoculation will not always present higher yields; however,
the technique contributes to reducing the rate of application
of mineral N as well as that of economic and, consequently,
environmental costs (Oliveira et al., 2017; Sousa et al., 2020).
Overall, it can provide a better cost/benefit ratio than that of
NF.

3.4 Recommendations for future research

In general, the results obtained in the present meta-analysis
indicate the need for more experimental data, with a greater
diversification of categorical factors, especially regarding the
evaluated genus of N2-fixing bacteria (Rhizobium). We high-
light the few studies that tried to investigate the efficiency of
Rhizobium strains/species on common bean seed yield, com-
pared with NF. Thus, it is necessary to categorize the effects
based on the different species of rhizobia that nodulate com-
mon beans, such asR. leguminosarum bv. phaseoli, R. tropici,
R. etli, R. gallicum, and R. giardinii. It is also important to
focus on other forms of inoculation, in addition to those done
exclusively on the seed, such as inoculation in the furrow,
topdressing application of inoculation, and co-inoculation. In
future studies, these factors must be considered to produce
more robust analyses, which will allow a more in-depth as-
sessment of the real effect of RI on common beans.

Furthermore, it is still unclear for the common bean crop
whether NF can be replaced entirely by RI, as there are still
many dependencies on abiotic factors to achieve success with
this inoculation technique, in addition to intrinsic factors of

the genotype of common beans and the strains used in the
inoculant. Therefore, we recommend that in future studies
whose objective is to help producers to reduce N inputs, they
should seek to relate rhizobial inoculations with rates of below
60 kg ha-1 of mineral N, as well as to associate the effects of RI
with P fertilization. It is also important to consider all the
categorized factors assessed in this meta-analysis and the local
conditions in which common bean cultivation is being carried
out.

It is important to highlight that most of the studies were
conducted in tropical conditions, as in Brazil. Thus, the geo-
graphic variations of the globe, particularly in each location
where the studies were conducted, must be taken into account
in the present meta-analysis, as these may have contributed to
any bias in the data analysis.

4 Conclusion

By studying the efficiency of inoculation with Rhizobium in
the common beans it was possible to reveal that it consistently
increases nodulation of plants, yield components, and seed
yield. However, compared with mineral-N fertilization, the
rhizobial inoculation does not have the same efficiency in
increasing the number of pods per plant and seed yield of
common beans, with the differences in seed yield varying in
accordance with certain conditions (categories). All the factors
studied in the present meta-analysis influenced the response of
common bean seed yield as a function of inoculation with
Rhizobium. Compared with NF, rhizobial inoculation was
more effective in increasing seed yield when common beans
were cultivated in the dry season, under a no-tillage system,
and in soils with high organic matter content. This conclusion
is one of the main contributions of our analysis, given the
discrepancies about this process in the literature. In addition,
a reduction of NF can be encouraged by more intense use of
inoculation with Rhizobium (>10 g of rhizobial inoculum per
kg of seeds), especially for the following soil characteristics:
soils with a clay texture; eutrophics (base saturation > 50%);
that are neutral to slightly acidic; and with adequate P
availability.
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