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Abstract

Cover crops can provide a wide range of ecosystem services including soil water conservation, improved soil nutrient supply and
retention, and enhanced crop yields. However, achieving these services in dryland cropping systems can be highly challenging,
and cover crops may carry a greater risk of causing ecosystem disservices. Assessment of the balance of ecosystem services vs
disservices is critical for understanding the potential role of cover crops within dryland cropping systems. The objective of this
meta-analysis was to assess the effects of cover cropping in drylands on soil water and soil mineral nitrogen content at sowing of
subsequent cash crops and their yields compared to control fallows. A total of 38 articles were examined, for a total of 1006 cash
crop yield, 539 soil water, and 516 soil mineral nitrogen independent studies, spanning the period 1994-2021. On average, cover
cropping reduced cash crop yield by 7%, soil water content by 18%, and soil mineral nitrogen by 25%, with significant variation
across climates, soil types, and crop management conditions. Subsequent cash crop yields changed by +15, +4, —12, and —11%
following cover crops in tropical, continental, dry, and temperate dryland climates, respectively. The most significant yield
benefits were proportionate to soil water content and soil mineral nitrogen at the time of cash crop sowing. This is the first meta-
analysis to demonstrate that minimum annual precipitation of ~700 mm represents a “break-even” point to realize significant cash
crop yield benefits of cover cropping compared to control fallows in dryland environments. The successful incorporation of cover
crops into dryland cropping systems requires careful planning based on context-specific biophysical conditions to minimize
trade-offs between ecosystem services and disservices.
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1 Introduction

Dryland regions are characterized by climatic water scarcity
and an aridity index of < 0.65 (Mortimore 2009; He et al.
2016; Pravalie 2016). Annual precipitation in dryland regions
is often unpredictable and accounts for 20-35% of potential
evapotranspiration (Stewart and Liang 2015). With increasing
water deficit and climate variability, these “water-limited” re-
gions require efficient capture and use of the most limiting
resource—water—to maximize their productivity and sustain-
ability. Fallowing—the practice in which a field is left out of
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production for some part of or the entire growing season—is
commonly adopted in water-limited environments. The pur-
poses of fallowing are to maximize soil water storage and
mineral nitrogen (N) for subsequent cash crops (Flower
et al. 2012; Aiken et al. 2013; Reese et al. 2014a), break crop
disease cycles (Fletcher et al. 2016; Robertson et al. 2018),
and minimize risk of crop failure and stabilize yields (Nawaz
and Farooq 2016; Pinto et al. 2017; Ghimire et al. 2018).
Dryland cropping systems found in sub-tropical Australia
and North America include a long fallow (14—16 months)
followed by a summer cash crop, or a short fallow (6-—8
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months) followed by a winter cash crop (Bell et al. 2006;
Ghimire et al. 2018). However, fallowing is relatively ineffi-
cient in conserving soil water (i.e., < 30% of rainfall is used by
crops) and soil mineral N. Fallowing also poses increased
risks to the environment from erosion and potential leaching
(Tonitto et al. 2006; Nielsen et al. 2017). Fallow efficiency
(the proportion of fallow precipitation that is stored as plant-
available water) and precipitation storage efficiency (fraction
of precipitation that is stored in the soil) are often 25-35% in
conventional fallows (Aiken et al. 2013; Erbacher et al. 2019).
Moreover, fallowing is associated with decreased soil organic
matter and nutrients (Blanco-Canqui et al. 2013; Duval et al.
2016), increased soil erosion, weed pressure, herbicide use,
and soil water loss (Schillinger et al. 2010; Lyon et al. 2007,
Waunsch et al. 2017; Daryanto et al. 2018; Martin et al. 2018),
and decreased system water use efficiency (Deng et al. 2020).

One approach used to minimize the adverse effects of
fallowing is to intensify the crop sequence by replacing a
“portion” of the fallow period with non-cash crops, i.e., with
cover crops (Fig. 1). Cover crops are increasingly considered
as a critical component of the ecological intensification of
cropping systems (Bommarco et al. 2013; Kleijn et al.

2019). Cover cropping has been an integral part of dryland
crop rotations in many regions of the world for many decades,
providing a range of ecosystem services such as water conser-
vation (Lyon et al. 2007; Wunsch et al. 2017; Daryanto et al.
2018), N supply and retention (White et al. 2017; Wunsch
et al. 2017), weed suppression (Schipanski et al. 2014;
Ghimire et al. 2018), soil nematode break (Claudius-Cole
et al. 2014; Jaffuel et al. 2017), and mitigation of nitrate
leaching (Kaspar et al. 2012; Couédel et al. 2018). In the long
term, cover crops can increase soil organic carbon (SOC) and
N (Bommarco et al. 2013; Poeplau and Don 2015; Cates et al.
2019) and decrease net N,O and CO, emissions, thus provid-
ing climate change mitigation services (Kaye and Quemada
2017; Abdalla et al. 2019). More recently, the “Soil Carbon 4
per mille initiative (https://www.4p1000.org/)” has posited
that cover cropping can improve SOC stocks and potentially
contribute to climate stability and food security (Minasny
et al. 2017). However, cover crops can also potentially intro-
duce ecosystems disservices (i.e., derived negative effects),
such as depletion of soil water and nutrients available for
subsequent cash crops, reduction in cash crop yield, and in-
creased management cost (Finney et al. 2017). Therefore, the
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Fig. 1 Conceptual comparison of (a) a typical cash crop-fallow rotation,
(b) a cover crop replacing a portion of the fallow periods within a typical
annual rotation. The y ~ x graphs show the potential soil water and N
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introduction of cover crops to replace or reduce a portion of
fallow periods requires management to mitigate these poten-
tial disservices in water-limited environments. This is because
crop production in such regions is opportunistic, and the risks
and economics associated with expected precipitation and soil
water storage dictate cropping decisions.

Although many studies have documented various ecosys-
tem service benefits from cover crops, there are many discrep-
ancies and inconsistent results across different dryland areas
due to the wide climate variability and fragility of these sys-
tems. The literature on the effect of dryland cover crops on
subsequent cash crop yields generally lacks consensus.
Results have ranged from negative, neutral, and positive ef-
fects on subsequent cash crops across various climates and
crop management conditions. For example, while cover crops
led to a 13% increase in wheat yield in a semi-arid continental
climate in China (Zhang et al. 2016), a 31% yield reduction
was observed in a dry climate in the USA (Aiken et al. 2013).
Furthermore, while cover cropping can deliver a wide range of
ecosystem services, it can also generate disservices. The po-
tential trade-offs between cover crop-derived ecosystem ser-
vices and disservices have not been thoroughly examined in
dryland cropping systems. Complexity in seasonal and inter-
annual variability in precipitation, residue decomposition, soil
biophysical properties, and interactions with crop manage-
ment histories makes it challenging to predict dryland crop
yield responses to cover cropping. There remain fundamental
knowledge gaps in terms of how cover crop species selection,
timing and method of cover crop sowing and termination, and
fertilization and tillage practices interact in a water-limited
environment to affect soil water and N conservation and cash
crop productivity. Narrowing these knowledge gaps is critical
for understanding the sustainability of cover cropping in dry-
lands agroecosystems in the context of ecological
intensification.

Many studies have reported the use of fallow replacement
cover crops across a range of environments. There are several
attempts to unravel the complexities and inconsistent results
from utilizing cover crops in dryland cropping systems. As a
quantitative approach, meta-analysis has been used to investi-
gate patterns in cropping system performance (Philibert et al.
2012; Krupnik et al. 2019). Other meta-analyses have reported
on the relationship of cover cropping with subsequent cash
crop yields (Marcillo and Miguez 2017; Toler et al. 2019),
weed suppression (Toler et al. 2019), soil water and N dynam-
ics (Tonitto et al. 2006; Thapa et al. 2018), and greenhouse gas
emissions (Abdalla et al. 2019). However, these meta-
analyses were typically limited to specific climatic conditions
or cash crop types. For example, a previous meta-analysis
focused on maize yield responses to cover cropping in the
US and Canada which found neutral to positive effects
(Marcillo and Miguez 2017). More recently, a global meta-
analysis focused on cotton yield implications revealed that

cover crops increased cottonseed and lint yields by 6% and
5%, respectively, and that such effects were more profound
with legume cover crops (Toler et al. 2019). In a global quan-
titative synthesis of ecosystem services from cover crops,
Daryanto et al. (2018) showed cover crops can provide certain
ecosystem services but potential disservices are also possible.
This necessitates further synthesis to determine the major
drivers of these ecosystem services and disservices associated
with cover crop adoption, particularly in water-limited envi-
ronments. Specifically, to our knowledge, no such meta-
analysis has assessed the legacy effects of cover crops on soil
water and nitrogen and subsequent cash crop yields within
water-limited dryland cropping systems, where the constraints
of rainfall are likely to create a different trade-off and value
proposition than where previous analyses have focussed. The
absence of such assessment risks over-generalizing the poten-
tial benefits of cover crops.

The objectives of this meta-analysis were to: (i) quantify
the effects of cover crops in dryland environments on soil
water content and soil mineral N at cash crop sowing and their
legacy effect on subsequent cash crop yields; (ii) determine
the impacts of environmental conditions and crop manage-
ment practices on cash crop response to cover cropping in
drylands; and (iii) examine the relationship between cash crop
response to cover cropping and soil water content and soil
mineral N at cash crop sowing in drylands.

2 Materials and methods
2.1 Literature search, selection, and data extraction

From 2 February 2020 to 8 February 2021, a two-tiered liter-
ature search for relevant peer-reviewed publications in the
Institute for Scientific Information (ISI) Web of Science,
SCOPUS, and Google Scholar databases was conducted.
Using the search terms (TS): TS= (Cover crop* AND Soil
water* OR soil moisture* OR nitrogen* OR yield AND
rainfed* OR dryland); or TS= (green manure* AND Soil wa-
ter* OR soil moisture* OR nitrogen* OR yield AND rainfed*
OR dryland); or TS= (catch crop* AND Soil water* OR soil
moisture* OR nitrogen* OR yield AND rainfed* OR dry-
land), a total of 7329 unique publications were retrieved.
This was further screened in the second tier based on the
defined search criteria and produced 428 articles: SCOPUS
(96), Web of Science (185), and Google Scholar (147). In
addition, we identified 12 records from conference proceed-
ings that were not identified through the search tools. These
records were screened and included in the meta-analysis based
on the following criteria: (i) the study was conducted under
field conditions; (ii) the study reported a comparison between
a control fallow treatment and a similarly managed cover crop
treatment differing only in fallow-cover crop management;
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(iii) the cover crop species or functional type/family was iden-
tified; (iv) subsequent cash crop yield data or soil water and
mineral N for treatments under cover crop and fallow were
reported; (v) the study specified the number of replications
and defined experimental design; (vi) the sampling depth of
soil water content and soil mineral N was specified; and (vii)
information on measures of variability (e.g., standard error,
variance) was provided to allow estimation of the variance
of mean values for cash crop yield, soil water content, and
soil mineral N. Based on these inclusion criteria, 38 articles
published from 1994 to 2021 from nine countries
(Supplementary Table S1) were selected. Intercropping or
interseeding cover cropping (when cover crops are grown si-
multaneously with cash crops) was excluded because the fo-
cus was on the impact of replacing a portion of the fallow
period with cover crops.

A total of 1203 studies (data points comparison between a
control fallow and a cover crop treatment) were extracted from
the 38 articles, of which 57% were from the USA (688), 14%
were from Australia (169), 14% were from Canada (162), 7%
were from China (80), 6% were from France (67), 1% from
Thailand (12), 1% were from Ghana (15), and <1% were from
Spain (6) and Iran (4) (Supplementary Table S2). This process
is presented in Supplementary Figure S1 and is based on the
updated PRISMA flowchart described in Page et al. (2021).
Experimental factors such as cash crop type, tillage, and treat-
ment combinations from different years within an article were
examined as independent studies. The choice of soil water
content (mm), soil mineral nitrogen (kg N ha "), and cash crop
yield (t ha ") as the response variables was because the legacy
effects of cover cropping are primarily manifested in their
effects through soil water content and soil mineral N and their
carry-over effect on subsequent cash crop yield. Data were
extracted from plots and figures using Web Plot Digitizer
v4.4 (https://automeris.io/WebPlotDigitizer/) (Rohatgi 2020)
and from tables using Tabula vI.2.1 (https://tabula.
technology/) (Aristaran et al. 2018).

We assessed the moderating effects of several environ-
mental and crop management factors on the effects of cov-
er cropping on the three response variables. Moderators
were chosen based on their prevalence in the study
datasets and their relevance to cover crop management in
the context of soil mineral N, soil water content, and cash
crop yield. For each study, we extracted the coordinates
where the research was conducted and recorded the
Koppen climate classification (Kottek et al. 2006) using
the Google Earth Pro World Map of the Képpen-Geiger
climate classification. Climates were grouped into tropical
(Class A), dry/arid/semi-arid (Group B), temperate (Group
C), and continental (Group D) climates. Only the first
Koppen-Geiger classification was used because some
levels had too few observations for valid comparisons
when including secondary classification.
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We categorized annual water input (precipitation + supple-
mented irrigation) for each study into five groups: < 300 mm,
300-500 mm, 500-700 mm, 700-900 mm, and > 900 mm,
respectively. Soil order was presented as World Reference
Base (WRB) for Soil Resources (WRB-IUSS 2014). When
soil type was given in the USDA scheme (Soil Survey Staff
2014), they were harmonized using WRB classification. Soils
in the Australian Soil Classification system II were harmo-
nized to the WRB scheme based on Hughes et al. (2018).

Tillage practices were categorized into no-till, reduced-till,
and conventional tillage. The binary variables of cover crop
fertilization (fertilized vs unfertilized), cropping system (or-
ganic vs conventional), production system (rainfed vs supple-
mented with irrigation) were also used as moderating vari-
ables. Irrigated production was included to allow for compar-
ison between fully rainfed vs supplementary irrigated systems.
We also examined how cover crop type and management
modified the effects of cover cropping on the response vari-
ables. Within this, cover crops were categorized based on their
functional type (Asteraceae vs Poaceae vs Fabaceae vs
Brassicaceae vs Mixtures), cover crop termination time
(Early termination [< 60 days] vs mid-termination [60-90
days] vs late termination [> 90 days]), and termination meth-
od (chemical vs mechanical vs integrated vs frost); where
“chemical” refers to termination by herbicide application;
“mechanical” includes any studies for which cover crops were
green manured or “disked-in” without herbicide; “integrated”
comprised termination by herbicide followed by mechanical
incorporation; and “frost” was based on studies in which the
cover crop was allowed to grow until termination by a killing
frost Liebig et al. (2015). The fate of the cover crop residue
post-termination (mulched vs rolled vs incorporated vs burnt)
was also used as a moderator. To elucidate the effect of cover
crop biomass production, cover crop above-ground biomass at
termination was grouped into < 1, 1-2, 2-3, 3-4, 4-5, 5-6,
6-7, and > 7 t ha'. Comparison between cover crop compo-
sition (monoculture vs mixture) was also made. In addition, to
evaluate whether there were any N fertilizer replacement bene-
fits of cover cropping, the quantity of N fertilizer applied to each
cash crop following a cover crop was categorized into ranges of
0-50, 50-100, 100-150, 150200, and > 200 kg N ha™'
(Table 1). The definition and units of these major moderator
subgroups can be found in Table 1.

2.2 Response ratio and moderator variables

We used the methodology recommended by Krupnik et al.
(2019) to estimate the size of the effect (£S) of cover crops
on each of the response variable; soil water content, soil min-
eral N, and subsequent cash crop yield, where the response
ratio of means (RR) was calculated as the natural logarithm
[/n (R)] of the ratio of cover crop to fallow control:
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Table 1 Description of moderator variables included in the meta-
analysis. TOnly the first classification was used because some levels had
too few observations for valid comparisons when including secondary

classification. * Aridity index (Al) was defined as the ratio of rainfall to
potential evapotranspiration. CC cover crop.

Moderators Definition Categories
Climate typeJr The climate of the experimental site is classified by Koppen (1) Tropical (A), (ii) dry/arid/semi-arid (B), (iii) temperate (C),
Classification (Arnfield 2017). and (iv) continental (D)
Mean annual Mean annual rainfall of the experimental site:year (i) < 300, (ii) 300-500, (iii) 500-700, (iv) 700-900, and
rainfall (mm) (v) >900
Aridity”® Dryland grouped into semi-arid and subhumid based on UNCCD (i) Semi-arid (AL 0.20-0.50) and (ii) sub-humid (AI:
classification (Saftriel 2005) 0.50-0.65)
Soil type Classification of the soil of the experimental site in WRB Soil (1) Vertisols, (ii) Regosols, (iii) Luvisols, (iv) Cambisols
Taxonomy equivalents to order level. (v) Gleysols, (vi) Chernozems, and (vii) Phacozems
Tillage type Tillage practice applied within any phase of the rotation (1) No-till, (ii) reduced, and (iii) conventional
CC functional ~ Cover crop plant family with distinguished functional traits (i) Asteraceae, (ii) Poaceae, (iii) Brassicaceae
type (iv) Fabaceae, and (v) mixtures
CC termination Method of cover crop termination (1) Mechanical, (i) chemical, (iii) integrated, and (iv) frost
method
CC termination The CC growth durations (1) Early (<60 days), (ii) medium (60-90 days), and (iii) late
time (> 90 days)

CC residue fate

Irrigation status

The fate of CC residues post-termination

Fertilization

N fertilizer rate
cash crop

Crop production systems, i.e., whether the cover crop or cash was
grown under fully rainfed or supplementary irrigation
A binary factor indicating whether fertilizer was applied to cover crop (i) Fertilized and (ii) unfertilized

A categorical factor of the rate of N fertilizer applied to subsequent

(1) Incorporated, (ii) mulched, (iii) rolled, and (iv) burnt
(1) rainfed, (i) supplementary irrigation used

(i) 0-50, (ii) 50100, (iii)100-150, (iv) 150-200, and
(v) > 200 kg N ha™’

ES=RR = @ (1)
1n(7m.)

Where: Y. is the mean of the cover crop yield and Y. is
the mean of the fallow control yield. The RR was calculated
using the Escal function in the metafor package (Viechtbauer
2010) in R v4.1.0 (R Core Team 2021) using RStudio vi1.3.959
(R Studio Team 2020). Because the estimate of overall RR
was based on pairwise comparisons between Y. and Y.
within a study, the variability in the depth of soil sampling
for soil water and mineral N determination did not influence
the magnitude of the RR.

Meta-analysis was conducted using a multilevel mixed-
effects model (Philibert et al. 2012) within the metafor pack-
age, considering that actual effects are likely to have varied
across studies. The RR were considered as fixed effects,
whereas study and article (Article:Study) were considered as
nested random effects to account for dependencies between
multiple effects size with common control (¥,..) (Thapa etal.
2018; Hallama et al. 2019). Finally, a cluster-based robust
variance estimation technique (clustering on the study) was
employed using the clubSandwich package to estimate robust
standard errors (SEs) for mean effect sizes (Pustejovsky
2017). The calculated robust SEs were used to estimate the
95% confidence interval (95% CI) for the weighted RR. For

ease of interpretation, the RR values were exponentially back
transformed to mean RR and expressed as the percentage of
change in response with cover cropping:

Change with cover crops (%) = [(e®*~1)] x 100 (2)

The mean effect sizes for each response variable were con-
sidered significantly different from the controls (i.e., fallows)
at P < 0.05 only if the 95% CI did not include zero.

A multiple regression was used to determine the relation-
ship between the categorical moderators and the cover
cropping response ratio. A main effect (the relative contribu-
tion of a given moderator to the overall response ratio) and the
total effect (the total contribution of a given moderator togeth-
er with other moderators) were determine to assess variable of
importance contributing the most to the response ratio based
on Monte Carlo uniform inputs (Saltelli 2002).

2.3 Moderator analysis

Whether the cover cropping effect size varied with different
moderators was assessed to explain between-study variation.
The multilevel rma.mv function from the metafor package
was used to evaluate the moderating effects of each moderator
on the RR. We utilized analysis of variance (ANOVA) to
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provide the overall significance of a given moderator.
Assessment of between-study heterogeneity as the extent to
which true effect sizes vary within a meta-analysis was con-
ducted using Cochran’s Q (Cochran 1954) and the /* statistic
(Higgins et al. 2002). Subgroups within a moderator were
considered significantly different (P < 0.05) if their 95% CI
did not overlap. All figures were produced using the ggplot2
package (Wickham 2016).

2.4 Risks associated with cover cropping

When conducting meta-analyses, inferences are often based
on the mean and 95% Cls; however, inference based on
mean only can sometimes be misleading, particularly if
the probability distribution of the response variable is un-
known (Sileshi et al. 2010). To avoid this, we calculated the
probability of exceedance for a given RR. This provides the
probability distribution of the responses as the cumulative
probabilities of RR exceeding a given value. We generated
the frequency distribution of RRs and then calculated the
cumulative probabilities of RR. Risks (disservices) were
considered as the probability of RR being below 0. In other
words, RR < 0 means there was a negative consequence of
the cover crop relative to control fallow on that response
variable, while RR > 0 indicates cover crop performed bet-
ter than the control fallow.

2.5 Potential publication bias and sensitivity analysis

Publication bias was investigated based on funnel plots
using the funnel function in the metafor package to visu-
alize if significant heterogeneity was present for each re-
sponse variable. Funnel plot asymmetry was tested using
the regtest function from the metafor package. The overall
effect size for biases toward publishing significant positive
or negative results was assessed using histograms of the
individual RR (Mgllerand and Jennions 2001). Finally, the
Jackknife procedure for sensitivity analysis was utilized to
test the robustness of the overall RR to individual variation
in a study (Philibert et al. 2012). Using this stepwise pro-
cedure, one study at a time was systematically excluded
from the dataset, and the overall RR estimates were re-run
to examine how each study contributed to the overall RR.
In addition, whether publication bias could be safely ig-
nored was tested using the fail-safe N approach (type =
“Rosenberg”) as recommended by Rosenberg (2004).
There was large variance and heterogeneity among and
between studies largely due to differences in climate, site type,
and both cover crop and cash crop management practices.
Moderator analysis revealed significant between-study hetero-
geneity for the three response variables. This suggests that the
between-study heterogeneity observed in the datasets was due
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to true variation in the datasets, as indicated by Cochran’s Q
(Obetween) and P (Supplementary Tables S4a—c).

No significant evidence of publication bias was observed.
Regression tests for funnel symmetry revealed no pattern of
bias toward not reporting small or negative effect sizes in the
respective funnel plots (Fig. S3a—c). In addition, the individ-
ual RR was found to be equally distributed between slightly
positive and slightly negative values on the histogram, indi-
cating no significant publication bias (Supplementary figure
S4a—c). Sensitivity analysis also did not show a significant
change in the overall RR due to the omission of any study,
indicating that the estimates from this meta-analysis were
highly robust.

3 Results
3.1 Overview of the dataset

Across the 38 published articles identified that fitted the
search criteria, 1203 independent comparisons were
identified that reported the legacy effects of cover
cropping compared to a fallow control. This included
1006 comparisons of subsequent cash crop yield, 539
comparisons of soil water content, and 516 comparisons
of soil mineral N prior to sowing the cash crop
(Supplementary Table S2). The studies comprised 33
cover crop species of diverse functional types, including
those in Asteraceae, Brassicaceae, Fabaceae, and
Poaceae families (Supplementary Table S3). The fre-
quency of the studies found was highest with Fabaceae
(49%) cover crops and lowest with Asteraceae (< 1%).
Cover crop biomass production ranged from 0.1 to 11 t
ha™' and varied widely between monoculture and mix-
ture cropping patterns. The studies represented different
dryland climate types with mean annual precipitation
ranging from 212 to 1267 mm. Based on the Koppen-
Geiger dryland climate classification, tropical climates
constituted 3% (n = 27), dry/arid/semi-arid climates
45% (n = 450), temperate climates 29% (n =291), and
continental climates 23% (n = 238) of the crop yield
datasets. The studies covered most soil types found in
dryland environments, namely Chernozems (54%),
Vertisols (14%), Regosols (11%), Phaeozems (8%),
Cambisols (5%), Luvisols (4%), and Gleysols (1%).
More than 60% of the studies were conducted under
conservation tillage (no-till and reduced-till) and 38%
under conventional (full inversion) tillage.

3.2 Summary effects of cover cropping

The regression analyses showed lower cash crop yield, soil
water, and mineral N content at cash crop sowing relative to
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Fig. 2 Relative effects of cover cropping compared to fallow controls on
(a) cash crop yield, (b) soil water content and (c) soil mineral N at cash
crop sowing across the range of experimental studies. Fitted equations
y=042+0.81x, R’=0.68, P<0.01 for cash crop yield; y=—12 + 0.89x,

fallow controls, indicating the importance of different moder-
ators in influencing the response ratios (Fig. 2). The overall
mean global change (%) with cover cropping was significant-
ly different (P < 0.05) than zero for the three response vari-
ables. The average effect was a 7% decline in cash crop yield
(P = 0.002) across the 1006 yield datasets (Fig. 3a). Cover
cropping decreased soil water content at cash crop sowing by
an average of 18% (P < 0.0001), whereas soil mineral N was
reduced by 25% (P < 0.0001). Cover crops produced a posi-
tive cash crop yield, soil water, and soil mineral N response by
10%, 34%, and 52% of the time, respectively, as shown where

Soil water content in control fallow (mm)
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Fig. 3 (a) Average change (%) in cash crop yield, soil water content, and
soil mineral N concentration (soil mineral N) at cash crop sowing induced
by cover cropping across all studies included in the meta-analysis; error
bars show 95% confidence intervals. P < 0.05 indicates that the mean
change (%) with cover cropping was significantly different from zero.
(b) Probability of exceedance (risk/disservice) of a given response ratio in

200 500 0 100 200 300
Soil mineral N in control fallow (kg N ha™")
P <0.01, R? = 0.86 for soil water content; and y = 20 + 0.54x, R* = 0.36,
P < 0.01 for soil mineral N. The dashed lines (- -) show the 1:1
relationship where variable values would be equal for the cover crop
and fallow control; the solid lines (—) show the linear regression fits.

the probability of effect size exceeds 0 (as an indicator of
risk/disservices associated with a cover crop for control fallow
replacement) (Fig. 3b).

3.3 Moderator effects on responses to cover crop
implementation

3.3.1 Climate and soil type

Several environmental moderators (climate and soil type)
were found to have an association with the size of the cover

Probability of exceedance
(b)

104 ——===~=—e == .
0.91 S
0.8
Cash crop yield '\
0.7 "
0.6 Soil mineral N :‘\,
0.5
0.4 1
0.3
0.2
0.14 HA\S

0.01

40 -30 -20 -10 00 10 20 30
log(Response Ratio)
soil mineral N and soil water content at cash crop sowing and cash crop
yield; a response ratio over 0 indicates greater soil mineral N, soil water
content, or cash crop yield after cover cropping, while a ratio below 0
indicates lower soil mineral N, soil water content, or cash crop yield after
cover cropping in comparison to bare fallow.
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Fig. 4 Forest plot of the change
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cropping effect on the three response variables (Tables S4a—c).
The mean change (%) in cash crop yield with cover cropping
varied significantly between dryland climate types. Larger
positive effects were reported in tropical (+14.5%; P <
0.0001) followed by continental (+4.4%; P = 0.0104) cli-
mates, and negative effects in dry (—11.1%; P <0.0001) and
temperate climates (—12.4%; P = 0.0183) (Fig. 4). The
greatest reduction in soil mineral N at cash crop sowing
was in temperate climates (—41.4%; P < 0.0001) and lowest
in dry climates (—10.7%; P < 0.0001). The greatest reduc-
tion in soil water content at cash crop sowing was in conti-
nental (—18.6%; P < 0.0001) and least in temperate climates
(—8.8%; P = 0.0309). Significant decreases in soil water
content (—43%) and soil mineral N (—25%) at cash crop
sowing were observed in Vertisols (Fig. 5). Cash crop yield
showed a significant difference across all soil types except
Phaeozems (P = 0.3060) and Regosols (P = 0.2770). There
was an 8.1% increase in cash crop yield on Gleysols (P =
0.0347) and a 30% decrease on Vertisols (P < 0.0001).
However, the response on Vertisols changed from negative
to positive depending on whether the studies were from
temperate vs dry climates (Fig. 6).

Mean annual rainfall (mm) received in an Article:Study
[site.year] significantly influenced the magnitude of cover
cropping effect sizes on the three response variables. In

INRAZ
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Change with cover crops (%)

studies with low mean annual rainfall (< 300 mm), cover
cropping led to significant reductions in soil water content,
soil mineral N, and cash crop yield (-24%, —48%, and
—29%, respectively). The benefit of cover cropping on subse-
quent cash crop yield increased along a rainfall gradient
(Fig. 7). Where annual precipitation exceeded 700 mm, neu-
tral cash crop yield response to cover cropping was observed
(95% CI: —1 t0 22.7%). In higher rainfall regimes (> 900 mm),
cover cropping increased cash crop yield by 14.5% (P
< 0.001). Linear regression of the annual rainfall regime and
cover cropping response showed a break-even point of
693 mm of annual precipitation (95% CI = 536-838 mm)
where cover cropping RR was significantly higher than the
control fallow (Fig. 8). The main effect variables that contrib-
uted most to the response ratio were cash crop type (0.27),
rainfall regime (0.11), and climate type (0.10). Cash crop type
interactions with other moderator variables led to significantly
higher total effects (P = 0.001, total effect = 0.30), followed by
climate by other moderator interactions (P = 0.030, total effect
=0.14) (Table 2).

3.3.2 Cover crop management and choice

Cover crop and cash crop management practices including
species selection, termination time, and method and tillage
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had significant moderating effects on cover crop effect sizes
on the three response variables. The magnitude of reduction
on soil mineral N and crop yield associated with legumes
(Fabaceae) and mixture cover crops was lower compared with
non-legume cover crops (Table 3). Non-legume cover crops
reduced soil mineral N at cash crop sowing more, indicating
their potential as catch crops. Grasses (Poaceae) significantly
(P < 0.05) reduced soil water by an average of 25% and soil
mineral N by 58%. Brassicaceae led to a significant decline in
cash crop yields (—26.5%) compared with other functional
types. The change in soil water content, soil mineral N, and
cash crop yield with cover cropping varied significantly with
cover crop biomass production. Cash crop yield was higher
with moderate biomass production (3—5 t ha ') across all cover
crop functional types (Fig. 9). Higher Fabaceae biomass pro-
duction was not associated with changes in cash crop yield and
soil mineral N (Fig. S2a), and soil water content (Fig. S2b)
compared with a control fallow. An inconsistent trend was
observed with Poaceae cover crops. Generally, the frequency

Change with cover crops (%)

of negative yield outcomes increased with higher biomass in
Poaceae and Brassicaceae cover crops while this effect was
smaller in legume cover crops. Reductions in cash crop yields
with cover cropping were pronounced when the cover crop was
terminated early or late in the season (Fig. 10a). Mid-
termination did not differ significantly from zero (P = 0.465),
indicating no yield penalty on average. A similar trend was
observed with soil mineral N at cash crop sowing. Early termi-
nation cover crops reduced soil water less than later termina-
tion, with soil water reduced by 24% when they were terminat-
ed after 120 days (P = 0.006). All termination methods except
the integrated method led to significant yield declines and sig-
nificant reductions in soil water content after cover crops com-
pared to control fallow (Table 3).

Fertilization of cover crops reduced cash crop yield by
4.4%, compared to a reduction of 9% for unfertilized cover
crops. Although cash crop yield did not differ significantly
from zero (P = 0.127; n = 372), it did increase by 3% under
conventional tillage. Under conservation tillage (reduced and

INRAD 4 springe
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no-till), cash crop yield and soil mineral N both declined with
cover cropping in the range of —10 to —27% and —20 to —43%,
respectively (Table 4). The fate of cover crop residue post-
termination also influenced cover crop effects on the three

Table 2 Effects summary of the multiple linear regression of different
moderators of the cover cropping effects of subsequent cash crop yield,
soil water, and mineral N content at cash crop sowing. ME main effect
(the average relative contribution of each moderator on the response). TE
total effects (the relative contribution of the moderator both alone and in

Change with cover crops (%)

response variables. Burning residues resulted in a 43% and
30% decrease in soil mineral N and cash crop yield, respec-
tively (Fig. 10b). Rolled and incorporated residues did not
induce a response differing significantly (P > 0.05) from zero

interaction with other moderators). Logworth (defined as —logl0 (P
value) showed the scaled P values where Logworth above 2
corresponds to a P value below 0.01. Where cells are blank, insufficient
data were available. CC cover crop.

Cash crop yield Soil water content at cash crop sowing  Soil mineral N content at cash crop sowing
Source ME TE LogWorth Pvalue ME TE LogWorth P value ME TE LogWorth P value
Climate type 0.10 0.14 1.29 0.031 0.11 0.14 2.0 0.003 0.03 0.05 0.39 0.410
Soil type 0.02 0.05 0.07 0.296 0.07 0.09 239 0.004 0.07 0.09 0.29 0.515
Rainfall regime 0.11 0.05 4.11 <0.0001 0.01 0.02 1.52 0.031 0.03 0.08 0.13 0.749
Cropping pattern 0.02 0.01 0.28 0.289 0.01 0.02 0.03 0.925
Dryland type 0.00 0.02 0.16 0.885
Tillage practice 0.01 0.02 0.75 0.157 0.01 0.02 047 0.338 0.01 0.05 0.01 0.974
N fertilizer rate 0.01 0.04 0.22 0.635 0.10 0.12 241 0.004
Fertilization 0.01 0.02 0.36 0.418 0.08 0.11 20.67 <0.0001 0.14 0.21 1.76 0.017
CC functional type 0.01 0.03 147 0.032 0.01 0.02 1.76 0.018 0.04 0.10 3.95 0.000
CC biomass production 0.02 0.05 0.82 0.118 0.01 0.02 692 <0.0001  0.06 0.12 1.18 0.067
CC termination time 0.01 0.02 0.02 0.920 0.01 0.03 9.88 <0.0001 0.01 0.06 0.56 0.274
CC termination method 0.04 0.08 0.65 0.251 0.13 0.15 8.76 <0.0001 0.07 0.13 1.40 0.039
CC residue fate 0.06 0.10 1.01 0.095 0.01 0.02 0.53 0.292 0.02 0.07 0.04 0914
Cash crop 0.27 030 3.43 0.001
Sampling depth 020 023 19.57 <0.0001 0.11 0.16 1.73 0.019
@ Springer I N RA@
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Fig. 7 Forest plot of the change
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(i.e., neither a yield penalty nor benefit). The depth of soil
sampling for soil mineral N determination also influenced
the magnitude of the cover crop effect size, where deep sam-
pling (>120 cm) aggregated a more positive effect (+5.8%)
compared to 0—60 cm profile sampling (-20%).

3.3.3 Subsequent cash crop management

The type of subsequent cash crops also modified the relative
effects induced by cover cropping. Cash crop yield in-
creased by 20% for barley and 14.5% for rice (P < 0.05),
but decreased by 12% for wheat, 12% for soybean, and 4%
for sunflower. Sorghum and maize yields were not signifi-
cantly different from zero (P > 0.05) (Table 2). Fertilization
of both the cover crop and the cash crop also influenced the
change in cash crop yield with cover cropping. High cash
crop N fertilization (> 150 kg N ha™') resulted in a higher

Change with cover crops (%)

yield increase (3—5%), while low N fertilization after cover
crops (< 100 kg N ha™') led to a reduction in cash crop
yield by 7-11% (Table 4, Table S4a).

4 Discussion

4.1 Environmental drivers of legacy effects of cover
cropping on soil water and cash crop yields

A significant barrier to the adoption of cover cropping in water-
limited environments is the potential reduction of plant-
available water for the subsequent cash crop and the likelihood
of yield penalty. Numerous studies have ascribed reductions in
soil water at subsequent cash crop sowing to water use by cover
crops during their growth, and insufficient soil water
recharge/accumulation post cover crop termination to
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Response Ratio (RR)

Break—evenv= 693.3 mm /
' t
i

500 750 1000

Mean annual precipitation (mm)
Fig. 8 Relationship of the cover cropping response ratio (RR) on cash
crop yield and aggregated mean annual precipitation (mm). The break-
even point shows the mean annual precipitation where RR is at unity
(RR = 1) indicating the mean annual precipitation necessary to make
benefit on the cash crop yield relative to control fallow. The fitted
equation y = 0.642 + 0.00052x, R? = 0.693, P = 0.01 shows the linear
regression fit. Error bars show 95% confidence intervals (95% Cls) of the RR.

compensate for cover crop water use (Aiken et al. 2013;
Nielsen et al. 2016a; Miller et al. 2018). While cover crops
have the potential to reduce water loss by evaporation and
runoff through the provision of groundcover and improve-
ment in soil physicochemical properties, improved efficien-
cies are not always large enough to make up for the

Table 3 Mean change (Apean %) and their 95% confidence intervals
(Apighos» Alowos) in soil water content, soil mineral N, and cash crop yield
induced by cover cropping as moderated by cover crop functional type,
cropping pattern, fertilization, termination method, and sampling depth.

additional water used to grow this biomass. This risk or
potential impact will likely depend on the duration of fal-
low periods within the rotation, cover crop choice, sowing
and termination timing, tillage practice, and the subsequent
cash crop management practices.

Dryland climate type was an important driver of the reduc-
tion in soil water content at cash crop sowing with cover
cropping compared to control fallow and was largest in con-
tinental, moderate in dry, and lowest in temperate climates.
This is likely due to intrinsic differences in seasonal precipi-
tation and temperature patterns as well as location-specific
biophysical characteristics of the climate types. In continental
climates, the reduction in soil water content prior to cash crop
sowing is likely to represent a desirable ecosystem service,
where it allows the opportunity to enhance soil water infiltra-
tion, improve drainage, and reduce excess soil water following
spring rains or thaws, thus allowing earlier planting and im-
proved crop establishment (Kahimba et al. 2008; Blanco-
Canqui et al. 2015; Williams et al. 2016). Results also showed
a significant reduction in soil water content in continental
climates as crop yield increases which suggests the decrease
in soil water content caused by cover crops is beneficial to
cash crops, or alternatively, there are other yield-enhancing
benefits of cover crops that outweigh the reduction in soil
water content. This could likely be due to the precipitation
pattern in continental climates where in-crop rainfall could
compensate for cover crop water use during fallow.
Nonetheless, in temperate and continental climates, cash crop

** denotes significant difference from fallow control at P < 0.01;
* denotes significant difference from fallow control at P < 0.05; n the
number of studies contributing to that effect size. Where cells are blank,
insufficient data were available. CC cover crop.

Soil water content Soil mineral N concentration Cash crop yield
Moderator Category n Amean  Alowos  Ahighos 7 Amean Alowos  Dhnighos 7 Amean Alowos  Ahnighos
CC functional type Asteraceae 6 —24.7 -53.8 226 3 -36.7 =752  61.1
Brassicaceae 14  —10.1 —-18.7 —0.6 78  —36.1 442 =269 91 265 -41.5 7.6
Fabaceae 356 -l6.1 -174 -147 321 -133 -17.6 8.7 641 4.9 -84 -1.3
Mixture 18 204 242 -164 84 —40.1 —45.1 347 182 5.6 -9.1 -2.1
Poaceae 143 -25.1 -31.8 -17.7 30 —58.0 —-664 475 92 -101 -219 3.6
Cover crop fertilization  Fertilized 669 —4.4%* -8.5 -0.2
Unfertilized 267 -9.0%*  —-129 50
Termination method Chemical 230 —11.2** -128 9.7 250 —11.4** -145 8.1
Integrated 20 -12 —6.8 4.8 62 128 —6.4 36
Mechanical 159 —222%% 249 -193 621 —4.8%* -9.0 —04
Frost 53 —19.2%*% 231 -—151
Sampling depth 0-60 cm 123 —20.1*%*% 284 -10.8
60-90 cm 238 —19.3%¢ 235 —149
90-120 cm 135 —384%% —442 32
> 120 cm 20 58 -8.7 209
@ Springer I N RA@
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Fig.9 Forest plot of the relative change (%) in cash crop yield induced by
cover cropping according to the cover crop’s functional type and the level
of biomass production interaction. The number in parentheses represents

yield response following cover crops was variable, with both
yield increases and reductions. In the semi-arid continental
climate of the Loess Plateau, China, for example, summer
cover crops were reported to increase wheat yields by 13%
and WUE by 28%, and also maintained the soil water balance
across the 6 years of study (Zhang et al. 2016). Aiken et al.
(2013), in eight 3-year crop sequences in the semi-arid dry-
lands of the central High Plains, USA, found that replacing the
control fallow period with cover crops reduced wheat yields
by 31%. Maize yield following cover crops was reduced by
10% in the same environment (Nielsen et al. 2016b). In a
tropical climate, where precipitation is largely unimodal, cash
crop yield increased by 15% with cover cropping compared to
control fallows. This is likely because there is a distinct wet
and dry season in this climate type, with the total annual rain-
fall of the studies included in this meta-analysis being over
1000 mm. However, it is important to note that data for tropical
dryland climates accounted for only 3% of the total dataset,
indicating that either limited cover cropping studies were con-
ducted or satisfied the criteria for inclusion in this study.

the number of studies contributing to that effect size. Error bars show
95% confidence intervals (95% Cls). P < 0.05 indicates that the mean
change (%) with cover cropping was significantly different from zero.

This meta-analysis identified differences in cash crop
yield response to cover cropping based on soil type and
climate interaction. For example, following cover crops on
Vertisols in dry climates, cash crop yield was increased by
over 50%, while in temperate climates on similar soil type,
cash crop yields were reduced by over 25%. This may be
attributable to differences in precipitation patterns between
dry and temperate regions. In temperate regions where rain-
fall is winter-dominant, precipitation coincides with the
cash crop growing season (Stewart 2016). Consequently,
cover crops grown during summer are reliant upon stored
soil moisture, elevating the risk of depleting soil moisture
reserves for the subsequent cash crop. This increases the
dependence of the cash crop on highly variable in-crop rain-
fall. In contrast, in a dry climate where rainfall is summer
dominant and cash crops are predominantly winter-grown,
summer cover cropping is likely to enhance rainfall capture,
soil water storage, and fallow efficiency and offer greater
potential to generate increases in subsequent cash crop yield
(Deng et al. 2020). This suggests that interactions between
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Fig. 10 Forest plot of the change (%) in soil mineral N concentration, soil
water content, and cash crop yield induced by cover cropping according
to (a) cover crop termination time and (b) post-termination cover crop
residue fate. The number in parentheses represents the number of studies

climates and soil types must be considered when managing
cover cropping to maximize the ecosystem services and
minimize disservices.
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contributing to that effect size. Error bars show 95% confidence intervals
(95% Cls). P < 0.05 indicates that the mean change (%) with cover
cropping was significantly different from zero.

While there was a general trend in reduction of soil water
content at cash crop sowing in all climate types, there were
lower soil water penalties where annual water input exceeded

Table 4 Mean change (Ayean %)

and their 95% confidence Soil mineral N Cash crop yield
intervals (AhighQSa A10W95) in soil
water content, soil mineral N, and Moderator Category n Amean Ajgwos  Apighos 1 Apmean Ajgwos  Ahighos
cash crop yield induced by cover
cropping as moderated by tﬂlage Tillage Reduced 80 —43.1%* —=50.7 —-34.4 132 —27.3%* —40.7 -10.9
praﬂi??& cash crop species, and No-till 287  —20.6%* 251 —-15.8 502 —10.3%*  —13.8 -6.5
N fertilizer applied to cash crops. Conventional 149 —203%* 26 142 372 29 08 67
** denotes significant difference
from control fallow (control) at Cash crop Barley 30 24 1%* 20.2 28.2
P <0.01; * denotes significant type Maize 56 1.2 -35 6.1
differenlce from (c)o(;ltrol fall}(l)w Rice 27 14.5%: 9 20.3
(control) at P < 0.05; n is the _
number of studies contributing to Sorghum 67 126 1.2 284
that effect size. Where cells are Soybean 30 —11.6% -19.6 -2.9
blank, insufficient data were Sunflower 30 —3.9% -73 -0.4
available. Wheat 766 —11.5% —151 7.8
N applied to  0-50 689  —6.8%* —-11.1 2.3
cash crop 50100 250 —10.8** —14.8 —6.6
(kg N
ha ') 100-150 28 54 -11.2 0.8
150-200 27 2.8 -1.6 7.4
>200 12 4.7 -3 13
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693 mm. This is likely because cover crop water use has a
greater likelihood of being replenished through less variable
precipitation compared with drier conditions. This indicates
the challenge of integrating cover crops in areas with annual
precipitation below 693 mm given the risk of water use by
cover crops and thus, compromising cash crop productivity.
Where annual water input exceeded 693 mm, cover cropping
led to either a neutral or positive change in cash crop yield
relative to fallow control. Thus, there is a greater opportunity
of integrating cover crops to provide ecosystem services in
these higher rainfall environments because cover crop water
use is more likely to be replenished by improved water infil-
tration, reduced evaporation and runoff due to residue
groundcover, and greater soil water storage with an increase
in soil organic matter (Blanco-Canqui et al. 2015).

4.2 Cover crop management legacies

Some practices to minimize the potential negative effects of
cover crops on soil water content and subsequent cash crop
yield include early cover crop termination, careful selection
of cover crop functional type, and management of cover crop
residues post-termination. As observed in this meta-analysis,
early termination of cover crops reduced the impact of cover
crops on depleting soil water content compared with late ter-
mination. In line with previous research, early termination re-
duces cover crop transpiration without greatly reducing bio-
mass and groundcover, and so maintains greater soil water
content for the following cash crop (Wunsch et al. 2017;
Blanco-Canqui 2018). Daryanto et al. (2018) posited that
where cover crop biomass production comes at the expense
of soil water depletion, cover crop species selection and flexi-
bility in cover crop termination timing should be based on the
average precipitation input during the fallow periods. For ex-
ample, late termination is needed to accumulate significant bio-
mass and N that can provide groundcover and minimize N
losses but comes at the expense of high soil water use. In
contrast, early termination can lower water use but significantly
lowers biomass production, limiting the benefits of
groundcover. Consistent with previous research in water-
limited environments (Wunsch et al. 2017; Blanco-Canqui
2018), early termination was found to reduce cover crop tran-
spiration and therefore maintain greater soil water content for
the following cash crop. Crop modeling by Whish et al. (2009)
validated these field observations and predicted that crop yields
would only be adversely affected if cover crops were terminat-
ed early with herbicide after achieving 50% groundcover.
Cover crop choice was shown to have a large influence on the
cover cropping effect size on subsequent cash crop yield com-
pared to control fallows. Both legume and non-legume cover
crops reduced cash crop yields. Previous studies have shown
similar and divergent results. For example, in the humid temper-
ate Argentine Pampas, legume cover crops were found to

increase maize yield by 7%, but yield was decreased by 8%
when the cover crop species was a non-legume (Alvarez et al.,
2017). Similarly, a global meta-analysis of cotton yield revealed
that cover crops increased cottonseed and lint yield by 6% and
5%, respectively, and that such effects were more pronounced
with legume rather than non-legume cover crops (Toler et al.,
2019). We found lower yield reduction with mixtures than with
monocultures; however, no superiority of monoculture over mix-
tures were found in the case of soil water at cash crop sowing and
on subsequent cash crop yield. The greater reduction in cash crop
yield reported in some studies has been attributed to higher water
use by mixtures compared with monocultures (Wortman et al.
2012; Reese et al. 2014; Nielsen et al. 2016b).

The result of the meta-analysis indicates that the benefit of
cover cropping in enhancing cash crop yield, soil water content,
and soil mineral N concentration at cash crop sowing is related to
the amount of biomass produced by cover crops. High biomass
production by grasses and brassicas led to significant reductions in
soil water and soil mineral N, and increased yield penalties.
However, high biomass production by legumes did not increase
the risk of yield penalties. This suggests that greater cover crop
biomass production comes with concomitant increases in soil N
uptake. The legacy effects on the subsequent cash crop depend on
the quality of the cover crop residue, the rate of residue decompo-
sition, and the synchrony between cover crop residue N release
and uptake by the cash crop (Justes 2017). The groundcover res-
idue produced by Poaceae, which has longer residence times due
to higher C/N ratios than legume and brassica residues, may allow
soils to recover moisture more efficiently during the cash crop
phase. In contrast, Brassicas and legumes with rapid residue de-
composition do not allow for in-crop recovery of soil moisture, but
are likely to increase soil mineral N (Daryanto et al. 2018). The
burning of cover crop residues consistently reduced cash crop
yield. This is likely due to reduced soil fertility benefits because
of nutrient loss via burning and reduced groundcover for soil water
conservation (Oikeh et al. 2008).

The inconsistencies in relative soil water content and cash
crop yield response to cover cropping indicate the complexity
of cover crop management, and caution is needed in
recommending or promoting cover crops in low rainfall dry-
lands compared with higher rainfall regions where most cover
crops research has been conducted. As observed in this meta-
analysis, cover crops are not universally beneficial in terms of
generating ecosystem services. Furthermore, biophysical and
crop management factors such as climate, soil type, cover crop
management, and their interaction, must be incorporated into the
cropping system design to optimize the ecosystem services of
cover cropping and minimize ecosystem disservices. Ultimately,
the goal and the ecosystem services intended to be derived from
cover cropping should dictate the selection of cover crop func-
tional types and management practices. For example, where the
goal is to minimize N leaching, growing grass or brassica cover
crops with late termination might be appropriate to maximize N
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uptake into cover crop biomass. In contrast, where rainfall is
more limited and N leaching is less of a risk, early to mid-
termination of grass cover crops may be more appropriate to
minimize cover crop evapotranspiration while enhancing
groundcover, subsequent rainfall capture, and fallow efficiency.

4.3 Cover crop legacies on soil mineral nitrogen
availability

This meta-analysis showed that cover crops significantly reduced
soil mineral N stock at cash crop sowing compared with control
fallows, with smaller magnitude of reduction in deep soil layers
(> 90cm) likely due to less utilization of deep layer soil N. The
mechanism of this reduction has been attributed to cover crop N
uptake and accumulation in their biomass, and reduction of N in
percolating water flux (Kaspar et al. 2012; White et al. 2017;
Norberg and Aronsson 2019). The potential of cover crops to
scavenge and accumulate excess nutrients such as N is an impor-
tant approach for reducing nutrient losses, improving nutrient
recycling within cropping systems, and reducing risks of denitri-
fication losses as N,O (Daryanto et al. 2018; Abdalla et al. 2019).
Tonitto et al. (2006) found that cover crops can reduce N
leaching by up to 70% compared to control fallows. Couédel
et al. (2018) also reported that cover crops reduce N leaching
by 59% relative to fallows. The reduction in soil mineral N by
cover crops indicates their potential to be used as a catch crop to
reduce N leaching if properly designed in cropping systems.
However, where soil mineral N is insufficient, cover crops could
increase the risk of nutrient limitations in the subsequent crop.
Hence, N capture and retention by cover crops is beneficial in
highly fertilized systems where there is often excess N, but in
limited N contexts, this could be problematic.

There was also variation in soil mineral N responses to
cover cropping with cover crop functional type. We found a
greater reduction in soil mineral N with grasses and brassicas.
This is likely due to their N scavenging properties associated
with rapid growth and biomass accumulation (Justes 2017).
These non-legumes reduced N leaching by 56% compared to
control fallows due to rapid N uptake and accumulation, great-
er soil microbial immobilization, and reduction in leachate and
drainage volume (Thapa et al. 2018). Legume and brassica
monocultures will likely have relatively rapid N release from
residues due to their inherent low C/N ratios, whereas grass
monocultures may exhibit relatively low N mineralization
rates due to high residue loads with high C/N ratios
(Daryanto et al. 2018). This has consequences for system N
retention and recycling, where low C/N ratio residues may
carry a greater risk of N loss, whereas high C/N ratio residues
have a greater risk of N immobilization (Williams et al. 2018;
Thapa et al. 2021a, 2022). Interestingly, mixtures led to a
greater reduction in soil mineral N than monoculture cover
crops. This may be due to greater biomass and N accumula-
tion in mixtures than in monocultures. Because cover crop
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mixtures usually comprise different functional types with con-
trasting root architectures, they may have the potential to ex-
ploit more soil mineral N across the soil profile than a mono-
culture cropping pattern (De Notaris et al. 2018). Several stud-
ies have demonstrated that a mixture of cover crops of differ-
ent functional types is also more efficient in providing N sup-
ply and N retention services (Kramberger et al. 2014; White
et al. 2017). Kaspar and Bakker (2015) reported that some
mixtures could reduce soil mineral N availability due to up-
take during cover crop growing season or N immobilization
during residue decomposition.

The magnitude and direction of the reduction in soil min-
eral N at cash crop sowing observed in this meta-analysis also
varied with crop management practices. When cover crops
were terminated by natural cause (frost), it led to significant
soil mineral N reductions than when terminated by herbicides.
Rosaetal. (2021) reported similar findings, where cover crops
were frost killed in late spring in semi-arid USA and led to
reductions in soil nitrate at 10-20-cm depth by 26% relative to
control fallow. In a continental climate in France, frost-
terminated cover crops led to lower total N at cash crop sow-
ing compared to termination by herbicide or mechanical ter-
mination by rolling (Romdhane et al. 2019). No significant N
fertilizer replacement benefit of adding legume cover crops on
the subsequent cash crop was observed. This could be partly
due to the rapid N-mineralization of legume residues releases
N into the mineral N pool which could potentially be lost by
denitrification and leaching before crop uptake and assimila-
tion. Therefore, designing cover crop mixtures with comple-
mentary plant traits may effectively provide soil mineral N
ecosystem services in dryland cropping systems.

5 Conclusions

This meta-analysis has shown that using cover crops for fal-
low replacement resulted in +15%, +4%, —12%, and —11%
change in subsequent cash crop yield in tropical, continental,
dry, and temperate climates, respectively, relative to control
fallow. The magnitude of this change and the frequency of
negative impact on the legacy of soil water and mineral N
reductions on subsequent cash crop yield varied significantly
with climate and soil types, and crop management practices.
Although there was high variability in the crop response to
cover cropping, the frequency of studies with increased yield
(ecosystem service) in high precipitation areas underscores the
importance of cover crops in these cropping systems. In con-
trast, the use of cover crops in more water-constrained areas
posed penalties for soil water available for subsequent crops
and cash crop yield risk (ecosystem disservices). Hence, the
complexity of cover crop management must be considered
when designing a cropping system that integrates cover crops
to optimize the ecosystem services and minimize ecosystem
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disservices. Considering the high variability in crop response
to cover cropping through soil water and mineral N and cash
crop yield, further quantitative assessment of the influence of
climate patterns on cash crop yield response to cover cropping
is warranted. This will provide a basis for understanding the
implication of variation in, for example, precipitation pattern,
e.g., whether summer or winter dominant rainfall and how this
interacts with soil type and cropping system. The results of
this meta-analysis highlight the need for a quantitative synthe-
sis of the relative risks and opportunities to use cover crops for
fallow replacements in dryland cropping systems. To resolve
this, field-scale experiments should be complemented with
long-term simulation studies that can extrapolate understand-
ing of the dynamics of the cover crop management over longer
time scales and under a wide range of climatic and soil con-
ditions. This will allow the development of best management
practices for cover crops in dryland cropping systems that
minimize yield penalties and maximize the ecosystem ser-
vices provided by cover crops.
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