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Abstract
Micronutrients are essential factors for human health and integral for plant growth and development. Among the micronutrients,
zinc (Zn) and iron (Fe) deficiency in dietary food are associated with malnutrition symptoms (hidden hunger), which can be
overcome through biofortification. Different strategies, such as traditional and molecular plant breeding or application of chem-
ical supplements along with fertilizers, have been employed to develop biofortified crop varieties with enhanced bioavailability
of micronutrients. The use of microorganisms to help the crop plant in more efficient and effective uptake and translocation of Zn
and Fe is a promising option that needs to be effectively integrated into agronomic or breeding approaches. However, this is less
documented and forms the subject of our review. The major findings related to the mobilization of micronutrients by microor-
ganisms highlighted the significance of (1) acidification of rhizospheric soil and (2) stimulation of secretion of phenolics. Plant–
microbe interaction studies illustrated novel inferences related to the (3) modifications in the root morphology and architecture,
(4) reduction of phytic acid in food grains, and (5) upregulation of Zn/Fe transporters. For the biofortification of Zn and Fe,
formulation(s) of such microbes (bacteria or fungi) can be explored as seed priming or soil dressing options. Using the modern
tools of transcriptomics, metaproteomics, and genomics, the genes/proteins involved in their translocation within the plants of
major crops can be identified and engineered for improving the efficacy of plant–microbe interactions. With micronutrient
nutrition being of global concern, it is imperative that the synergies of scientists, policy makers, and educationists focus toward
developing multipronged approaches that are environmentally sustainable, and integrating such microbial options into the
mainframe of integrated farming practices in agriculture. This can lead to better quality and yields of produce, and innovative
approaches in food processing can deliver cost-effective nutritious food for the undernourished populations.

Keywords Micronutrients . Deficiency . Hidden hunger . Biofortification .Microorganisms . Rhizosphere . Zn/Fe transporter

1 Introduction

In the pursuit of increasing food grain production and feeding
the ever increasing global population, agricultural research in
the last few decades mainly focused on cultivation of high
yielding varieties of crops and intensive cropping systems,
mainly involving the imbalanced use of chemical fertilizers
(Elkoca et al. 2010; Foley et al. 2005; Gliessman 2014;

Singh 2000). It is well-documented in literature that the inten-
sive use of chemical fertilizers has a negative impact on soil
ecology, as it disrupts nutrient equilibrium in the soil, leading
to impaired soil structure and functioning. Imbalances in fer-
tility lead to harmful impacts on the proliferation of commu-
nities and health of macro/micro fauna, flora, and human be-
ings (Lockhart et al. 2013; Wu and Ma 2015). In order to
understand the relationship between micronutrient supply
and human health, there is an urgent need to understand the
level of micronutrient deficiencies in soils and their influence
of crop physiology. Millions of hectares of land in the world,
including India, have low availability of micronutrients. In
Indian soils, the deficiency of Zn has gone as high as 47%
and that of Fe to 13% (Singh 2009). Micronutrient deficiency
in soil is mainly attributed to high levels of more than the
recommended dose of fertilizers (RDF), soil erosion, and other
agronomic practices that interfere with the translocation of
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micronutrients. This causes imbalances in the amounts of or-
ganic matter and phosphorus in soil, which is particularly ac-
centuated in soils such as calcareous type, water-logged, peat,
arid, alkaline, sandy, and saline soils, which also limit Fe mo-
bilization (Alloway 2008). The mobilization of Fe in plants
often occurs via chelating with phytosiderophores, citrate,
nicotianamine, and mugineic acid (strategy II), or in the form
of free iron ions–Fe2+ (both strategy I and strategy II plants)
(Zhang et al. 2019). Fe2+ is the free form of iron in the soil
which is limited in soil. Fe2+ is a more soluble form and can be
taken up by the roots of all types of plants. But it is readily
oxidized into Fe3+ due to chemical reactions. Fe3+ is the most
dominant form of iron in soil but it is insoluble, therefore not
available to plants (Mahender et al. 2019). In this regard,
plants have developed different mechanisms to acquire suffi-
cient iron under deficient conditions. Nongraminaceous
plants, known as strategy I plants, use a reduction-based strat-
egy to reduce the ferric ions (Fe3+) to free form of Fe ions
(Fe2+). Graminaceous plants, known as strategy II plants, have
a chelation-based strategy for acquisition of Fe3+. Strategy II
plants secrete phytosiderophore (PS) in the rhizosphere which
form PS–Fe3+ soluble complex, taken up by plant roots
(Kobayashi and Nishizawa 2012; Römheld and Marschner
1986). Micronutrients are essential for plant growth and de-
velopment, and their presence in sufficient amounts is impor-
tant for proper human and animal health (Welch and Graham
2004). In the last two decades, the concept of hidden hunger
(deficiency of certain vitamins and micronutrient) has been
well-documented (Nilson and Piza 1998). Low availability
of micronutrients in soils not only reduces crop yields, but also
leads to poor nutritional quality of the edible parts of crops,
resulting in malnutrition in human populations, particularly in
developing and underdeveloped countries (Hurst et al. 2013;
Kumssa et al. 2015). The micronutrients Fe and Zn are impor-
tant for all organisms. Fe is an important cofactor for various
enzymes involved in plant and human metabolism; its defi-
ciency causes stunted growth and anemia (Hentze et al. 2004).
About 25% of the world’s population suffers from anemia
(Ministry of Health and Family Welfare 2016; World Health
Organization 2008), and the Global Burden of Disease Study
(2015) reported that Fe-deficiency anemia led to 54,000 deaths
in 2015 (Forouzanfar et al. 2016). Low Zn levels lead to
stunted growth and development of neonatal, immune dys-
function, hypogonadism, and impairment in cognition (Sauer
et al. 2016). An average of 17.3% of the world population is
affected by Zn deficiency (Wessells and Brown 2012) and
about 433,000 children perish due to Zn malnutrition (World
Health Organization 2009). Iron deficiency in humans is rela-
tively easy to quantify, as hemoglobin is the most commonly
used biochemical indicator of population response, which is
reliable. On the other hand, zinc deficiency is difficult to quan-
tify, as no reliable biochemical indicator is currently available
to denote zinc status (Mei et al. 2005; Wieringa et al. 2015).

Biofortification is a promising and sustainable agriculture-
based strategy to minimize Zn and Fe deficiency in dietary
food substances (Garcia et al. 2016; Petry et al. 2016;
Vasconcelos et al. 2017). Among the different strategies de-
ployed, the plant breeding approach to develop biofortified
crops and agronomic supplementation of micronutrients, such
as foliar/soil application along with chemical fertilizers, have
received maximum attention (Cakmak et al. 2010; Di Tomaso
1995; Rengel 2001).

A less investigated approach, which is promising, involves
exploring plant–microbe interactions, which are known to
have a crucial role in improving the nutritional status of soil
and enriching micronutrients through metal solubilization,
mobilization, and translocation to different parts of the plant
(Chen et al. 2014a, 2014b; Kothari et al. 1990; Rana et al.
2012) (Fig. 1). Therefore, microorganisms can be used to en-
hance the accumulation of micronutrients in the grains of sta-
ple cereal crops; this has been successful in rice and wheat
(Mader et al. 2011; Prasanna et al. 2016; Rana et al. 2012,
2015; Singh et al. 2017a, b, Singh et al. 2018, Singh et al.
2020; Vaid et al. 2014; Zhang et al. 2012a, b). However, its
potential is still to be explored across other crops, ecologies,
and farming systems.

In this review, an attempt has been made to collate and
critically analyze the available information on the major
mechanisms employed by microorganisms for the enrichment
of micronutrients in the plant, and in particular, their prospects
for the biofortification of Fe and Zn.

2 Zn and Fe deficiency in soil—a global
concern

Zn deficiency is one of the important nutritional constraints in
cereal crops, especially rice and wheat, and Zn-deficient cere-
al-based diets create serious problems for human health. Zn
deficiency was found to be prevalent in 50% of the soil sam-
ples collected from different countries (Dharejo et al. 2011;
Hansen et al. 1996; Manyevere et al. 2017). Fageria et al.
(2002) observed that under such deficiencies, cereal crop
yields can exhibit growth and yield a reduction, up to 80%,
along with a reduced grain Zn concentration. Mark et al.
(2016) reported that micronutrient deficiencies are predomi-
nant in the low income South Asian countries, including India.

Deficiency of Zn is the most widespread among the
micronutrients, in almost 50% of soils surveyed from India
(Reza et al. 2017; Shukla et al. 2017, 2018). Analyses of 0.25
million surface soil samples collected from different parts of
the country revealed the predominance of Zn deficiency in
divergent soils (Singh et al. 2005). The magnitude of Zn de-
ficiency varies widely among soil types and within the various
states in India. In India, the extent of deficiency of Zn was to
the tune of 86% in Maharashtra, 72.8% in Karnataka, 60.5%
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in Haryana, 58.4% in Tamil Nadu, 57% inMeghalaya, 54% in
Bihar and Orissa, 49.4% in Andhra Pradesh, and 48.1% in
Punjab (Shukla et al. 2015, 2016, 2017, 2018; Singh 2009).
Such an alarming prevalence is a crucial issue.

Low availability of DTPA (diethylenetriamine pentaacetic
acid) extractable Fe in soils is also of global concern. Fe
deficiency-mediated interveinal chlorosis in crops is a wide-
spread phenomenon in arid and semiarid soils or calcareous
soils worldwide, including India, which causes a significant
loss in yield (Mortvedt 1991). In India, Fe is mainly deficient
in the soils of Karnataka (35%), H.P. (27%), Maharashtra
(24%), Haryana (20%), Tamilnadu (17%), and Punjab (14%)
(Shukla et al. 2015, 2016, 2017, 2018; Singh 2009).

3 Causes of micronutrient deficiency in soil

Different environmental and edaphic factors, such as organic
matter content in soil, soil pH, cation exchange capacity, clay
content etc., and soils more prone to water logging, or
peat/calcareous soils are characteristics that affect the bio-
availability of micronutrients (Ibrahim et al. 2011; Lindsay
1984; Ramzan et al. 2014). The critical limit of DTPA-
extractable Fe and Zn in soil are 4.5 and 0.6 mg kg−1,

respectively (Alloway 2009; Sillanpaa 1982). The critical lim-
it for the soil is defined as minimum soil test value which is
associated with maximum crop yield. It represents the concen-
tration below which deficiency manifests as it designates the
lower end of the sufficiency range.

A major percentage of Fe on the earth’s crust is present
as Fe3+ which is not readily accessible to plants. Fe2+ is the
more soluble form of iron but readily oxidized to ferric
form (Fe3+), which is precipitated in oxide/hydroxide,
phosphate, carbonate, and other unavailable complex
forms in the soil (Lindsay and Schwab 1982). A large
amount of Fe is present in soils, but its bioavailability is
very low. Chirwa and Yerokun (2012) and Harter (1983)
suggested that Zn bioavailability decreased in soil, with
increasing soil pH due to precipitation or adsorption of
Zn on the surface of CaCO3 and Fe oxides. There is a
negative correlation between available Zn or Fe and cation
exchange capacity (CEC) of soil (Yoo and James 2002).
Sidhu and Sharma (2010) reported that with increasing
clay content in the soils, there was a lower availability of
Zn. The available Zn was negatively correlated with elec-
trical conductivity (EC) (Chattopadhyay et al. 1996). Gao
et al. (2011) also stated that the availability of Zn is nega-
tively correlated with phosphorus content in soil.

Fig. 1 Microbe-mediated iron transformations in the rhizosphere and its uptake toward biofortification in grains in crop plants
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4 Role of Zn and Fe in plant growth
and development

Among the micronutrients essential for the proper growth and
development of plants, animals, and human beings, Zn and Fe
are the most important elements. Even though they are needed
in trace amounts, they are involved in critical functions and
play an important role in the maintenance of the structural
integrity of biological membranes, gene expression, and reg-
ulation (Hänsch and Mendel 2009; Mahender et al. 2019;
Mousavi et al. 2013). Additionally, they are also involved in
mediating several processes such as carbohydrate metabolism,
protein synthesis, nucleic acid synthesis, phytohormone
levels, photosynthesis, fertility, seed production, and defense
against abiotic/biotic stresses (Brown et al. 1993; Kobayashi
and Nishizawa 2012; Rout and Sahoo 2015). Romheld and
Marschner (1991) illustrated that Zn is essential for carbohy-
drate metabolism, protein synthesis, nucleic acid synthesis,
and phytohormone synthesis and also as a cofactor for all
six classes of enzymes. Fe is an important constituent of en-
zymes like peroxidase, catalase, and nitrogenase (Kerkeb and
Connoly 2006), and along withMo, plays an important role in
nitrogen fixation (Kim and Rees 1992). Fe deficiency de-
creases chlorophyll production, leading to interveinal chloro-
sis, which is exhibited as sharp distinctions between veins and
chlorotic areas in young leaves (Kobayashi et al. 2003),
followed progressively by the entire leaf becoming whitish-
yellow and necrosis, along with slower plant growth (Follett
andWestfall 1992).White and Broadley (2009) recommended
a serious concern towards the alleviation of micronutrient de-
ficiency in soil, as it not only leads to declining crop yields but
also contributes to poor quality of produce, leading to dietary
micronutrient deficiencies in human beings.

5 Role of Zn and Fe in human health

Zn has an important structural and functional role in bio-
logical systems (Parkin 2004), as it plays a significant role
in reproductive, catalytic, and anabolic processes in human
beings (Bonaventuraa et al. 2015; Corvol et al. 2004;
Cummings and Kovacic 2009). Zn deficiency causes
stunted growth of human beings, immaturity of sexual or-
gans, and distortions of the immune system and central
nervous system (Welch 2001). Ross et al. (1985) reported
that women who receive Zn supplements of 4–13 mg day−1

delivered babies with low birth weight compared to the
control group. Shankar and Prasad (1998) also reported
infertility in Zn-deficient men. Zn deficiency may cause
congenital diseases like Acrodermatitis enteropathica
(Moynahan 1974). The recommended daily allowance
(RDA) for Zn is 15 mg day−1 for adults (Food and
Nutrition Board 2001).

Fe is a crucial element for human fitness, as it is involved in
a wide variety of metabolic processes, including deoxyribo-
nucleic acid (DNA) synthesis, catalase and peroxidase en-
zyme synthesis, oxygen and electron transport, etc.
(Abbaspour et al. 2014). The recommended dietary allowance
(RDA) for Fe for adults of 19–50 years age is 8 mg day−1 for
males and 18 mg day−1 for females, but during the pregnancy
period, it is 27 mg day−1 (Food and Nutrition Board 2001). In
the 2013 Global Burden of Diseases Study, Fe deficiency
anemia was predominantly implicated in nearly 200,000
deaths and 45 million disability-adjusted life-years (DALYs)
lost annually (4.5% of all risk-attributable DALYs;
Forouzanfar et al. 2016). Fe biofortification in India is essen-
tial, where over 50% of women and 74% of children are ane-
mic (International Institute for Population Sciences and ORC
Macro 2000), attributed largely to the insufficient intake or
bioavailability of Fe. Stevens et al. (2013) showed that anemic
prevalence was highest in pre-school age children, pregnant,
and nonpregnant women in Western Pacific, Southeast Asia,
and Africa. In a nationwide study in India, Chellan and Paul
(2010) found a moderate to severe Fe deficiency anemia in
47.9% pre-school children (below 6 years), 74.8% in adoles-
cent girls (10–19 years), and 41.5% in pregnant women (15–
44 years).

6 Strategy of Zn and Fe biofortification
in food grains

Biofortification is a bouquet of approaches that focus on im-
proving the availability of micronutrients biologically in sta-
ple food products like wheat, maize, pearl millet, rice, and
others. This could be achieved genetically or through soil
management practices, agronomic approaches, or by using
microbiological interventions or a combination of these.
Although plants can take up higher amounts of micronutrients
from soil, their availability in edible parts may be low, because
of anti-nutritional factors, thus having no influence in allevi-
ating human malnutrition (Frossard et al. 2000). Some of the
possible interventions include the subsections that follow.

6.1 Agronomic interventions

Applying mineral fertilizers to the soil for maintaining soil
health and improving plant quality is an age old practice
(Rengel et al. 1999). In general, it is observed that the response
to an applied nutrient, in terms of its translocation to grains, is
more pronounced when there is a deficiency of that particular
element in the soil or the characteristics of the particular ele-
ment allow its rapid mobilization. Micronutrient supplemen-
tation with chemical fertilizers has been an effective measure
employed by farmers to gain maximize crop yield. However,
micronutrient-use efficiency in crops is low and only 2–5% of
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total applied fertilizer dose is utilized (Tian et al. 2008). Some
of the methodologies for improving use efficiency of
micronutrients, such as foliar application or granular/dust-
type formulations of Zn or modulating dose and frequency
of applications or enrichment of urea and other fertilizers,
have shown promising results in several crops, particularly
cereals (Prasad et al. 2013; Shivay et al. 2008, 2015;
Wissuwa et al. 2008).

6.2 Genetic approaches

Genetic biofortification involves classical breeding ap-
proaches to characterize and exploit the genetic variation for
mineral content, as well as new approaches involving gene
discovery and marker-assisted breeding (Grusak 2002).
Hindu et al. (2018) used genome-wide association studies
(GWAS) for identification of different genomic regions in
maize for kernel Zn and Fe biofortification. Velu et al.
(2016) suggested that genomic selection (GS) may be a po-
tential breeding method for Fe and Zn biofortification in
wheat. In terms of sustainability, the nutrition-oriented breed-
ing of crop plants has several advantages. Recent advances
empower us to modulate signaling pathways, although breed-
ing, by and large, relies on long and repetitive cycle of hybrid-
ization and selection, which are time-consuming and labor-
intensive. Nevertheless, in recent years, modern molecular
tools like DNA markers and marker-assisted selection
(MAS) technologies are expediting the development of
nutrient-rich genotypes. Kumar et al. (2018) reported quanti-
tative trait loci (QTLs) for Fe and Zn biofortification in pearl
millet using diversity array technology (DArT) and simple
sequence repeat (SSR) markers. Literature reported that many
Fe- and/or Zn-biofortified varieties of rice, wheat, and maize
have been released in the world, including in India, to alleviate
malnutrition (Table 1). Besides the genetic or plant breeding
approach, several transgenic interventions have been applied
for successful biofortification of food crops. Transgenic tech-
niques permit the exchange of genes between totally irrelevant
species or bring new genes into food or cash crops. Ramesh
et al. (2004) developed a novel approach for increased seed
zinc and iron content, through the overexpression of a zinc
transporter in Hordeum vulgare cv. Golden Promise,
facilitated by a ubiquitin promoter. Goto et al. (1999) were
able to enhance the iron content in rice grains 3-fold using
an Agrobacterium-mediated transfer of complete coding se-
quence of the ferritin gene from soybean plants. Lucca et al.
(2002) developed transgenic rice plants, with higher iron con-
tent, which was rich in phytase and cysteine-peptides; this can
facilitate better iron intake and bioavailability. Vasconcelos
et al. (2003) were able to engineer the expression of the soy-
bean ferritin gene, under the control of the glutelin promoter in
an elite Indica rice line that has highly desirable agronomic
and field performance traits; enhanced grain nutritional levels

were recorded not only in brown grains but also in polished
grains. Liu et al. (2004) developed ferritin-incorporated rice
varieties that showed 64% higher iron content in the milling,
and this ferritin gene could be specifically expressed in the
endosperm of transgenic rice with a high level.

Genetic approaches can be a challenging task for breeders
in soils inherently low in Fe and Zn micronutrients. To realize
the full potential of biofortified varieties, there is a need to also
give simultaneous attention toward other factors, like soil pH
and organic matter, which influence root exudation and en-
zyme activities in the rhizosphere, and thereby micronutrient
uptake and accumulation (Cakmak 2008).

6.3 Microbe-based approaches

The mechanisms of Fe acquisition by higher plants under Fe
deficiency have been categorized into two groups (Kobayashi
and Nishizawa 2012; Römheld andMarschner 1986): strategy
I in nongraminaceous plants and strategy II in graminaceous
plants. The two main processes in the strategy I response are
(1) the reduction of ferric chelates at the root surface with the
help of Ferric reduction oxidase gene (FRO2) and (2) the
absorption of the generated ferrous ions across the root plasma
membrane by the Iron-regulated transporter gene (IRT1).
Other processes involved in strategy I include extrusion of
proton and phenolics compounds from the roots to the rhizo-
sphere, which increases the solubility of ferric ions or supports
the reduction capacity of ferric Fe on the root surface. Strategy
II plants take up Fe under Fe deficiency by the excretion of
phytosiderophores (PSs), which are low molecular weight Fe
chelating compounds, i.e., mugineic acids (MA) and
nicotianamine (NA) have strong affinity for Fe (III) and form
an Fe–phytosiderophore soluble complex. The Fe–
phytosiderophore complex is then transported into root cells
through a high affinity uptake system. Suzuki et al. (2006)
reported that barley plants secreted mugineic acid (MA)
phytosiderophore under Zn deficiency and the form Zn (II)–
mugineic acid complex and Zn (II)–mugineic acid complex
absorbed more than Zn2+ by the roots of a Zn-deficient plant.
The amounts and kinds of phytosiderophores secreted by
plants into the rhizosphere vary from species to species
(Mori 1999).

There are large amounts of Fe and Zn present in the earth’s
crust but unavailable to plants, as they are present in the form
of insoluble salts. Plant-based intrinsic strategies like
phytosiderophore or organic acid production or secretions of
chelators are not always sufficient to make micronutrients
available in micronutrient-deficient soils. With our improved
understanding of crosstalk between soils, plants, and microor-
ganisms, greater insights into the rhizosphere environment
have been gained (De Santiago et al. 2011; Mishra et al.
2011; Pii et al. 2015; Zaidi et al. 2003). Plant growth-
promoting microorganisms play a crucial role in the
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fortification of macronutrients and micronutrients in food
crops, through various mechanisms such as siderophore pro-
duction, transformations, nitrogen fixation, and phosphorus
mobilization (Khan et al. 2019; Singh et al. 2018). Figure 1
illustrates the diverse microbe-mediatedmechanisms involved
in the biofortification of Fe.

Microorganisms are known to have crucial roles in the
biofortification of Zn and Fe in cereal grains (Gosal et al.
2010; Rana et al. 2012; Sharma et al. 2012). Both rhizospheric
and endophytic microorganisms have significant impacts on
micronutrient bioavailability to plants. However, endophytic
microorganisms are considered more promising agents to en-
hance Fe and Zn uptake and translocation, because endophytic
microorganisms can indirectly influence the regulation ofmet-
al transporters (Reiter et al. 2002; Weyens et al. 2013).
Bacterial and fungal endophytes have been implicated in the
biofortification of grains of wheat and rice with Fe and Zn
(Abaid-Ullah et al. 2015; Ramesh et al. 2014). Balakrishnan
and Subramanian (2012) revealed that the inoculation of my-
corrhizal fungi (arbuscular mycorrhiza) improves the avail-
ability of micronutrients, particularly Zn in soils, as a conse-
quence of rhizospheric acidification and siderophore

production besides hyphal transport of nutrients through the
external mycelium. Gosal et al. (2010) reported that an endo-
phytic fungus Piriformaspora indica had a significant impact
on plant growth, biomass, and micronutrients uptake. Wang
et al. (2014) also found a positive influence of endophyte
inoculation on Zn accumulation in rice grains. In earlier stud-
ies, Bacillus subtilis (DS-178) and Arthrobacter sp. (DS-179)
were able to increase the Zn content by an average of 75%
over the control in Zn-deficient soils. Similar results were also
found with Arthrobacter sulfonivorans (DS-68) and
Enterococcus hirae (DS-163), with respect to Fe availability
in wheat grains (Singh et al. 2017a, 2018). Utilization of PGP
rhizobacterium Pseudomonas fluorescens was found to be
suitable towards Zn biofortification in wheat grains (Sirohi
et al. 2015). Rana et al. (2012) reported that Fe content in
wheat grains increased significantly due to inoculation of
Providencia sp. PW5. Similarly, Prasanna et al. (2015) and
Tariq et al. (2007) also found a significant effect of
rhizospheric microorganisms on Zn biofortification in maize
and rice, respectively.

Both rhizospheric and endophytic microorganisms play
crucial roles in metal solubilization in soil and redistribution

Table 1 Promising biofortified varieties developed

Crop Varieties Country References

Rice CR Dhan 310 (protein-rich variety) India Yadava et al. (2017)

DRR Dhan 45 (zinc-rich variety) India Yadava et al. (2017)

Zhongguangxiang (iron-rich variety) China Saltzman et al. (2013)

GR2 events (provitamin A-rich transgenic biofortified variety) USA Saltzman et al. (2013)

BRRI Dhan 62 (zinc-rich rice variety) Bangladesh Andersson et al. (2017)

Wheat WB 02, HPBW 01 (zinc- and iron-rich varieties) India Yadava et al. (2017)

Zhongmai 175 (iron- and zinc-rich variety); Pusa Tejas MACS 4028 (protein-, iron-, and
zinc-rich varieties)

China Saltzman et al. (2013)

BHU-3 and BHU-6 (zinc-rich varieties) India Andersson et al. (2017)

Maize Pusa Vivek QPM9 improved (provitamin A, lysine- and tryptophan-rich hybrid), Pusa
HQPM-5/7 improved (provitamin A, tryptophan, lysine rich)

India Yadava et al. (2017)

Pusa HM4 improved, Pusa HM8 improved, and Pusa HM9 improved (lysine- and
tryptophan-rich hybrid)

India Yadava et al. (2017)

Pearl millet HHB 299 (iron- and zinc-rich hybrid) India Yadava et al. (2017)

AHB 1200 (iron-rich hybrid) India Yadava et al. (2017)

ICTP8203-Fe/“Dhanashakti” (iron-rich variety) India Saltzman et al. (2013), Rai
et al., (2014)

ICMH-1201/Shakti-1201 (iron-rich hybrid) India Andersson et al. (2017),
Govindaraj et al. (2016)

Lentil Pusa Ageti Masoor (iron-rich variety) India Yadava et al. (2017)

BARImasur-7 in 2012, BARImasur-8 in 2015 (zinc- and iron-rich varieties) Bangladesh Andersson et al. (2017)

ILL 7723 Nepal Andersson et al. (2017)

L4704 India Andersson et al. (2017)

Sweet potato Nanshu 0101 (provitamin A rich) China Saltzman et al. (2013)

Cow pea Pant Lobia-1 and Pant Lobia-2 (iron-rich cowpea varieties) India Saltzman et al. (2013)

List is not comprehensive, only selected varieties given
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in the plant parts. Bacteria capable of solubilizing insoluble
sources of Zn can enhance uptake of Zn by 21% in soybean
plants (Sharma et al. 2012). There are different mechanisms
through which microbes increase the availability of Zn and Fe
in soil and enhance their mobilization in plant parts or increase
the bioavailability of Fe and Zn in food grains. These include
the following:

6.3.1 Production of siderophores and other chelating
substances
6.3.2 Organic acid secretion and proton extrusion
6.3.3 Modification in root morphology and anatomy
6.3.4 Upregulation of Zn and Fe transporters
6.3.5 Reduction of phytic acids or anti-nutritional factors
in food grains
6.3.6 Secretion of phenolics and related reducing
moieties
6.3.7 Secretion of phytohormones like signaling
molecules

6.3.1 Production of siderophore and other chelating
substances

Siderophores are low molecular weight Fe chelating com-
pounds that have high affinity toward Fe (III) (Ganz 2018).
The literature suggests that many microorganisms secrete
siderophores to overcome the Fe deficiency in soil (Schalk
et al. 2011). Fe (III) is insoluble in soil, but siderophores form
siderophore–Fe (III) complexes and increase the availability
of Fe in the environment (Saha et al. 2012). Because of their
solubilizing effect on Fe hydroxides, the production of
siderophores in the rhizosphere is the key microbial activity
that benefits plant Fe acquisition (Desai and Archana 2011;
Hayat et al. 2012). Khalid et al. (2015) reported that the inoc-
ulation of siderophore-producing fluorescent Pseudomonas
was effective in enhancing Fe content in chickpea grains. In
our earlier field experiments, inoculation with siderophore-
producing endophytes (Arthrobacter sulfonivorans DS-68
and Enterococcus hirae DS-163) enhanced the Fe concentra-
tion in grains of low and high Fe accumulating wheat geno-
types by 67 and 46%, respectively, over the uninoculated con-
trol, as compared to the application of RDF (recommended
doses of fertilizers) + FeSO4, in which 63 and 28% enhance-
ment was recorded over the uninoculated control, respective-
ly. The percent increase of Fe was more pronounced
with low Fe accumulating wheat cultivars due to appli-
cation of siderophore-producing endophytes or FeSO4,
as compared to high Fe accumulating wheat genotypes.
It was interesting to note that microbial treatment was
statistically on par with chemical fertilizer (FeSO4) ap-
plication, in terms of Fe content in wheat plant tissues
(Singh et al. 2018).

Zn cations, being more reactive species in soil, are present
in low amounts in soil solution (Alloway 2009); hence, the
bioavailability of Zn ions in soil is meager. However, Zn che-
lating compounds (synthetic or plant and microbial derived)
can enhance the mobilization and solubilization of Zn frac-
tions in soil (Obrador et al. 2003). Such chelators form soluble
complexes with Zn2+ (Tarkalson et al. 1998) and decrease
their interactions with soil constituents. Whiting et al. (2001)
observed the significant impact of Zn chelator metallophores,
produced by bacteria (Microbacterium saperdae ,
Pseudomonas monteilii, and Enterobacter cancerogenes), on
the bioavailability of Zn in soil and uptake by plant roots.
Tariq et al. (2007) also reported that the Azospirillum
lipoferum (JCM-1270, ER-20), Pseudomonas sp. (96-51),
and Agrobacterium sp. (Ca-18) bioinoculants were able to
solubilize the zinc hydroxide and zinc phosphate or other in-
soluble Zn salts and increase the availability of Zn to rice
plants for a longer time in soil. This was found to be mediated
by the production of natural chelating agents (Tariq et al.
2007). According to the reports of Kucey (1988), inoculation
of Penicillium bilaji increased Zn solubilization and uptake in
plants to a greater extent as compared to that achieved through
ethylene diamine tetra acetate (EDTA) chelating mechanisms.
Singh et al. (2018) reported a positive correlation between
siderophore production and Fe accumulation in wheat grains
by endophytes (Fig. 2a), which illustrates the important role of
siderophores in iron acquisition and transport into the plant;
however, its translocation within the plant, particularly to
grains, involves several steps and mechanisms—transport, re-
mobilization, and storage processes, mediated by membrane
transporters, chelators, and regulatory proteins.

6.3.2 Organic acid secretion and proton extrusion

The plant root exudates significantly increase the soluble pro-
portion of Zn in soil solution through different biochemical
processes (Zhang et al. 2010); however, microorganisms can
also modify the root exudation patterns and influence the ac-
tivities in the rhizosphere (da Silva et al. 2014; Malinowski
et al. 2004; Singh et al. 2017b; Subramanian et al. 2009).
Plants mediate through mobilization and solubilization of
metal cations through root exudates by several biochemical
routes: (i) acidification of rhizosphere through proton ions or
organic acids in root exudates; (ii) formation of soluble com-
plex of metal ions with amino acids or organic acids and other
chelators; (iii) enzymatic redox reaction reactions; or indirect-
ly through (iv) biostimulation effect of root exudates on ben-
eficial microbes in the rhizosphere (Pérez-Esteban et al. 2013;
Sessitsch et al. 2013; Ström et al. 2002).

Organic acids represent the dominant moiety in the root
exudates, particularly, in relation to metal solubilization in
the rhizosphere region (Chiang et al. 2011; Luo et al. 2014).
Kim et al. (2010) reported that oxalic and citric acids secreted
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by Echinochloa crusgalli significantly increased the
micronutrient uptake and translocation in plant tissues. The
nature of soil affects the availability of micronutrients to
plants. When chemical fertilizers are applied to soil, most of
the phosphorus, potassium, Zn, or Fe precipitates in soil,
making them unavailable for use by plants. Micronutrient
availability is sensitive to soil pH; it has been reported that
minimal changes in pH have drastic effects on the solubility of
micronutrients in soil. Havlin et al. (2007) suggested that the
availability of Zn decreases 100 times with one unit increase
in pH. Similarly, Guerinot and Yi (1994) found that the avail-
ability of Fe decreased up to 1000-fold, when pH was in-
creased by one unit. Several reports have been published on
the positive contribution of organic acid-producing microor-
ganisms in increasing the availability of nutrients (P, K, Zn) in
the rhizosphere (Goswami et al. 2014; Meena et al. 2015;
Sirohi et al. 2015). Chen et al. (2014a, 2014b) and Raja
et al. (2006) observed significant changes in the root exudate
pattern and solubilization of precipitated metals due to inocu-
lation of plant growth-promoting rhizobacteria. Singh et al.
(2018) also reported that the Zn solubilization activity of en-
dophytic bacteria positively correlates with the accumulation
of Zn in wheat grains (Fig. 2b).

In addition to organic acids, proton excretion by microor-
ganisms may lead to acidification of the rhizosphere and an
increase in the availability of nutrients. Asea et al. (1988)
reported that the phosphorus solubilizing fungi—Penicillium
bilaji and Penicillium cf. fuscum—significantly increase the
phosphorus availability in soil by lowering the soil pH, as a
result of secretion of protons. Besides phosphate-solubilizing
bacteria (PSB), mycorrhizae also excrete H+. Thus, the pres-
ence of protons in micronutrient-deficient soils may help the
crop plant in more efficient uptake of micronutrients.

In our earlier investigation, the inoculation of Arthrobacter
sulfonivorans (DS-68) and Arthrobacter sp. DS-179 in wheat
plants led to both qualitative and quantitative changes in or-
ganic acid profiles over the control, with several fold changes
in the quantity of organic acids in inoculated treatments. This
also positively correlated with increasing amounts of Zn and
Fe in wheat root and shoot tissues (Singh et al. 2017b) (Fig. 2c
and d).

6.3.3 Modification in root morphology and anatomy

Zn or Fe hyperaccumulator plants have various morphologi-
cal, anatomical, and physiological adaptations, such as

Fig. 2 Relationship between endophytic bacterial activities (siderophore
secretion, organic acid production, and Zn solubilization) and Fe/Zn
accumulation in wheat tissues. a Siderophore production and Fe

acquisition in grains. b Zn solubilization and Zn acquisition in grains. c
Organic acid secretion and Fe accumulation in root and shoot. d Organic
acid secretion and Zn accumulation in root and shoot

Agron. Sustain. Dev. (2020) 40: 1515 Page 8 of 21



elaborative root hairs or root surface area, and metal-
mobilizing root exudates (Dong et al. 1995; Genc et al.
2007; Lynch 2007). Singh et al. (2005) also reported that a
well-developed root system of plants can be an important
strategy to enhance the uptake of micronutrients. Zn-
efficient plants appear to employ a plethora of physiological
mechanisms that allow them to withstand Zn deficiency stress
better than Zn-inefficient plants. Zn-efficient plants have a
greater proportion and longer length of fine roots (≤
0.2 μM), and this plays an important role in the differential
Zn efficiency observed among various genotypes (Rengel and
Wheal 1997). In general, Zn-efficient plants have thinner roots
with increased surface area, which increases the availability of
Zn along with other nutrients, due to a more thorough explo-
ration of the soil (Singh et al. 2005). Chen et al. (2009) for rice
and Genc et al. (2006) for wheat showed that the Zn-efficient
genotype developed longer and thinner roots (≤ 0.2 mm) than
a less Zn-efficient genotype. Available reports also illustrate
that the inoculation of plant growth-promoting rhizobacteria
and endophytic bacteria has notable effects on root morphol-
ogy and architecture (Delaplace et al. 2015; Vacheron et al.
2013; Wang et al. 2014). Our earlier published work (Singh
et al. 2017a) also supports this hypothesis that inoculation
with a plant growth-promoting, Zn-solubilizing endophyte
(Bacillus subtilis DS-178 and Arthrobacter sp. DS-179) en-
hances the root volume, surface area, root length, root diame-
ter, and average number of root tips in a wheat crop.
Inoculation of these Zn-solubilizing endophytes also en-
hanced Zn accumulation in wheat grains by 2-fold over the
control, which, in turn, was better or equal to the application of
40 kg ZnSO4 ha

−1.
Investigations undertaken in low available Fe content soil

with inoculation of siderophore-producing Arthrobacter
sulfonivorans DS-68 and Enterococcus hirae DS-163 endo-
phytes led to increases in the root surface area and average
number of root tips by 2-fold and 1.6-fold, respectively, over
the control (RDF). However, in high available Fe content soil,
root surface area and average number of root tips increased by
1.5-fold and 1.2-fold, respectively, over the control (RDF).
These increased root parameters directly facilitated Fe fortifi-
cation in wheat grains (Singh 2016). Chen et al. (2014a,
2014b) reported that inoculation with endophytic bacterium
Sphingomonas SaMR12 significantly improved the root
length, root surface area, and average number of root tips in
Sedum alfredii plant, as compared to uninoculated treatment.
Batista et al. (2016) suggested that root morphological param-
eters, such as total root length and root surface area, play an
important role in nutrient uptake, particularly under
micronutrient-limiting conditions.

Besides root morphology, the internal structure of roots is
also modified by plant growth-promoting microbes, as a con-
sequence of which a higher amount of nutrients is taken up by
roots from the soil (López-Bucio et al. 2007; Ortíz-Castro

et al. 2008). Rêgo et al. (2014) conducted an experiment with
rice plants to understand the effect of the bioinoculant (bacte-
ria and a fungus) on root anatomical features. They observed
that inoculation of Trichoderma asperellum, Burkholderia
pyrrocinia, and Pseudomonas fluorescens had a significant
impact on root anatomy, particularly in terms of the diameter
of the root cortex, dimension of vascular bundles, and numer-
ical changes in the protoxylem and metaxylem vessels.
Several reports suggest that well-developed root anatomical
features, such as expansion of the root cortex and volume of
xylem vessels, more elaborative root hairs, thickening of the
endodermis, and vascular bundles, were positively correlated
with nutrient uptake (Kotula et al. 2009; Kramer et al. 1980).
In our earlier investigation, inoculation of both Arthrobacter
sulfonivorans DS-68 and Arthrobacter sp. DS-179 individu-
ally enhanced the volume of xylem vessels, thickness of the
root cortex, and diameter of vascular bundles and pericycle
(Fig. 3). Inoculation of these microorganisms also enhanced
the Fe or Zn uptake by 60 to 75% (Singh et al. 2017b). Thus,
the modification of internal structure of roots, which leads to
better anchoring and uptake system as a result of inoculation,
can be one of the strategies that also results in biofortification
of micronutrients in crop plants.

6.3.4 Upregulation of Zn and Fe transporters

Micronutrient uptake and translocation are both different pro-
cesses; in some crop genotypes, micronutrient uptake efficien-
cy is very high, but the translocation of micronutrients from
root to shoot and shoot to grains is very poor (Singh et al.
2018). Therefore, nutrient translocation or redistribution in
plant parts is an important phenomenon that needs to be mod-
ulated to increase the micronutrients in the edible parts of
plant. Tables 2 and 3 provide details of Fe and Zn transporters
identified in various crops.

Arbuscular mycorrhiza (AM) fungal inoculants were found
to bring about significant variations in the uptake of nutrients
and their accumulation in roots, shoots, and grains
(Chatzistathis et al. 2009). This indicated the significant role
of metal transporters in the translocation of nutrients from
shoots to grains. There are several metal transporters in plants,
including a zinc-regulated transporter (ZRT)/iron-regulated
transporter (IRT)-like protein (ZIP) family, which is involved
in the translocation of Zn and Fe, a cation diffusion facilitator
(CDF) family, and a P-type ATPase family involved in xylem
loading of Zn as well as other heavy metals (Colangelo and
Guerinot 2006; Eide 2006). The ZIP family proteins have
been reported in rice, wheat, maize, and Arabidopsis thaliana
(Evens et al. 2017; Grotz et al. 1998; Ishimaru et al. 2005;
Krämer et al. 2007; Xu et al. 2010). The overexpression of
these proteins led to an accumulation of excess amounts of Zn
in the cells of wild emmer wheat (Durmaz et al. 2011). The
Zn-solubilizing Enterobacter cloacae strain ZSB14 has been
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reported to upregulate OsZIP1 and OsZIP5 expression and
downregulate OsZIP4 expression in rice genotypes (Krithika
and Balachandar 2016). InHordeum vulgare, the colonization
of Rhizophagus irregularis improved grain Zn concentrations
under Zn-deficient conditions through upregulation of
HvZIP13 (Watts-Williams and Cavagnaro 2018).

Our recent published reports also support this hypothesis
that microbes enhance the expression of ZIP genes. In the
shoots, inoculation of Zn-solubilizing Arthrobacter sp. DS-
179 endophyte led to 1.9- and 4.0-fold increase in TaZIP3
and TaZIP7 transcripts, respectively. The expression levels of
TaZIP7 in shoots due to siderophore-producing Arthrobacter
sulfonivorans DS-68 endophyte inoculation were 2.6-fold
higher than uninoculated control, and TaZIP3 was not influ-
enced by endophyte inoculation, whereas in roots, inoculation
of Arthrobacter sp. DS-179 endophyte led to 1.7-fold increase
in TaZIP3 gene and 40% downregulation in TaZIP7 gene with
respect to uninoculated control. The expression level of TaZIP3
and TaZIP7 genes in roots due to Arthrobacter sulfonivorans

DS-68 inoculation was 1.5- and 2.2-fold higher than uninocu-
lated control, respectively (Fig. 4) (Singh et al. 2017b).

6.3.5 Reduction of phytic acids or anti-nutritional factors
in food grains

Another aspect relevant to biofortification strategies is the
bioavailability of micronutrients in cereal and legume
grains, which is often low because it is affected by anti-
nutritional factors such as phytic acid (Liang et al. 2008).
Phytic acid forms chelation complexes with metals (Cu,
Fe, Mn, Zn, etc.) and decreases the bioavailability of these
micronutrients in dietary food, thus acting as an anti-
nutritional factor (Hunt 2003; Kumssa et al. 2015). Vaid
et al. (2014) reported that the inoculation of Burkholderia
sp. SG1 + Acinetobacter sp. SG3 led to a reduction in
phytate:Zn ratio in the grains of rice.

In our recent report, inoculation of the promising two
Zn-solubilizing (Bacillus subtilis DS-178 and Arthrobacter
sp. DS-179) and two siderophore-producing endophytes

Fig. 3 Transmission electron microphotographs showing anatomical modifications after 30 days of sowing (in terms of volume of xylem vessels,
thickness of root cortex, diameter of vascular bundles and pericycle) in wheat root architecture due to inoculation of endophytes
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(Arthrobacter sulfonivorans DS-68 and Enterococcus
hirae DS-163) brought about significant enhancement in
wheat plant growth, biomass, yield, and micronutrient up-
take. Interestingly, endophyte inoculation decreased phytic
acid concentration in wheat grains by approximately
26% over the RDF. This reduction of phytic acid con-
centration in grains may be correlated with increasing
Fe or Zn concentration in grains (r = − 0.825 for phytic
acid vs Fe content in grains; r = − 0.660 between phytic
acid and Zn content in grains), as depicted by the pos-
itive and significant correlations between phytic acid

content in wheat grains of genotypes classified as low/
high accumulators (Singh et al. 2018). However, more
research needs to be undertaken to decipher the exact
mechanisms involved.

6.3.6 Stimulation of secretion of phenolics like reducing
substances

In nongraminaceous monocots and dicots (strategy I plants),
phenolic compounds are the most frequently reported as a
component of the root exudates produced in response to Fe

Table 2 Iron transporters identified in various plants

Plant Transporter Function References

Arabidopsis
thaliana

AtIRT1, AtIRT2, AtIRT3 Increased accumulation of Zn in shoots and Fe in roots,
translocate Fe and Zn in plant

Lin et al. (2009), Varotto et al. (2002), Vert
et al. (2002, 2009), Zheng et al. (2018)

AtNRAMP1 Transport Fe, Zn, and Cd Curie et al. (2000), Thomine et al. (2000),
Zheng et al. (2018)

AtNRAMP3 Transport Fe, Mn, and Cd; mobilization of vacuolar Fe
stores; export of vacuolar Mn into photosynthetic tissues
of adult plants

Curie et al. (2000), Lanquar et al. (2010),
Thomine et al. (2000)

AtNRAMP4 Mobilization of vacuolar Fe stores, export of vacuolar Mn
into photosynthetic tissues of adult plants

Lanquar et al. (2005, 2010)

AtATM3 Export of Fe–S from mitochondria Bernard et al. (2009), Chen et al. (2007)

AtNAP14 Iron influx into plastids Shimoni-Shor et al. (2010)

AtFPN1 Iron efflux across plasma membrane; loading of Fe into
xylem

Morrissey et al. (2009)

AtFPN2 (AtIREG2) Influx of transition metals into vacuole; sequestration of
toxic metals during Fe deficiency

Morrissey et al. (2009), Schaaf et al. (2006)

Oryza sativa OsIRT1/OsIRT2 Fe and Zn transportation Ishimaru et al. (2006), Zheng et al. (2018)

OsNRAMP5 Uptake and transport Mn, Fe, and Cd Ishimaru et al. (2012)

OsYSL2, OsYSL9,
OsYSL13, OsYSL18

Translocation of Fe from root to shoot; loading of Fe in seeds Aoyama et al. (2009), Ishimaru et al.
(2010), Koike et al. (2004), Senoura
et al. (2017), Zhang et al. (2018)

AtYSL1/AtYSL2/AtYSL3 Influx of Fe (II)–NA complexes; remobilization of transition
metals during senescence and seed set; iron uptake from
xylem

Chu et al. (2010), Di Donato et al. (2004),
Waters et al. (2006)

OsVIT1/OsVIT2 OsVIT1 andOsVIT2 are localized to the vacuolar membrane.
OsVIT1 and OsVIT2 modulate iron translocation
between flag leaves and seeds in rice.

Zhang et al. (2012a, b)

ZmYS1 Influx of Fe (III)–phytosiderophore complexes; primary iron
uptake from soil

Curie et al. (2001), Inoue et al. (2009),
Schaaf et al. (2004)

Arachis hypogaea AhNRAMP1 Fe, Zn, and Mn transporter and responsible for Fe, Zn, and
Mn acquisition and distribution

Wang et al. (2019), Xiong et al. (2012)

Hordeum vulgare ZmYS1 Influx of Fe (III)–phytosiderophore complexes; primary iron
uptake from soil

Curie et al. (2001), Inoue et al. (2009),
Schaaf et al. (2004)

Zea mays ZmYS1 Influx of Fe (III)–phytosiderophore complexes; primary iron
uptake from soil

Curie et al. (2001), Inoue et al. (2009),
Schaaf et al. (2004)

Malus
xiaojinensis

MxIRT1 Ferrous transporter Li et al. (2006)

Solanum
lycopersicum

LeNRRAPM1 Distribution of Fe in the vascular parenchyma upon Fe
deficiency

Bereczky et al. (2003)

Malus baccata MbNRAMP1 Fe, Mn, and Cd trafficking Xiao et al. (2008)

Triticum aestivum TaVIT2 Transports Fe and Mn Connorton et al. (2017)
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deficiency (Curie and Briat 2003; Römheld and Marschner
1986; Susin et al. 1996). Compared to other compounds in
the root exudates, phenolics are particularly interesting be-
cause of their multiple chemical and biological functions, such
as chelating, reducing, radical scavenging, antimicrobial ac-
tivity, and serving as a carbon source for microbial growth
(Blum et al. 2000; Cao et al. 1997; Jin et al. 2007; Rice-
Evans and Miller 1996). It has been suggested that the re-
leased phenolics function to enhance Fe availability in the
rhizosphere soil, as an alternative or supplement to the plasma
membrane-bound ferric reductase, through chelating and

reducing insoluble Fe (Dakora and Phillips 2002). Recently,
it has been reported that the removal of the secreted phenolics
from a hydroponic culture solution significantly enhances Fe
accumulation and Fe deficiency responses in roots; this is
attributed to the inhibition of solubilization and utilization of
apoplasmic Fe (Jin et al. 2007). Moreover, phenolics such as
protocatechuic acid (PCA) are reported to chelate Fe (III) and
solubilize and reduce it to Fe (II) in vitro (Yoshino and
Murakami 1998).

Moreover, many rhizosphere beneficial microbes that elicit
the induced systemic resistance (ISR) improve Fe and perhaps

Table 3 Zinc transporters identified in various plants

Plant Transporter Function References

Arabidopsis
thaliana

At ZIP1–2, At
ZIP1–12

Zinc transporter in Arabidopsis Grotz et al. (1998), Ivanov and Bauer (2017), Krämer
et al. (2007), Milner et al. (2013), Zheng et al.
(2018)

AtHMA2,
AtHMA3, and
AtHMA4

Zn uptake from the soil Axelsen and Palmgren (2001)

AtMTP1 Stores Zn in the vacuole of predominantly leaf tissue Desbrosses-Fonrouge et al. (2005), Kobae et al.
(2004)

Oryza sativa OsZIP4 Zn2+-HCO3 co-transporter Ishimaru et al. (2005)

OsZIP1, OsZIP3,
OsZIP1–10

Functional Zn transporters Ivanov and Bauer (2017), Ramesh et al. (2003),
Zheng et al. (2018)

Hordeum
vulgare

HvZIPs Zn uptake Tiong et al. (2015)

Zea mays ZmZIP1–8 Functional Fe or Zn transporter Li et al. (2013)

ZmZLP1 May be responsible for transport of Zn from the ER to the
cytoplasm

Xu et al. (2010)

Triticum
aestivum

TdZIP1, TaZIPs
(TaZIP1–14)

Transport of Zn in wheat Durmaz et al. (2011), Evens et al. (2017)

Glycine max GmZIP1 Highly selective for Zn and might play a role in the symbiotic
relationship between soybean and Bradyrhizobium
japonicum

Moreau et al. (2002)

Fig. 4 Relative changes in
TaZIP3 and TaZIP7 gene
expression levels (expressed in
fold increase) after 30 days of
sowing, in low Fe and Zn
accumulating wheat genotype-
4HPYT-414, due to endophyte
inoculation (Arthrobacter
sulfonivorans DS-68 or
Arthrobacter sp. DS-179), over
control. Data represents the
average of three replicates; error
bars depict standard deviation
(SD)
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Zn acquisition in strategy I plants (in strategy II plants, this has
been less studied), through the induction of Fe deficiency
responses (Romera et al. 2019; Verbon et al. 2017). The ISR
and the Fe uptake signaling pathways interact in plant roots
via the transcription factorMYB72, which controls the biosyn-
thesis of Fe-mobilizing phenolics. MYB72-dependent
BGLU42 activity is required for the secretion of Fe-
mobilizing phenolics into the rhizosphere and the onset of
ISR, as outlined by Verbon et al. (2017). They illustrated that
the colonization of Arabidopsis plant roots (strategy I plants)
by ISR eliciting beneficial microbes, e.g., Pseudomonas spp.
and Trichoderma spp., activates the FIT (Fer-like Fe-
deficiency-induced transcription factor) regulated transcrip-
tion factor gene MYB72 and the Fe uptake genes FRO2
(Ferric reduction oxidase 2) and IRT1 (Iron-regulated trans-
porter 1). Volatile organic compounds secreted by ISR induc-
ing microbes coordinate MYB72 expression in Arabidopsis
roots during the onset of induced systemic resistance and Fe
deficiency responses through the activation of the FIT tran-
scription factor gene (Zamioudis et al. 2015). Transcription
factor MYB72 controls the biosynthesis of phenolic com-
pounds and the expression of the glucose hydrolase gene
BGLU42 (β-glucosidase 42) and the ABC (ATP-binding
cassette) transporter gene PDR9 (Pleiotropic Drug
Resistance transporter 9). Glucose hydrolase activity of
BGLU42 (β-glucosidase 42) is involved in the processing of
phenolic compounds to enable their secretion into the rhizo-
sphere. Induced ABC (ATP-binding cassette) transporter gene
PDR9 (Pleiotropic Drug Resistance 9) is involved in the se-
cretion of processed phenolic compounds from plant roots to
the rhizosphere, and the phenolic compounds chelate and mo-
bilize Fe3+, making it available for the reduction by FRO2 and
IRT1 genes and uptake by the roots. The antimicrobial activity
of some phenolic compounds may play a role in shaping the
rhizosphere microbial community. BGLU42 is required for
rhizobacteria-mediated ISR and, when overexpressed, confers
resistance against a broad spectrum of plant pathogens
(Zamioudis et al. 2014).

Neotyphodium coenophialum can stimulate the exudation
of phenolic compounds in the rhizosphere of continental tall
fescue (Lolium arundinaceum) with chelating characteristics;
this was implicated in directly improving Fe uptake
(Malinowski et al. 2004; Malinowski and Belesky 2000).

6.3.7 Secretion of phytohormones like signaling molecules

Several phytohormones, such as gibberellic acid and cytoki-
nins, are key players in metal stress mitigation (Al-Hakimi
2007; Gangwar et al. 2010; Masood et al. 2016; Zhu et al.
2012). There are several reports on the effect of various phy-
tohormones on Fe uptake gene expression—IRT1 (Iron-
regulated transporter 1) and FRO2 (Ferric reduction oxidase
2). Auxin is known to act positively in FRO2 induction under

Fe deficiency (Chen et al. 2010); ethylene is also a positive
regulator of IRT1 and FRO2 in Arabidopsis and cucumber
plants (Lucena et al. 2006).

Enhancing Fe-deficiency-inducible responses can facilitate
an increase in the plant acquisition of Fe from Fe-limited soils.
Xie et al. (2009) reported that the soil bacterium Bacillus
subtilis GB03 could enhance Fe acquisition of Arabidopsis
plants by activating the Fe-deficiency-inducible responses,
suggesting that soil microorganisms could regulate plant Fe
acquisition via signaling processes. In the last decade, plant
physiologists have made efforts to uncover the signals respon-
sible for triggering Fe deficiency responses in plant roots, and
several hormonal compounds have been identified as signal-
ing elements (Hindt and Guerinot 2012; Ivanov et al. 2012;
Kobayashi and Nishizawa 2012). These include auxins (Chen
et al. 2010), nitric oxide (NO) (Graziano and Lamattina 2007),
ethylene (García et al. 2011), cytokinin (Seguela et al. 2008),
and brassinosteroids (Wang et al. 2012). Among these, auxins,
NO, and ethylene are particularly interesting, as several soil
microorganisms can produce these compounds. This helps to
emphasize the significant and potential interactions between
soil microorganisms and Fe uptake of plants. Auxins have
been demonstrated to be an important chemical signal, en-
hancing Fe-deficiency-inducible responses. Exogenous addi-
tion of synthetic auxin, either IAA or α-naphthaleneacetic
acid, enhances Fe-deficiency-induced reduction of ferric Fe,
expression of FRO2 and IRT1, and development of root hairs
and lateral roots to increase the surface area for Fe uptake
(Chen et al. 2010; Wu et al. 2012). Production of auxin-like
compounds by soil microorganisms can play a similar role and
prove beneficial for plant Fe uptake under Fe-limited condi-
tions. In support of this interaction, auxins produced by a
microbe, isolated from soil mixed with phenolics, and secreted
from Fe-deficient red clover plants markedly enhanced the
activity of ferric chelate reductase in roots of Fe-deficient
plants (Jin et al. 2006).

7 Conclusions and future outlook

The availability of low amounts of micronutrients is generally
known as “hidden hunger” and draws less consideration than
the conspicuous starvation of individuals. As an example, mi-
cronutrient deficiency refers to a situation in which a family
can just earn enough to eat rice but not any of the natural
products, including vegetables and meat that would make a
nutritious diet. There is a need to understand, as biologists,
that there is an intricate networking between soil, plants, and
microbiomes of soil and plants that is responsible for crop
productivity and soil fertility. Hence, along with plant breed-
ing and agronomic fortification, significant efforts need to be
undertaken to include microbes as partners in such
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approaches. Therefore, focused research needs to be undertak-
en toward the following:

& Priming seeds with microbes or their products to improve
bioavailability of micronutrients or reduce phytic acid in
grains

& Understanding the interactions of the microbiome of
plants and gut microflora for improving absorption, in-
cluding prebiotics and Fe absorption in the human gut

& Conserving and exploring our native germplasm of wild
cereals to identify the novel plant–microbiome combina-
tions responsible for micronutrient enrichment

& Development of food grain mixes, with probiotic or pre-
biotic supplements

Future challenges include a synergism of technologies to-
ward providing nutritious food for the growing populations,
using sustainable and environment-friendly technologies.
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