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Abstract – Odorant-binding proteins (OBPs) in insects bind to volatile chemical cues that are important in 
regulating insect behavior. It is hypothesized that OBPs bind with specificity to certain volatiles and may help 
in transport and delivery to odorant receptors (ORs), and may help in buffering the olfactory response and aid 
the insect in various behaviors. Honeybees are eusocial insects that perceive olfactory cues and strongly rely 
on them to perform complex olfactory behaviors. Here, we have identified and annotated odorant-binding pro-
teins and few chemosensory proteins from the genome of the dwarf honey bee, Apis florea, using an exhaustive 
homology-based bioinformatic pipeline and analyzed the evolutionary relationships between the OBP subfami-
lies. Our study confirms that the Minus-C subfamily in honey bees has diverged from the Classic subfamily of 
odorant-binding proteins.
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1. INTRODUCTION

Insects are a diverse class of Arthropods with 
a highly sensitive olfactory system. Olfactory 
information helps in mate selection, mating and 
oviposition, foraging for food, and social behavior 
(Hildebrand and Shepherd 1997). Odorant-bind-
ing proteins (OBPs) are abundantly present in the 
sensillar lymph of insects with the presence of at 
least 50 OBP genes reported in some species like 
Drosophila (Hekmat-Scafe et al. 2002), and in the 
nasal mucus of many vertebrate animal species 

(Bianchet et al. 1996; Loebel et al. 2000; Mastro-
giacomo et al. 2014; Scaloni et al. 2001; Tegoni 
et al. 1996; White et al. 2009; Zhu et al. 2017; 
Manikkaraja and Bhavika et al. 2020). Despite 
their abundance and diversity, the role of OBPs in 
olfactory coding is yet to be completely explored 
(Larter et al. 2016).

Insect OBPs are small, soluble globular pro-
teins, 10–30 kDa, that are further characterized 
by alpha-richness, and the presence of six highly 
conserved cysteine residues (C1–C6) with con-
served disulfide spacing (Vogt et al. 1981; Pelosi 
and Maida, 1990) that stabilize its tertiary struc-
ture. Alpha helix-rich OBPs found in insects do 
not show structural homology with vertebrate 
OBPs, characterized with a classical lipocalin 
fold (Flower 1996). It has been hypothesized that 
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OBPs bind to ligands and solubilize them to aid 
transport and delivery towards odorant receptors.

Genome-wide surveys to identify odorant-
binding proteins in insect orders have been previ-
ously performed for various insect species in exist-
ing literature. Previous studies have predicted the 
presence of odorant-binding proteins in various 
species including Apis mellifera (order: Hyme-
noptera) (Forêt and Maleszka 2006), Drosophila 
melanogaster (order: Diptera) (Hekmat-Scafe 
et al. 2002; Graham and Davies 2002), Anopheles 
gambiae (order: Diptera) (Manoharan et al. 2013), 
and Periplaneta americana (order: Blattodea) (He 
et al. 2017) using homology-based bioinformatic 
approaches as a typical start point. Previous work 
in our laboratory (Karpe et al. 2016) has identified 
odorant receptors (ORs) in Apis florea using an 
exhaustive genomic pipeline. In order to comple-
ment the search of ORs (Karpe et al. 2016) towards 
a better understanding of odor coding (Missbach 
et al. 2015), this study investigated odorant-binding 
proteins (OBPs) in Apis florea.

Apis florea or the red dwarf honey bee exhibits 
the complex behavior of eusociality, where there is 
a reproductive division of labor within a colony that 
comprises a female queen, male drones, and female 
worker bees. While worker bees perform important 
tasks such as foraging, guarding the colony hive, 
maintenance, and other diverse tasks for the colony, 
the queen and drone perform reproductive roles 
(Page and Robinson 1991).

Members of the species exhibit haplodiploidy 
(Halling et al. 2001) system of genetic inheritance, 
where the males in this species are haploid, pos-
sessing half the number of chromosomes as diploid 
females. Apis florea is geographically distributed 
with a preference for warm climate (Otis 1991) in 
regions such as mainland Asia, the southern border 
of the Himalayas, the plateau of Iran, Oman and 
Vietnam, southeast China, and peninsular Malaysia 
(Hepburn et al. 2005; Oldroyd and Nanork 2009; 
Moritz et al. 2010) and display open nesting typi-
cally on low-lying tree branches in shaded regions 
(Wongsiri et al. 1997; Hepburn et al. 2005). Apis 

florea are important pollinators of tropical and orna-
mental plants as well as agricultural crops. They 
primarily feed on pollen and nectar from flowering 
plants. Like other honeybees, the body of Apis flo-
rea is studded with various types of sensilla among 
which olfactory sensilla (sensilla basiconica and 
sensilla chaetica) are prominent structures (Gupta 
1986, 1992). The antenna of the insect is typically 
the main site for olfactory receptors (Wigglesworth 
1965). The antennae of Apis florea harbor hair-like 
sensillae trichodea types I, II, III, IV, sensilla basi-
conica, sensilla placodea, and sensilla ampullaceal 
(Gupta 1992; Kumar et al. 2014; Suwannapong 
et al. 2011).

Insect OBPs, although highly divergent, are clas-
sified on the basis of conserved cysteine signature 
into Classic (six cysteines), Minus-C (loss of two 
conserved cysteines), Plus-C (additional cysteine 
residues and one proline) (Zhou et al. 2004), and 
atypical (~ 10 cysteines and long C-terminus) (Hek-
mat-Scafe et al. 2002; Xu et al. 2003) and Dimer 
OBPs (two cysteine signatures). Rapid identifica-
tion of repertoires of putative OBPs across vari-
ous insect genomes has been suggestive of the idea 
that the ecological niche of an insect species may 
correlate with an abundance of OBPs and social 
behavior (Zhou et al. 2020). While reference Dip-
teran fruitfly Drosophila melanogaster and Japa-
nese encephalitis vector Culex quinquefasciatus 
have been found to have 51 and 110 putative OBPs 
respectively (Hekmat-Scafe et al. 2002; Mano-
haran et al. 2013), previous studies in Hymenop-
teran OBPs have also found species-specific differ-
ences in OBPs including 21 OBPs in eusocial Apis 
mellifera (Foret et al. 2006), 7 OBPs in fig wasp 
Ceratosolen solmsi (Wang et al. 2014) that lives in 
closed spaces, and 90 in diamondback moth Plu-
tella xylostella (Vieira et al. 2012) that lives in open 
spaces. Using Apis mellifera as a closely related 
reference genome and a revised annotation of Apis 
mellifera OBPs, we thus investigated the identifica-
tion, annotation, and subfamily-based classification 
of putative OBPs from the genome of Apis florea 
and examined their evolutionary relationships using 
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in silico approaches (Karpe et al. 2017; Mam and 
Sowdhamini, 2020).

2.  MATERIALS AND METHODS

2.1.  Preparing query dataset from Apis 
mellifera OBPs

The genome of Apis florea, Aflo_1.1 (Fouks 
et al. 2021), was obtained from the National 
Center for Biotechnology Information (NCBI) 
(https:// www. ncbi. nlm. nih. gov).

In order to have a standard query set from 
Apis mellifera, overlapping and unique hits from 
three sources were retained in one final dataset. 
Unique hits were those that were not reciprocal 
best hits across datasets, and further depending 
on sequence identity were labelled as isoforms 
or distinct. Based on homology with the final 
AmelOBP dataset, AfloOBPs were identified, 
scored, and annotated (explained in detail in 
later sections).

AmelOBPs were pooled from the NCBI 
non-redundant protein database (29 puta-
tive AmelOBPs) and a previous study (Foret 
et al. 2007; 21 AmelOBPs) to obtain a filtered 
set of query protein sequences. The filtered 
dataset contained sequences that were com-
mon to both or unique to either dataset (Sup-
plementary Data). Reciprocal homology was 
performed using the filtered query set obtained 
and AmelOBPs from a recent study (Vieira and 
Rozas 2011; 21 AmelOBPs). An e-value cut-
off of  e− 10 was used. The resultant matches as 
well as unmatched OBPs (putative OBPs with 
no reciprocal hit; 10 protein sequences) resulted 
in a final dataset of annotated AmelOBPs (Sup-
plementary Table 1).

2.2.  Preparing query dataset from Insecta 
OBPs

Protein sequences annotated as OBPs were 
obtained for organisms within Insecta from 
literature (Supplementary Tables 2 and 3). A 
non-redundant dataset was prepared by using 

CD-hit (Li and Godzik, 2006) with a filtering 
threshold of 95% sequence identity.

2.3.  Query protein to subject genome 
alignments

Genomic alignments were obtained using 
Exonerate (Slater and Birney 2005) with intron 
sizes of 500, 2000, 5000, and 10,000 respectively 
with BLOSUM62 (Henikoff and Henikoff 1992) 
as the substitution matrix. In order to identify phy-
logenetically distant orthologs, PAM250 (Dayhoff 
et al. 1978) was also used as a substitution matrix.

The genomic alignments were processed as per 
the methodology in a previous in-house study from 
a lab (Karpe et al. 2016, 2017, 2021). The pipeline 
involves thoroughly scanning and scoring align-
ments to the genome based on length, degree of 
similarity, and the best match of the scaffold loca-
tion in the subject genome to the query sequence. 
The unique set of genomic alignments was then 
processed further to translate amino acids from 
corresponding in-frame codons. The resultant set of 
gene models and protein sequences were also man-
ually corrected for missing start and stop codons 
and missing N-terminal and C-terminal amino 
acids, and annotated as “complete,” “partial,” or 
“pseudogene.”

For the purpose of further evolutionary analy-
sis, only Apis florea OBPs obtained from Apis mel-
lifera as the query (Sect. 2.1) have been discussed 
(Supplementary Table 4). The results of Apis florea 
OBPs obtained by querying OBPs in other insect 
orders (Sect. 2.2) have been provided as supplemen-
tary information (Supplementary Table 5).

2.4.  Homology‑based validation and 
nomenclature

The predicted Apis florea OBPs (AfloOBP) were 
subjected to reciprocal homology with our manu-
ally curated AmelOBP dataset, as explained above. 
The final dataset of predicted AfloOBPs comprised 
resultant matches as well as unique sequences 
with no corresponding reciprocal hits found in the 
AmelOBP dataset. The AfloOBP predicted protein 
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sequence dataset was thus annotated with respect to 
AmelOBP homolog, if present as well as its status 
as “complete” or “partial.”

2.5.  Secondary structure prediction

The secondary structure of the protein 
sequences was predicted using neural network-
based PSIPRED v3.2 (Buchan et al. 2013).

2.6.  Detection of signal peptide and 
subcellular localization

N-terminal signal peptide was detected using 
SignalP 4.1 (Nielsen et al. 1997; Petersen et al. 
2011) and SignalP 6.0 (Teufel et al. 2022). This 
algorithm uses neural networks and Hidden Markov 
Models to determine signal peptides in each pro-
tein sequence. The predicted signal peptide for a 
given sequence was cleaved off and the “mature” 
sequence was used for multiple sequence alignment 
and phylogeny. Prediction of subcellular localization 
was performed through DeepLoc (Armenteros et al. 
2017), an algorithm based on deep neural networks.

2.7.  Preparing dataset of insect OBPs for 
rooted and unrooted phylogeny

In order to prepare an outgroup for the 
rooted phylogeny, annotated chemosensory 
proteins of Apis mellifera (AmelCSPs) were 
obtained from a previous study (Forêt et al. 
2007), namely, AmelCSP1, AmelCSP2, 
AmelCSP3, AmelCSP4, AmelCSP5, and 
AmelCSP6.

In order to construct the phylogeny, protein 
sequences of OBPs from 11 insect orders from 
representative insect species were obtained 
from previous literature and UniProt (The 
UniProt Consortium 2019) database. The 
insect orders, corresponding species, and the 
number of species-specific OBPs have been 
tabulated as in Supplementary Table 1.

2.8.  Structure‑based sequence alignment 
and phylogenetic analysis

A structure-based seed template was obtained 
from the PASS2.5 database (Gandhimathi 
et al. 2012) with the SCOP ID of the fold as 47,565. 
PASS2 is a database of alignments of proteins 
organized as structural superfamilies. Such struc-
ture-guided alignments (seed templates) are useful 
for guiding sequence alignments of protein families 
that are diverse in sequence but are conserved at the 
level of their structures, e.g., insect OBPs. After the 
removal of signal peptides, the dataset of “mature” 
AfloOBP sequences was aligned against the seed 
template using the G-INS-i algorithm, BLOSUM 30 
substitution matrix, and 1000 iterations in MAFFT 
(Katoh et al. 2002, 2013). The output of the multi-
ple sequence alignment was checked for the best-fit 
model of evolution using ProtTest v.3.4.2 (Darriba 
et al. 2011; Guindon and Gascuel 2003) as deter-
mined by the AIC and BIC scores. Phylogeny was 
constructed with RAxML (Stamatakis 2006, 2014) 
using the maximum likelihood method with 1000 
bootstraps and LG matrix (Le and Gascuel 2008) of 
amino substitution, the proportion of invariant sites, 
and the gamma rate heterogeneity (“LG + I + G”) 
model of evolution.

Tips labelled as seed are structure-based tem-
plates of insect OBPs derived from the PASS 2.5 
database (Gandhimathi et al. 2012). They were used 
to verify the clustering observed in the sequence-
based phylogeny, as insect OBPs are known to have 
low sequence identity among themselves. A seed 
tip label contains the following information in this 
order: (a) abbreviated form of the insect species, (b) 
letter “d,” (c) PDB ID, and (d) PDB chain ID.

The phylogenetic tree was visualized and anno-
tated using iTOL (Letunic and Bork 2006, 2016).

2.9.  Validation of gene models using 
RNA‑seq exon data from NCBI

Gene models that were obtained through our 
in-house in silico homology-based pipeline and 
those obtained from literature (Fouks et al. 2021) 
were validated and/or corrected using publicly 
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available RNA-seq exon data from the NCBI 
Apis florea Annotation Release 102.

3.  RESULTS AND DISCUSSION

We filtered and re-annotated OBPs from 
closely related reference genome Apis mellifera 
using a homology-based approach (see Sect. 2). 
The final dataset (Supplementary Table 1) com-
prised 25 AmelOBP protein sequences.

A genome-wide survey of Apis florea using 
these AmelOBPs revealed 22 novel OBP protein 
sequences with 15 complete and 7 partial sequences 
either towards the N-terminus, C-terminus, or both 
with an average exon number of 5 (Supplementary 
Tables 4, 6). A parallel study has recently provided 
annotation of 22 OBPs in Apis florea (Fouks et al. 
2021).

We also checked whether the addition of OBPs 
from other insects while performing a genome-
wide survey in A. florea would increase the num-
ber of identified AfloOBP genes. For this purpose, 
our final query dataset of AmelOBPs was used 
as input against several Hymenopteran genomes 
(Sect. 2; Supplementary Table 5) to obtain gene 
models and predict OBPs in each such genome 
using the methodology detailed in Sect. 2.3. Here, 
through an extensive filtering strategy, we identi-
fied 30 putative OBPs orthologous to other social 
bees (Apis dorsata, Apis cerana, Melipona quad-
rifasciata), facultatively social bee Eufrisea mexi-
cana, solitary bee (Megachile rotundata), social 
wasp (Polistes dominula), and bumblebees (Bom-
bus terrestris and Bombus impatiens). Of these 30 
putative sequences from the family Apidae (Sup-
plementary Table 5), twenty-two genes were very 
similar in gene structure to those identified using 
only AmelOBPs. The remaining 8 OBPs were a 
result of remote homology searches (with PAM250 
matrix or allowing very long intronic regions), and 
hence 5 of these also had significant overlap with 
previously mentioned good-quality 22 gene mod-
els (Supplementary Table 5)In the end, expanding 
the search space by using many insect OBPs and 

remote homology searches yielded only 3 novel 
OBPs on the NW_003789197.1 scaffold. These 
three hits were not the best hits in bidirectional 
blast with their respective query sequences. As such 
remote homologs may sometimes belong to another 
related protein family, we decided to not include 
them in our further analysis.

3.1.  Chemosensory proteins in Apis florea

Furthermore, a similar approach yielded 8 
putative chemosensory proteins (CSPs) in the 
Apis florea genome, out of which 7 putative 
CSPs showed significant e-value for the pres-
ence of OS-D domain (Supplementary Table 5). 
The 7 CSPs identified have orthology with Atta 
colombica (leafcutter ant), Bombus ignitus (bum-
blebee), Apis cerana cerana (Asian honey bee), 
Camponotus floridanus (Florida carpenter ant), 
Trachymyrmex zeteki (fungus-farming ant), and 
Trichogramma pretiosum (endoparasitoid wasp) 
(Supplementary Table 5). The CSP gene fam-
ily is highly conserved and shows an expansion 
in the flour beetle Tribolium castaneum (20 
genes; Forêt et al. 2007) and a reduction in bees, 
wasps (10 genes; Werren et al.), and Dipterans 
(4 in fruit flies and 8 in mosquitoes; Vieira and 
Rozas 2011). Although 2 CSP genes have been 
identified in Apis cerana (Diao et al. 2018), stud-
ies have confirmed 6 CSPs in honeybee species 
(Wanner et al. 2004; Forêt and Maleszka 2006; 
Forêt et al. 2007; Fouks et al. 2021) such as Apis 
florea, Apis mellifera, and Apis dorsata. Our 
finding is thus in agreement with the knowledge 
of insect CSPs in current literature. Although 
CSPs have been typically detected in pheromone 
glands (e.g., mandibular glands) and reproduc-
tive organs (Zhu et al. 2019), members of CSPs, 
like OBPs, have also been associated with non-
sensory functions. CSPs have been involved in 
embryonic development (Maleszka et al. 2007), 
insecticide resistance (Liu et al. 2014), and limb 
regeneration (Nomura et al. 1992).
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3.2.  Comparative study on AfloOBP 
predicted protein sequences

Finally, out of 22 OBP genes, 15 complete 
AfloOBP genes (i.e., annotated as having a 
start and stop codon), and 16 translated protein 
sequences were predicted to have signal peptide 
sequences. The average length of signal pep-
tides predicted in our AfloOBP dataset was 19 
amino acids. Cleavage position ranged from 16 
to 24th amino acids in the sequence. Secondary 
structure analysis revealed an alpha-rich state 
of OBPs with high confidence. Typically, 6–7 
alpha helices per complete AfloOBP sequence 
were predicted.

We used a reciprocal BLASTp approach to 
compare protein sequences of AfloOBPs obtained 
through our pipeline with that of the recent study 
(also reporting 22 OBPs) (Fouks et al. 2021). Our 
analysis reports 20 OBPs as reciprocal best-hit 
matches (Supplementary Table 8). However, trian-
gular associations are likely with more sequences in 
their dataset. For example, AfloOBP17-like shows 
complete query coverage and identity with OBP17 
(Fouks et al. 2021) but OBP17 shows identity only 
to AfloOBP17. Similarly, isoform AfloOBP19-
like did not have reciprocal matches with OBPs 
in Fouks et al. 2021 and has been annotated as a 
long non-coding RNA (Supplementary Table 9). 
OBP20PSE (61 amino acids) showed full query 
coverage with AfloOBP19 in our dataset. The exon 
coordinates in the gene model for OBP20PSE were 
also found in our prediction from protein to genome 
alignments using Exonerate (Sect. 2.3; Supplemen-
tary Table 6).

Interestingly, OBP22PSE (216 amino acids) 
was annotated in a recent and parallel study (Fouks 
et al. 2021) and corresponds to a gene under nega-
tive selection (Fouks et al. 2021). It did not find 
reciprocal matches in our dataset. Additionally, we 
observed that OBP22PSE was positive for PBP/
GOBP domain against the Pfam database with 
a considerably higher e-value (3.4e − 06) than 
other OBPs. With a length of 216 amino acids, 
we expected it to be a double-domain or atypical 
OBP but, interestingly, observed only 1 domain 
with a relatively weak e-value. As our study cre-
ated a revised annotation of Apis mellifera OBPs 

combining three studies (Sect. 2.1) before using it 
for identifying OBPs in Apis florea, therefore, we 
retain our annotation independently.

3.3.  Comparative study on gene models 
of AfloOBPs and revised annotation 
using RNA‑seq data

We had performed the GWS work indepen-
dently and deposited the manuscript in BioRxiv 
in 2020 prior to the 2021 release of the publica-
tion by Fouks et al. group (2021). We present a 
detailed comparative analysis of the gene mod-
els below using a combination of RNA-seq data 
from NCBI and our computational genome-wide 
survey.

We have used publicly available RNA-seq 
data from NCBI Apis florea Annotation Release 
102. We report that OBPs in Apis florea have 
5 exons with the exception of OBP1, OBP8_2, 
OBP10, and OBP11 having 6 exons. OBPs pre-
dicted computationally by our study and Fouks 
et al. (2021) have been named identically through 
our RBH analysis except the following: [our 
annotation (annotation by Fouks et al.)] OBP3_
l2 (OBP03), OBP8_2 (OBP06), OBP8_2like 
(OBP8), OBP15-like (OBP15), OBP21-like 
(OBP21), OBP21 (OBP18).

We have annotated and identified splice vari-
ants for AfloOBP7, AfloOBP8_2, AfloOBP10, 
AfloOBP12, AfloOBP15-like, and OBP22PSE 
gene models. Furthermore, we have also added 
signal peptide-coding exons that were missing 
in few gene models obtained through predictive 
analysis-OBP06 (Fouks), OBP1 (our study), 
OBP8_2 (our study), OBP15-like (our study), 
and OBP16 (our study).

Fouks et al. (2021) annotated gene models 
for OBP02, OBP03, OBP04, OBP09, OBP11, 
OBP13, OBP16, 17, OBP18, OBP19, and 
OBP21 lacked stop codons that have been now 
added to the revised models (Supplementary 
Table 9).

As discussed earlier, the study by Fouks 
et al. (2021) also annotated two genes AfloO-
BP20PSE and AfloOBP22PSE. The annota-
tion for AfloOBP20PSE by Fouks et al. (2021) 
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comprised two exons only. We have revised 
the model to a five-exon model using RNA-seq 
exon data and corrected the exon–intron bound-
aries. AfloOBP22PSE is a novel gene model 
predicted by Fouks et al. (2021). However, we 
report the presence of two splice variants, and 
present corrected gene boundaries for the same.

Recent research on long non-coding RNA in 
Hymenoptera reveals their involvement in vari-
ous neuronal processes in ants (Shields et al. 
2018) and adult honeybee workers (Sawata 
et al. 2004; Kiya et al. 2012) as well as olfac-
tory behaviors (Liu et al. 2019) in honeybees. 
Their potential involvement in regulating 
behavioral plasticity, ovary activity, and divi-
sion of labor in honeybees through targeting 
mRNAs is yet to be fully understood (Chen 
et al. 2017, Chen and Shi 2020). We are the 
first to report the annotation of long non-coding 
RNA (lncRNA) sequence in Apis florea through 
both our in silico homology-based GWS pipe-
line and publicly available RNA-seq exon data. 
The sequence contains a peroxisomal target-
ing signal and has a weak PBP/GOBP domain. 
The novel sequence AfloOBP19-like at scaf-
fold NW_003791127.1 indicates a weak PBP/
GOBP domain but is a long non-coding RNA. 
It is a two-exon gene (289 bases) with a peroxi-
somal targeting signal.

In general, using RNA-seq exon data, we 
have corrected gene boundaries in most mod-
els in both Fouks et al. (2021) and our in silico 
prediction to maintain in-frame translation of 
protein sequences. There have been frame shifts 
due to gene boundaries annotated causing issues 
with the translated amino acid sequence. These 
have been corrected throughout. For example, 
we have improved gene boundaries for the last 
exon in Fouks et al.’s (2021) annotated OBP19. 
On the other hand, the C-terminus has been 
extended in the case of OBP3. We have tabu-
lated the differences among the models in Sup-
plementary Table 9.

AfloOBP1 is encoded by six exons with a 
well-defined N-terminal signal peptide and 
C-terminus. This is an improvement on the gene 
boundaries in the homology-based annotations 
by ours and Fouks et al. 2021 (Supplementary 

Table 9). Our homology-based annotation lacked 
a signal peptide and the C-terminal exon. The 
gene model for OBP1 by Fouks et al. (2021) 
has slightly differing gene boundaries at the 
third and fifth exons respectively that translate 
to frame shifts and do not align with their pre-
dicted protein sequence. The RNA-Seq-based 
annotation for OBP1 overcomes these limita-
tions (Supplementary Table 9). AfloOBP2 is 
encoded by five exons and is characterized as 
complete in our in silico analysis. In AfloOBP3, 
the amino terminus has been extended further 
and gene boundaries have been corrected to cor-
rect frame shifts. OBP7 X1 splice variant has 
been annotated by both homology-based stud-
ies—ours and Fouks et al.’s (2021) pipelines. 
We have corrected the gene boundaries using 
publicly available RNA-seq exon data and have 
annotated the AfloOBP7 X2 isoform as well. For 
AfloOBP8_2, splice variants X1 and X2 have 
been annotated. For both OBP10 and OBP12, 
X1 isoform was originally annotated through 
our GWS, whereas X2 has been annotated by 
Fouks et al.’s (2021) study. In the case of OBP12 
gene model, exon 1 (886,573–886,608) predicted 
is absent from the RNA-seq exon data. We did 
not find transcriptomic evidence for OBP17-like 
that was a predicted partial gene in our in silico 
pipeline. Despite partial overlap with OBP17, the 
exon–intron boundary (1,817,764–1,817,790) of 
OBP17-like did not correlate well with transcrip-
tomic data.

3.4.  Evolution of OBP subfamilies in 
honeybees

Sequences AfloOBP1-AfloOBP13 were 
found to display the conserved Cysteine signa-
ture of Classic and Minus-C subfamilies, as their 
orthologs in Apis mellifera, and comparable to 
that of AgamOBP (Figure 1). Multiple sequence 
alignment revealed conserved Cysteine profiles 
specific to Classic and Minus-C subfamilies in 
the Apis florea genome (Figure 2). Sequences 
AfloOBP14-AfloOBP21 were found to show the 
conserved Minus-C cysteine signature where 
Cysteine residues in the conserved second and 
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fifth positions are missing. Our analysis shows 
that the conserved cysteine signature for both 
subfamilies in Apis florea is similar to the rep-
resentative signature observed in a previous 
study (Xu et al. 2009). The conserved cysteine 
signature for the Classic subfamily for the Hyme-
nopteran insect order was determined as C1-X 
23:35-C2-X3-C3-X 27:45-C4-X 7:14-C5-X8-C6 
(Xu et al. 2009). Our study has identified 13 
Classic and 9 Minus-C OBPs in Apis florea. We 
observe the Classic cysteine signature to be con-
served similarly as C1-X 27:37-C2-X3:4-C3-X 
33:43-C4-X 9:13-C5-X8‑9-C6.

We tested various models of evolution on our 
insect OBP data (Darriba et al. 2011; Guindon 
and Gascuel 2003). Out of these, the most optimal 
model of evolution was parameters “LG + I + G.” 
We generated our phylogenetic tree using these 
parameters with 1000 iterations. Phylogenetic 
inference revealed the clustering of Minus-C 
OBPs as a subclade of the Classic OBP subfam-
ily comprising members of both Apis mellifera 
and Apis florea OBPs (Figure 3A). Moreover, a 
conserved cysteine signature specific to the che-
mosensory protein (CSP) family was observed in 

the outgroup chemosensory proteins (AmelCSP) 
(Figure 2). AmelCSPs used as outgroup clustered 
distinctly (Figure 3A) from the odorant-binding 
proteins input to the phylogeny with 100% boot-
strap value. Minus-C OBPs were found to cluster 
together with a 60% bootstrap value closest to 
AfloOBP9, annotated as a Classic OBP. However, 
the topology of the Minus-C clade with Classic 
AfloOBP13 outgroup has good bootstrap sup-
port in general. OBPs of the Minus-C subfamily, 
AfloOBP 14–20, emerge closest to AfloOBP13, 
a Classic OBP with an observed six cysteine sig-
nature. Interestingly, all the other Classic OBPs 
cluster distinctly in a clade corresponding to the 
insect Classic subfamily; however, AfloOBP13 
clusters closely with the Minus-C group in a dis-
tinct subclade with high confidence (Figure 3B). 
Interestingly, antennal OBP (MsexABP1) (Vogt 
et al. 2015) from Lepidopteran insect Manduca 
sexta clustered close to the Minus-C clade along 
with other bee species (Hymenopteran) with high 
bootstrap support of 97%. We found that most 
Classic OBPs in Apis florea are phylogenetically 
distant from Minus-C (bee OBPs) than clades 
representing atypical OBPs in Dipterans and 

Figure 2  Multiple sequence alignment of OBPs from Apis florea  (AfloOBPs). The alignment also contains OBPs 
from its phylogenetic neighbor Apis mellifera (AmelOBP). Chemosensory proteins from Apis mellifera (AmelCSPs) 
constitute the outgroup
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Plus-C insect OBPs. It is possible that Minus-C 
OBPs in honey bees may have evolved from a sin-
gle ancestral Classic OBP (similar to AfloOBP13, 
AmelOBP13) of its species by deletion/mutation 
of second and fifth cysteines. However, we also 
acknowledge that we have used representative 
organisms covering 11 insect orders with a focus 

on Hymenoptera. It is also plausible that Minus-C 
OBPs in insects may have evolved independently 
under positive selection pressure. The evolution 
and insect order-specific occurrence of Minus-C, 
Plus-C, and atypical subfamilies of insect OBPs 
may have functional roles and would be interest-
ing to investigate.
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Taken together, our observations from a 
comprehensive bioinformatic analysis strongly 
suggest that Minus-C OBPs are likely to have 
evolved from a Classic OBP subfamily member 
in honeybees. Similar co-clustering of Classic 
and Minus-C OBPs across other insects suggests 
a recurrent need for such variation. It is possi-
ble that the evolution of a subfamily could be an 
adaptation to the local niche of the insect species 
for functional specificity (Zhou et al. 2020).

4.  CONCLUSION

In a step towards understanding the role 
of OBPs in insects, a bioinformatics-based 
approach was used. We have curated OBPs from 
Apis mellifera from three sources and used them 
to query the genome of Apis florea. To study 
the evolutionary relationships, we used OBPs 
from 11 insect orders from diverse habitats 

(Supplementary Table 3). Our phylogeny was 
constructed using a novel structural template-
based approach (Gandhimathi et al. 2012) that 
addresses the challenges faced in sequence align-
ments due to low sequence identities.

A total of 22 OBPs including isoforms have 
been identified and annotated from the genome 
of eusocial Asian red dwarf honeybee, Apis flo-
rea, using a modified in-house pipeline. Our 
results include AfloOBPs that have been pre-
viously identified by the automated pipeline 
of NCBI with a query coverage and identity 
of 100% each with their respective subjective 
sequences (AfloOBP9 and AfloOBP11) (Supple-
mentary Table 7). Our annotated data includes 
complete OBPs that were identified as having 
incomplete exons in N-termini and C-termini or/
and labelled as uncharacterized by the automated 
pipeline of NCBI. We also observe that a number 
of OBP genes in Apis florea (22) and the western 
honeybee, Apis mellifera (25), are similar despite 
the differences in respective ecological niches.

We have analyzed the characteristic conserved 
features of these OBPs using computational 
methods and phylogeny resulting in the discov-
ery of new gene models as well as improvement 
on existing gene models from NCBI. Presence 
of conserved cysteine pattern, disulfide spacing, 
domain analysis, size, and predicted secondary 
structure further strengthen their identity as puta-
tive insect OBPs.

The Classic OBP subfamily clade appears to 
have expanded to Minus-C OBPs in our study 
on the dwarf honeybee, Apis florea, and also 
in a few other insect orders (Vieira et al. 2007; 
Sanchez-Gracia and Rozas 2008).

It is suggested that the expansion of OBPs in 
the last common ancestor of honeybees explains 
their unique chemosensory behavior. Although 
a study on bumble bee OBP (Sadd et al. 2015) 
identified only the Classic subfamily (16 OBPs 
in Bombus terrestris), and its eight orthologs 
in Apis mellifera, previously, the C-minus sub-
family in honeybees was identified by Foret 
and Maleszka (2006). Using phylogeny, our 
study also shows the evolution of Classic 
OBP, AfloOBP13, and its Minus-C relatives, 
AfloOBP14-AfloOBP21. The exon length of B. 

Figure  3  Phylogenetic tree of Apis florea OBPs. 
Rooted phylogeny (A) of OBPs from sister species, 
Apis florea (Aflo; in bright green) and Apis mellifera 
(Amel; in purple). Members of the alignment template 
are labelled with the prefix “seed” and colored based on 
order, whereas the outgroup consisting of Apis mellifera 
chemosensory proteins (AmelCSP) is labelled in black. 
The Minus-C subfamily has been indicated in a rec-
tangular box. The bootstrap values of the branches are 
indicated on the nodes in percentage values. Unrooted 
phylogeny (B) of OBPs from representative members 
of 11 insect orders represents phylogenetic clades. Inner 
branches and leaf labels denoting insect species are 
colored based on order whereas the outer strips denote 
the OBP subfamily. Subfamily annotation label for a 
sequence has been provided only if the criteria of high 
confidence in annotation have been met (i.e., phylogeny 
and cysteine pattern conservation). Subfamily labels 
have been left blank in case of limited or no information 
about subfamily classification for the OBP sequence. 
Classic subfamily is colored in brown, Minus-C in dark 
blue, Plus-C in dark green, two-domains in bright pink, 
and atypical in red. The outer circle denotes members’ 
clades. The inner branch colors and label colors are 
colored as per order. Hymenoptera is denoted in violet. 
The bootstrap values of the branches are indicated on 
the nodes in percentage values. An interrogative, user-
friendly version of the phylogeny will be provided at 
http:// caps. ncbs. res. in/ downl oad/ Apid

◂
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terrestris is typically 4 or 5 exons, and is similar 
to Apis mellifera and Apis florea. However, Clas-
sic OBP AfloOBP10 (ortholog to AmelOBP10) 
has 6 exons. The strong phylogenetic similarity 
between Apis mellifera and Apis florea OBPs 
strongly suggests that a similar birth and death 
model of evolution occurs in the OBP gene rep-
ertoire in Apis florea as well.

Among other corbiculate bees, the whole 
genomes of honey bees (Apis mellifera) have a 
comparable number of OBPs (21) (Robertson 
and Wanner, 2006; Croset et  al. 2010; Foret 
and Maleszka 2006), stingless bees (Melipona 
quadrifasciata) (14), orchid bees (Eufrisea 
mexicana) (16) (Brand and Ramirez 2017), and 
Euglossa dilemma (15) (Brand and Ramirez 
2017). However, C-minus OBPs are missing 
from the genomes of bees other than honey bees 
(Brand and Ramirez 2017).

Interestingly, AmelOBP3 was found to be 
under positive selection in Apis melifera (Fouks 
et al. 2021). Inhibition in OBP7 in response to 
glyphosate stress was also accompanied by a 
decrease in metabolites contribution to the che-
mosensory pathways such as L-malic acid, his-
tamine, and gamma-aminobutyric acid. There is 
an increase in differentially expressed OBPs in 
response to glyphosate and commercial formu-
lation-based stress in both A. cerana cerana and 
A. melifera ligustica (Zhao et al. 2020). Signifi-
cant changes in the expression of OBP4, OBP16, 
OBP18, and OBP21 are observed in A. mellifera 
as a stress response to sublethal doses of imida-
cloprid, a nicotine-mimic insecticide. It is worth-
while to note that AmelOBP16, AmelOBP18, 
and AmelOBP21 belong to the Minus-C sub-
family and could explain the positive selection 
of the C-minus subfamily. This strengthens the 
possibility of testing the response of their respec-
tive orthologs (Supplementary Table 4) to vari-
ous abiotic stress factors in Apis florea.

We used a query set for Apis mellifera OBPs 
derived from three studies, and used this revised 
query set to annotate OBPs in Apis florea using our 
in silico homology-based approach as described in 
the present study. Furthermore, we used available 
RNA-seq exon data to refine our in silico predic-
tions of exon–intron boundaries for each gene 

model. We have also considered AfloOBP gene 
models in a recent study (Fouks et al. 2021). Over-
all, we corrected exon boundaries, annotated novel 
isoforms, and missing exons. We also report a long 
non-coding RNA in Apis florea. We have provided 
an improved annotation for Apis florea OBPs that 
incorporates all the above features into our work 
(Supplementary Table 9).
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