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Abstract – Land-use change, including urbanization, is known to affect wild bee (Hymenoptera: Apoidea) 
diversity. However, while previous studies have focused on differences across local urbanization gradients, to 
the best of our knowledge, none focused on differences among cities at a wide geographical scale. We here used 
published data for wild bee communities in 55 cities across the globe, in order to explore how city traits (popula-
tion density, city size, climate and land-use parameters) affect both taxonomic (diversity, distinctness, dominance) 
and functional (body size, nesting strategy, sociality, plant host specialization) profile of urban bee communities. 
By controlling for sample size and sampling effort, we found that bigger cities host few parasitic and oligolectic 
species, along with more above-ground-nesting bees. Cities with highly fragmented green areas present a lower 
proportion of oligolectic species and a higher proportion of both social species and large-bodied bees. Cities with 
more impervious surfaces seem to host a lower proportion of below-ground-nesting bees. Hotter cities present 
both a lower richness and diversity, with functional diversity highest at intermediate precipitation values. Overall, 
it seems that high levels of urbanization—through habitat modification and the “heat island” effect—lead to a 
strong simplification of the functional diversity of wild bee communities in cities. Our results may help explain 
the previously observed variable response of some bee community traits across local urbanization gradients.
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1. INTRODUCTION

Bees (Hymenoptera: Apoidea) are considered 
the most effective pollinator insects, thus guaran-
teeing one of the most valuable ecosystem ser-
vices (Porto et al. 2020) by allowing plant repro-
duction (Ollerton et al. 2011), maintaining food 
security (Montoya et al. 2021) and ultimately 
having a high relevance for global Sustainable 
Development Goals (Patel et al. 2021; Díaz et al. 
2015). It is thus especially worrying the recently 

documented decline of wild bees (all bee species 
except the domesticated honeybee) in different 
countries (Biesmeijer et al. 2006), though the 
magnitude of such decline is still debated given 
that the conservation status of most wild bee spe-
cies remains unknown to date (see Nieto et al. 
2014 for Europe). Land-use change, including 
the expansion of cities (urbanization), seems 
however to be particularly detrimental (Goulson 
et al. 2015). Insects are among the organisms 
with the largest diversity in urbanized environ-
ments (Corcos et al. 2019) and provide several 
ecosystem services (Hall et  al. 2017). How-
ever, bees (Biesmeijer et  al. 2006) and other 
non-hymenopteran flower visitors (Deguines 
et al. 2012) have been reported to decline as a 
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consequence of increasing urbanization (but see 
Hall et al. 2017 and Baldock et al. 2019), with 
potential impacts on pollination service.

The expansion of cities causes natural habitats 
to be reduced, fragmented and substituted mostly 
by impervious surfaces (i.e. covered by concrete) 
(Ayers and Rehan 2021; Geslin et  al. 2016), 
hence leading to variable loss of natural cover. 
On one hand, the reduction in natural land cover 
has long been known to impact biodiversity 
(Brooks et al. 2002), either by directly leading 
to species loss when habitats are altered or caus-
ing indirect effects such as resources depletion 
(Kehoe et al. 2021). Another effect of urbaniza-
tion is the habitat fragmentation of green areas, 
which leads urban landscapes to be configured 
as a mosaic of small and isolated natural patches 
(Semper-Pascual et al. 2021). As a result, follow-
ing the island biogeography theory (Wilson and 
MacArthur 1967), the remaining natural patches 
should no longer sustain biodiversity as bigger 
natural areas, primarily because they can host 
fewer resources and of lower quality (Ayers and 
Rehan 2021). Moreover, in a highly fragmented 
habitat, there are few viable links between green 
patches, making it difficult for wildlife to move 
between patches (Zanette et al. 2005) and hence 
possibly reducing their interactions, fitness 
(Banks et al. 2007) or chances to find a food 
source (Ingala et al. 2019). With the projected 
increased level of urbanization, a reduction in 
the potential supply of ecosystem services might 
be expected (Eigenbrod et al. 2011), though a 
moderate level of disturbance seems to enhance 
biodiversity, as suggested by the intermediate 
disturbance hypothesis (Connell 1978).

In the light of their crucial ecological impor-
tance and the current expansion of urbanized 
landscapes, the scientific community has focused 
its attention on urban wild bee assemblages 
(Dicks et al. 2021). Not only species richness 
and diversity (Banaszak-Cibicka et al. 2018), but 
more recently also functional traits (Wilson and 
Jamieson 2019) have begun to be investigated in 
urbanized landscapes. The need to study both 
taxonomic and functional diversity is testified by 
the fact that wild bee abundance and functional 
trait diversity have been shown to synergically 

promote pollination (Woodcock et al. 2019). To 
highlight the urgency of the topic, more than a 
thousand studies have been published on the ecol-
ogy of wild bees in urban landscapes (Buchholz 
and Egerer 2020). More recently, Prendergast  
et  al. (2022)  reviewed how abundance and  
species richness vary across different landscape 
types. The bulk of this body of literature has 
focused on comparing natural, agricultural (or 
rural) and urban landscapes.

Often, idiosyncratic conclusions have been 
drawn on whether cities can filter for some 
functional traits but not for others. For instance, 
whether oligolecty (host-plant specialist pol-
len collectors) or polylecty (host-plant general-
ist pollen collectors) is more favoured in urban 
environments is strongly debated. Some studies 
found a reduction in oligolectic species richness 
in cities (Twerd and Banaszak-Cibicka 2019), 
while others showed no significant differences 
(Wray et al. 2014). Conversely, increasing frag-
mentation appears to favour above-ground-
nesting bees (i.e. those nesting in holes in wood 
or plant stems) over below-ground nesters (i.e. 
those nesting in soil) (Fortel et al. 2014). Con-
trasting results have emerged also when inves-
tigating the role of different urban elements 
in shaping wild bee assemblages, as no single 
factor consistently influenced the abundance or 
richness of urban wild bees (Prendergast et al. 
2020). Indeed, despite the detrimental effects  
of urbanization on natural habitats, cities can still 
constitute refugia for bees (Hall et al. 2017). For 
example, cities can provide novel food resources 
or nesting substrates (Turrini and Knop 2015). 
Thus, depending on the resource quality or the 
properties of the surrounding matrix, urban 
areas have the potential to support rich pollina-
tor assemblages (Baldock et al. 2019). Things 
are, consequently, far from being clear on the 
effects of urbanization on wild bee communities 
in cities.

Variation in city traits can be potentially one 
of the reasons for the contrasting results that 
emerged so far for urban bee communities since 
these traits can affect how cities filter for taxo-
nomic composition and functional traits rela-
tive to city-surrounding natural or rural areas. 
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Hence, an analysis across cities over a large 
geographical scale may help in understanding 
better bee community responses to urbaniza-
tion. Here, we make a first attempt to fill this 
gap by performing an analysis based on previ-
ously published data for bee communities of 55 
cities across the globe, in order to explore how 
city traits (population density, city size, climate 
and land-use parameters) affect both taxonomic 
(diversity, distinctness, dominance) and func-
tional (body size, nesting strategy, sociality, 
plant host specialization) profile of urban bees 
(Figure 1).

2.  METHODS

2.1.  Bibliographical review and wild bee 
community composition

To retrieve published papers on wild bee 
communities in cities, we searched Scopus 
(https:// www. scopus. com/) using the keywords 
“Bees” + “City” as well as “Bees” + “Urban”. 
The search was stopped on the 30th of November 
2021. Over one thousand published papers were 
initially filtered through this search, and each of 
them was inspected in order to exclude those not 

Figure 1.  Summary scheme of the workflow of this study. The red dots on the world map represent the geographic 
distribution of the studied cities. The number of the analysed datasets from each region (North America, South 
America, Europe, Asia, Australia) is shown in circles.
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useful for our study. First, we excluded works 
whose sampling area covered two or more distant 
cities or a gradient of urbanization from agricul-
tural to urbanized landscapes and abundance or 
occurrence data were not separated across sites. 
Then, we discarded those studies with a sampling 
period of over a decade; this is because, over 
long periods, cities might have heavily trans-
formed. We then removed works focused on a 
single taxon of bees. Finally, we removed works 
with only trap-nesting as a sampling method 
since these are strongly biased towards solitary 
species and catch exclusively cavity-nesting spe-
cies (Prendergast et al. 2020). The final selection 
included 71 studies. Most included abundances 
of bee species, while some included presence/
absence data only. Few studies included more 
than one dataset (more than one city analysed) 
so the total of analysed cases was 74.

From each selected work, we character-
ized the composition of the wild bee commu-
nity. For each sampled bee species, we associ-
ated abundance (or presence in case of binary 
information) and four different functional traits: 
sociality, nesting strategy, host-plant specializa-
tion and female body size (see Appendix 1 for a 
full description). For study cases with available 
abundance data, we calculated two diversity indi-
ces: Shannon–Wiener diversity (H’) and Gini-
Simpson index (GS, i.e. 1-Simpson index), which 
are commonly used to characterize the species 
diversity in a community (Shannon and Weaver 
1949; Simpson 1949). H’ measures uncertainty 
about the identity of species in the sample, and 
its units quantify information, while GS meas-
ures the probability that two individuals, drawn 
randomly from the sample, will be of different 
species (i.e. the lower the index, the higher the 
dominance). Additionally, to account for taxo-
nomic distance among the species in each com-
munity, we calculated the taxonomic diversity 
(∆) (i.e. the expected path length between any 
two randomly picked individuals from the sam-
ple) and taxonomic distinctness (δ) (i.e. the aver-
age path length between two randomly chosen 
but taxonomically different individuals) (Clarke 
and Warwick 1998). Both ∆ and δ could be cal-
culated also for presence/absence data (in this 

case, diversity and distinctness have the same 
value). We entered the taxonomic information 
on three levels: species, genus and family. When 
possible, the information on functional traits 
was taken directly from the analysed literature 
(Appendix 2). Where information was missing 
in the literature, information on functional traits 
was searched on a variety of additional litera-
ture sources or websites (Appendix 2). For some 
species, the information for traits is not known. 
Since we aimed to evaluate the effects of city 
traits on wild bees, we did not include domestic 
honeybee (Apis mellifera L.) in the analysis.

2.2.  Demographic, geographic and 
climatic characterization of cities

We retrieved city size (surface), population 
size, population density and altitude for each 
city from www. wilki pedia. en. In addition, each 
city was associated with the 19 bioclimatic vari-
ables from WorldClim version 2.1 (released in 
January 2020). These variables describe differ-
ent climatic measures and are the average for the 
years 1970–2000 (see Appendix 3 for descrip-
tions) (Hijmans et al. 2005) and were retrieved 
through R version 4.0.3 using raster (Hijmans 
and van Etten 2012) and sp libraries (Pebesma 
and Bivand 2005) with a resolution of 2.5 arcsec 
(~  5km2) to cover as much of the city surface as 
possible. Each bioclimatic variable was retrieved 
for the central longitude and latitude of each ana-
lysed city.

2.3.  Landscape characterization

For the landscape characterization, we down-
loaded land cover maps representing spatial 
information from Copernicus Global Land Ser-
vice (Buchhorn et al. 2020). Within these maps, 
different classes of land-use are colour coded 
following the Land Cover Classification System 
(LCCS) developed by the United Nations (UN), 
for a total of 22 different classes (Buchhorn et al. 
2017). After, we clipped each land cover map 
with a shapefile with the borders of the cities 
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considered. The city borders were downloaded 
from different sources: Europe from “Eurostat” 
https:// ec. europa. eu/ euros tat/ web/ main/ home; 
Argentina, Brazil, India, Mexico and Turkey 
from “GADM version 3.6” https:// gadm. org/ 
index. html; Australia from “Australian Bureau 
of Statistics” https:// www. abs. gov. au/; Canada 
from “Statistics Canada” https:// www. statc an. 
gc. ca/ en/ start; Colombia and Sri Lanka from 
“The Humanitarian data exchange” https:// data. 
humda ta. org/; and USA from “United States 
Census Bureau” https:// www. census. gov/ en. 
html. With this operation, we obtained the land-
use data for every city.

Since LCCS present different types of vegeta-
tion, we decided to aggregate all natural vegeta-
tion classes (i.e. ID 20, 30, 111, 112, 113, 114, 
115, 116, 121, 122, 123, 124, 125, 126) into a 
bigger class called “Green area”. Using the GIS 
package LecoS (Jung 2016), we extracted dif-
ferent metrics for each LCCS class: land cover, 
landscape proportion, edge length and edge den-
sity (see Appendix 3 for descriptions). In addi-
tion to these land-use parameters, we calculated 
the ratio between green and impervious surface 
and the normalized edge density of green patches 
(i.e. the normalization of edge density with 
respect to the total green area (McGarigal 1995; 
Ma et al. 2013)). All land-use data mining has 
been performed in QGIS 3.16.

2.4.  Statistical analysis

The 74 selected studies for the analysis had 
data on bee communities obtained through a 
variety of sampling methods, most often pan 
traps and netting on flowers, or a combination of 
these two techniques. To exclude a possible bias 
in the wild bee species richness and abundance 
due to different sampling methods (as a categori-
cal variable), we performed an ANOVA test. 
This test was performed to control if there were 
any statistically significant differences between 
the number of sampled species (richness) and 
individuals (abundance) across different sam-
pling techniques. The results showed no biases 
(Appendix 4).

We performed correlation analysis (using 
Pearson’s r) to reduce the number of biocli-
matic and land-use variables, in PAST 3.04 
(Paleontological Statistics Software Package) 
(Hammer et al. 2001). We decided to keep vari-
ables the least correlated between each other 
(p > 0.05) and possibly impactful on bee ecol-
ogy and appropriate to discriminate different cit-
ies (Appendix 5 for full correlation table). The 
reason to exclude highly correlated variables 
is due to the possible emergence of concurvity 
between variables, possibly causing the narrow-
ing of confidence intervals (Jiang et al. 2018). 
We selected the surface of the city  (km2), its pop-
ulation density (people/km2) and mean altitude 
(m) as descriptors of the spatial and demographic 
composition of each city. To describe land-use 
cover, we selected normalized green edge den-
sity and the ratio between the green and imper-
vious surfaces. The first has been shown to play 
a key role in shaping wild bee assemblages in 
urban environments (Theodorou et al. 2020a). 
The second was correlated with both green and 
impervious surfaces, and thus summed up well 
the overall land cover of the city. As bioclimatic 
variables, we chose annual mean temperature 
(°C*10) as in WorldClim (variable BIO1) and 
annual precipitation (mm) (variable BIO12). 
They overall distinguish cities from a climatic 
point of view. In addition, the temperature is a 
key factor in shaping wild bee communities since 
the highest diversity of wild bees is recorded in 
the Mediterranean biome and warm temperate 
environments (Ascher and Pickering 2020). The 
two chosen climatic variables were highly cor-
related with the rest of the climatic parameters, 
and the annual mean temperature was also linked 
with the latitude of the city. Taken together, these 
seven variables (city surface, population density, 
altitude, annual mean temperature, annual pre-
cipitation, normalized green edge density and 
green/impervious surface ratio) had a maximum 
r value of 0.4; thus, we assumed the absence of 
a strong correlation that would distort the fol-
lowing analyses. Finally, we included the num-
ber of sampling months as a control for different 
sampling efforts and the total number of sampled 
wild bees (i.e. total abundance, N), in an attempt 
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to correct for possible biases induced by different 
durations of collecting activities and the amount 
of collected individuals. We graphically checked 
for the skewness of the distributions of the 
selected variables, and all were log-transformed 
to reduce their asymmetry.

To analyse how different functional traits were 
explained by the seven selected city characteris-
tics, we performed generalized additive models 
(GAM), a semi-parametric expansion of general-
ized linear models (Rigby and Stasinopoulos 2005; 
Hastie 2017). This method has clear advantages 
over linear regression models. GAM does not 
assume a priori any form of relationships between 
dependent and explanatory variables, and thus can 
be used to reveal non-linear effects between them. 
This is particularly useful when dealing with land 
cover and climatic variables in predictive models 
(Virkkala et al. 2005; Feng et al. 2018; Falťan et al. 
2020). The explanatory variables included the final 
selection of the seven land-use and climatic vari-
ables, plus total abundance (sample size) and sam-
pling period length. The dependent variables, each 
tested with an individual GAM, were 19: species 
richness, the four diversity indices, the propor-
tion of parasitic species (or individuals) over the 
total number of species (or individuals), the ratios 
between proportions of species (or individuals) 
with binary functional traits (oligolectic/polylectic, 
above-ground nester/below-ground nester, social/
solitary) and the proportion of species (or indi-
viduals) in each of the three body size ranks. For 
each dependent variable, the sub-optimal model 

was selected with a backward stepwise regression, 
removing one at a time the least significant explan-
atory variable (i.e. with the highest p value), until 
reaching the final model with the lowest value for 
the Akaike’s information criterion (AIC) (Marra 
and Wood 2011). The goodness of the model was 
also tested by the increasing value of R2. For each 
predictor, a value of k = 5 was applied to be large 
enough to be reasonably sure of having enough 
degrees of freedom to represent the underlying 
smooth relationships. GAM analyses were per-
formed in R version 4.0.3 using the mgcv package 
(Wood 2012). The complete dataset used in the 
analyses can be found in the supplementary file 
DATAset.xlsx.

3.  RESULTS

3.1.  Overview on cities and their wild bee 
communities

The 74 studied cases covered 55 different cit-
ies from 19 different nations and five continents  
(supplementary file DATAset.xlsx). The bulk of 
the studies has been performed in the northern  
hemisphere: 35 in North America and 29 in  
Europe (overall 86%). Only six studies were  
conducted in Central and South America, 
three in Asia and one in Oceania. The cities  
were very different from each other in terms 
of surface and population density. Almost  
all cities are below 500  m a.s.l. (Table  I).  

Table I  Descriptive statistics of the characteristics of the 55 analysed cities across the reviewed 74 studies. 
Min, minimum value; Max, maximum value; SE, standard error

Variable N Min Max Mean SE

Surface  (km2) 55 4.400 4032.000 466.010 98.163
Population density (Pop/km2) 55 21.690 21347.250 3781.891 594.210
Altitude (m) 55 0.000 2600.000 304.090 66.004
Annual mean temperature (°C) 55 4.800 26.600 12.112 0.656
Annual precipitation (mm) 55 212.000 2449.000 872.436 52.474
Normalized green edge density 55 0.000001 0.002146 0.000159 0.00005
Green/impervious 55 0.04 121.67 5.677 2.429
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The proportion between green and impervious 
surfaces varied considerably (Table I). Since 
most of the cities are in the temperate region, 
annual mean temperature and precipitation were 
more homogeneous than demographic and land-
use variables (Table I).

Six out of the seven known bee families were 
represented in the analysed sample: Andreni-
dae, Apidae, Colletidae, Halictidae, Megachili-
dae and Melittidae (only the Australian endemic 
family Stenotritidae did not occur in the sam-
ples). Apidae resulted to be the richest family 
with 458 species, while Melittidae only had 11 
species in the samples. Within all the families 
together, 158 different genera had been reported, 
the most abundant being Andrena with 212 spe-
cies. Overall, a total of 1460 bee species have 
been reported in the analysed works (Appendix 
2), of which most were small- to medium-size 
solitary, polylectic and below-ground-nesting 
species (Table II).

3.2.  City size, demography and altitude 
effects

We did not find any significant effects of city 
surface on three of the four diversity indices con-
sidered (Shannon–Wiener diversity, taxonomic 
diversity and taxonomic distinctness) (Table III). 
Only Gini-Simpson dominance was significantly 
affected by city surface (Table III). This index 
was greater (and thus dominance lower) in cities 
with an intermediate surface of around 200–300 
 km2, while it seemed to decrease rapidly in very 
large cities (> 800  km2) and, to less extent, in 
small ones (< 100  km2) (Figure 2A). The pro-
portion of parasitic species (Figure 2B) seemed 
to be negatively correlated with the city surface 
(Table III). The ratio between the proportions of 
oligolectic over polylectic species also seemed 
to be negatively correlated with the city surface 
(Table III, Figure 2C). In particular, small cities 
(around 10–50  km2) seemed to host higher pro-
portions of oligolectic species, with a decreas-
ing trend in larger cities. However, from cities 
of ≥ 90  km2, such proportion seemed to remain 
constant with a slight increase in the biggest 

cities. Additionally, the proportion of medium-
sized species seemed to be negatively affected 
by the city surface (Table III, Figure 2F). On the 
other hand, city surface has a positive effect on 
other functional traits. The proportion between 
above- and below-ground-nesting individuals 
seems to increase with city size, with larger cit-
ies (> 300  km2) hosting fewer below-ground-
nesting bees (Table III, Figure 2D), even though 
this trend seems to be driven only by a few obser-
vations. Also, the proportion of large-sized spe-
cies (Table III) and the proportion of individuals 
from medium-sized species (Table III) appeared 
to increase in larger cities (Figure 2E, G).

Population density had a statistically signifi-
cant effect on two tested variables. The number 
of large-sized bees seems to be strongly nega-
tively affected by population density (Table III, 
Figure  3A), while a strong opposite trend 
emerged for the number of small-sized bees 
(Table III, Figure 3B).

Finally, altitude had a negative effect on the 
Gini-Simpson index (Table III, Figure 3C), the 
proportion of parasitic species (Table III, Fig-
ure 3D) and the proportion of medium-sized 
species (Table III, Figure 3F). In addition, the 
proportion of individuals from large-sized spe-
cies seemed to be greater for intermediate values 
of altitude (Table III, Figure 3E), while the pro-
portion of individuals from small-sized species 
had a wiggling trend, with a peak of small bees’ 
abundances in high-elevation cities (Table III, 
Figure 5G).

3.3.  Land-use effects

The ratio between the proportions of social 
and solitary species’ abundances was positively 
affected by the edge density of green patches 
(Table III, Figure 4A); a similar effect was found 
on the proportion of individuals from large-sized 
species (Table III, Figure 4D). To a lesser extent, 
the proportion of medium-sized species (Fig-
ure 4E) increased in cities with medium to high 
values of edge density (Table III) and remained 
constant to its lowest values in cities with less 
fragmented green patches. Conversely, the ratio 
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between the proportions of oligolectic and polylec-
tic species was negatively affected (Table III) by 
the increasing level of fragmentation (Figure 4B); 
the same trend is shown by the ratio between the 
proportions of above-ground and below-ground-
nesting species (Table III, Figure 4C).

The green over impervious surface ratio 
had more mixed effects on the tested variables. 
Though significant, its effect on the proportion 

of individuals from parasitic species seemed 
swinging (Table III, Figure 4F). Such proportion 
decreased in cities with much more to little more 
impervious than green surface, while a balanced 
ratio between both types of surfaces seemed to 
slightly positively affect the proportion of indi-
viduals from parasitic species. However, in cities 
with large green areas, the number of individuals 
from parasitic species seemed to remain quite 

Table II  Descriptive statistics of the variables used to describe the taxonomic and functional diversity of the 
analysed wild bee communities, the sample size (total abundance) and the variable chosen to represent sam-
pling effort (sampling period length). All wild bee functional traits are expressed as a proportion out of the 
total number of wild bees sampled in each study included in the analysis. S, number of species; N, number of 
individuals; Soc, social; Sol, solitary; Oli, oligolectic; Pol, polylectic; Ab, above-ground nester; Bel, below-
ground nester; large-sized, bees with body length ≥ 15 mm; medium-sized, bees with body length of 9–14 mm; 
small-sized, bees with body length ≤ 8 mm. Min, minimum value; Max, maximum value; SE, standard error

Variable N Min Max Mean SE

Total abundance (N) 74 61.000 23806 2716.238 458.811
Species richness (S) 74 5.000 291.000 80.946 6.376
Shannon–Wiener diversity (H’) 50 0.281 4.589 2.879 0.117
Gini-Simpson dominance (GS) 50 0.044 0.984 0.846 0.026
Taxonomic diversity (Δ) 74 0.188 2.722 2.289 0.057
Taxonomic distinctness (δ) 74 1.289 2.792 2.495 0.033
Parasites S 74 0.000 0.270 0.102 0.008
Parasites N 50 0.000 0.135 0.020 0.004
Solitary S 74 0.152 0.944 0.608 0.015
Solitary N 50 0.024 0.997 0.428 0.029
Social S 74 0.046 0.733 0.232 0.014
Social N 50 0.003 0.976 0.494 0.031
Oligolectic S 74 0.000 0.667 0.146 0.011
Oligolectic N 50 0.000 0.256 0.076 0.009
Polylectic S 74 0.185 1.000 0.635 0.020
Polylectic N 50 0.137 1.000 0.815 0.026
Above-ground-nesting S 74 0.000 0.684 0.315 0.014
Above-ground-nesting N 50 0.000 0.930 0.262 0.032
Below-ground-nesting S 74 0.263 0.867 0.562 0.013
Below-ground-nesting N 50 0.064 0.988 0.696 0.035
Large-sized S 74 0.000 0.333 0.090 0.007
Large-sized N 50 0.000 0.425 0.106 0.015
Medium-sized S 74 0.030 0.807 0.401 0.018
Medium-sized N 50 0.003 0.868 0.333 0.028
Small-sized S 74 0.033 0.933 0.370 0.018
Small-sized N 50 0.007 0.997 0.475 0.036
N° of sampling months 74 1.000 48.000 8.269 0.968
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Table III  Best fitting generalized additive model (GAM) statistics. Statistically significant values are reported 
in bold. H’, Shannon–Wiener diversity; GS, Gini-Simpson index; Δ, taxonomic diversity; δ, taxonomic distinct-
ness. S, number of species; N, number of individuals; Soc, social; Sol, solitary; Oli, oligolectic; Pol, polylec-
tic; Abo, above-ground nester; Bel, below-ground nester; parasitic, cuckoo bees; large-sized, bees with body 
length ≥ 15 mm; medium-sized, bees with body length of 9–14 mm; small-sized, bees with body length ≤ 8 mm; 
Est, estimation; edf, estimated degrees of freedom; adj, adjusted; AIC, Akaike information criterion

Dependent 
variable

Explanatory variables Est T F p edf R2 
(adj)

AIC

S Intercept 81.607 17.670  < 0.001 0.607 617.313
Wild bees N 26.624  < 0.001 1.979
N° of sampling months 1.997 0.163 1.000
Annual mean temperature (°C) 5.841 0.019 1.000

H’ Intercept 2.895 32.150 0.452 101.878
Wild bees N 10.461 0.003 1.000
Surface  (km2) 1.834 0.137 3.038
Altitude (m) 1.886 0.178 1.000
N° of sampling months 3.149 0.084 1.000
Annual mean temperature (°C) 5.285 0.027 1.000
Green/impervious 1.561 0.181 2.159

GS Intercept 0.846 38.880  < 0.001 0.301 -35.689
Wild bees N 4.124 0.049 1.000
Surface (km2) 3.081 0.020 3.472
Altitude (m) 6.193 0.017 1.000
Green/impervious 1.532 0.2179 1.956

Δ Intercept 2.236 38.810  < 0.001 0.202 85.875
Wild bees N 2.144 0.149 1.000
Surface  (km2) 2.240 0.092 2.608
Altitude (m) 1.649 0.205 1.000
N° of sampling months 1.156 0.244 1.258
Annual precipitation (mm) 0.895 0.327 2.072

δ Intercept 2.491 76.300  < 0.001 0.085 23.524
Surface  (km2) 2.774 0.101 1.000
N° of sampling months 2.864 0.095 1.000
ED green 2.796 0.075 1.744

Parasitic S Intercept 0.101 15.030  < 0.001 0.506 -178.258
Wild bees N 23.358  < 0.001 1.000
Surface (km2) 4.931 0.006 2.174
Population density (Pop/km2) 2.338 0.132 1.000
Altitude (m) 3.552 0.020 2.273
Annual precipitation (mm) 2.870 0.054 2.779
Green/impervious 2.195 0.145 1.000

Parasitic N Intercept 0.020 6.228  < 0.001 0.248 -229.872
Wild bees N 3.134 0.084 1.000
Annual mean temperature (°C) 2.755 0.059 2.357

Green/impervious 2.484 0.039 3.657
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Table III  (continued)

Dependent 
variable

Explanatory variables Est T F p edf R2 
(adj)

AIC

Soc/Sol S Intercept 0.471 7.896  < 0.001 0.198 88.252
Wild bees N 3.853 0.027 1.644
Population density (Pop/km2) 2.075 0.156 1.000
N° of sampling months 1.756 0.191 1.000
Annual mean temperature (°C) 2.227 0.141 1.000
Green/impervious 3.923 0.053 1.000

Soc/Sol N Intercept 3.205 3.563  < 0.001 0.305 319.586
Wild bees N 4.221 0.017 1.829
N° of sampling months 2.350 0.133 1.000
ED green 4.645 0.037 1.000
Green/impervious 1.857 0.126 1.335

Oli/Pol S Intercept 0.250 9.959  < 0.001 0.441 -8.786
Wild bees N 0.951 0.335 1.000
Surface (km2) 4.585 0.007 2.571
Population density (Pop/km2) 3.104 0.085 1.000
N° of sampling months 0.841 0.364 1.000
Annual mean temperature (°C) 8.251  < 0.001 3.827
Annual precipitation (mm) 8.404  < 0.001 4.000
ED green 7.851 0.008 1.000
Green/impervious 1.731 0.167 2.556

Oli/Pol N Intercept 0.100 8.553  < 0.001 0.142 -99.140
Wild bees N 2.807 0.113 1.185
Population density (Pop/km2) 1.432 0.185 3.022
Altitude (m) 2.124 0.152 1.000

Abo/Bel S Intercept 0.624 24.010  < 0.001 0.798 -5.527
Wild bees N 1.571 0.216 1.000
Surface  (km2) 0.864 0.361 1.558
Annual mean temperature (°C) 31.542  < 0.001 3.482
Annual precipitation (mm) 16.979  < 0.001 3.939
ED green 4.164 0.047 1.000
Green/impervious 7.413  < 0.001 2.532

Abo/Bel N Intercept 0.972 3.205 0.003 0.286 216.102
Surface (km2) 4.742 0.004 3.284
Altitude (m) 1.220 0.276 1.000
N° of sampling months 4.330 0.044 1.000
ED green 1.450 0.235 1.000

Large-sized S Intercept 0.091 13.740  < 0.001 0.171 -196.381
Surface (km2) 4.928 0.030 1.000
Population density (Pop/km2) 1.002 0.376 2.005
N° of sampling months 2.926 0.092 1.000
Annual mean temperature (°C) 6.206 0.016 1.000

Annual precipitation (mm) 2.359 0.081 2.637
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constant. Below-ground-nesting species are 
favoured in cities with more green than impervi-
ous surfaces (Table III). As a result, cities with 
smaller green patches are strongly associated 
with more above- than below-ground-nesting 
species (Figure 4G). Finally, the proportion of 
individuals from small-sized species seemed to 

increase (Table III) in cities with more green 
than impervious surfaces (Figure 4H).

3.4.  Climatic effects

Temperature influenced particularly the 
diversity and the body size of wild bees. Both 

Table III  (continued)

Dependent 
variable

Explanatory variables Est T F p edf R2 
(adj)

AIC

Large-sized N Intercept 0.107 10.560  < 0.001 0.577 -104.008
Wild bees N 5.372 0.002 3.967
Population density (Pop/km2) 21.300  < 0.001 1.000
Altitude (m) 5.894 0.002 2.648
N° of sampling months 4.206 0.007 3.379
Annual mean temperature (°C) 8.432 0.007 1.000
Annual precipitation (mm) 2.138 0.153 1.000
ED green 4.978 0.016 1.318
Green/impervious 5.740 0.023 1.000

Medium-
sized S

Intercept 0.401 33.520  < 0.001 0.583 -89.830

Surface (km2) 7.169 0.010 1.000
Altitude (m) 6.136 0.002 2.327
N° of sampling months 3.626 0.024 3.565
Annual mean temperature (°C) 27.238  < 0.001 1.000
Green/impervious 1.425 0.222 2.887

Medium-
sized N

Intercept 0.331 15.060  < 0.001 0.432 -32.359

Wild bees N 3.129 0.085 1.000
Surface (km2) 9.836 0.003 1.000
Altitude (m) 2.717 0.072 2.452
N° of sampling months 6.250 0.017 1.000
Annual mean temperature (°C) 5.194 0.002 3.351
ED green 4.661 0.010 2.273

Small-sized S Intercept 0.370 22.110  < 0.001 0.163 -71.773
Population density (Pop/km2) 5.085 0.027 1.000
Annual mean temperature (°C) 10.454 0.002 1.000

Small-sized N Intercept 0.484 18.030  < 0.001 0.454 -12.261
Wild bees N 2.993 0.042 3.714
Population density (Pop/km2) 20.52  < 0.001 1.000
Altitude (m) 4.696 0.004 2.426
N° of sampling months 5.169 0.029 1.000
Annual precipitation (mm) 1.663 0.206 1.000
Green/impervious 9.108  < 0.001 2.098
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the species richness (Table III) and Shannon– 
Wiener diversity (Table  III) decreased 
linearly as the annual mean temperature 
increases (Figure 4A, B). The ratio between 
the proportions of oligolectic and polylectic 

species seemed to be negatively affected 
(Table III) by temperatures > 20 °C, but for 
low to medium mean annual temperatures, 
this functional trait followed an oscillatory 
pattern (Figure 5C). The ratio between the 

Figure  2.  Graphical representation of generalized additive model (GAM) showing the estimated smoothed effect of city  
surface  (km2) on different functional traits. Y-axis is the partial effect of the variable with 95% confidence inter-
vals (grey shading). In brackets is reported the estimated degrees of freedom (e.d.f.) for each tested variable. All  
the explanatory variables were log-transformed. S: number of species, N: number of individuals, Soc: social, Sol:  
solitary, Oli: oligolectic, Pol: polylectic, Ab: above-ground nester, Bel: below-ground nester, parasitic: % of cuckoo 
bees, large-sized: bees with body length > 14, medium-sized: bees with body length of 8–14  mm, GS: Gini-Simpson  
dominance.
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proportions of above- and below-ground-
nesting species remained constant at temper-
atures ≤ 16 °C, and then it steeply increased 
(Table  III) (Figure 4D). The proportion of 
large-sized species was higher in warmer 
cities (Table III, Figure 5E), but the propor-
tions of individuals from large-sized species 

(Table  III) and from medium-sized species 
(Table III) were lower in warmer cities (Fig-
ure  5F and G respectively). Similarly, the 
proportion of individuals from medium-sized 
bees (Table III) decreased in warmer cities 
(Figure 5H). Oligolectic species seemed to 
be favoured in terms of species richness at 

Figure 3.  Graphical representation of generalized additive model (GAM) showing the estimated smoothed effect of 
population density (Pop/km2) (A, B) and altitude (m) (C, D, E, F, G) on different functional traits. Y-axis is the par-
tial effect of the variable with 95% confidence intervals (grey shading). In brackets is reported the estimated degrees 
of freedom (e.d.f.) for each tested variable. All the explanatory variables were log-transformed. S: number of spe-
cies, N: number of individuals, large-sized: bees with body length ≥ 15 mm, medium-sized: bees with body length 
of 9–14 mm, small-sized: bees with body length ≤ 8 mm, GS: Gini-Simpson dominance, parasitic: % of cuckoo bees.
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intermediate precipitation values (Table III, 
Figure 5I), while the ratio between the pro-
portions of above- and below-ground-nesting  
species was lowest in both very dry and 
very rainy cities (Table  III and shown in 
Figure 5J).

3.5.  Sample size and sampling effort 
effects

The sample size (i.e. total abundance of 
sampled individuals, N) positively affected 
species richness (Table  III, Figure  S1A), 

Figure  4.  Graphical representation of generalized additive model (GAM) showing the estimated smoothed effect 
of edge density of green patches (A, B, C, D, E) and the ratio between green and impervious surfaces (F, G, H) on 
different functional traits. Y-axis is the partial effect of the variable with 95% confidence intervals (grey shading). In 
brackets is reported the estimated degrees of freedom (e.d.f.) for each tested variable. All the explanatory variables 
were log-transformed. S: number of species, N: number of individuals, Soc: social, Sol: solitary, Oli: oligolectic, Pol: 
polylectic, Ab: above-ground nester, Bel: below-ground nester, parasitic: % of cuckoo bees, large-sized: bees with 
body length ≥ 15 mm, medium-sized: bees with body length of 9–14 mm, small-sized: bees with body length ≤ 8 mm.
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Figure 5.  Graphical representation of generalized additive model (GAM) showing the estimated smoothed effect of the annual mean 
temperature (°C) (A–H) and annual precipitation (mm) (I, J) on different functional traits. Y-axis is the partial effect of the variable  
with 95% confidence intervals (grey shading). In brackets is reported the estimated degrees of freedom (e.d.f.) for each tested vari-
able. All the explanatory variables were log-transformed. S: number of species, N: number of individuals, Soc: social, Sol: solitary, 
Oli: oligolectic, Pol: polylectic, Ab: above-ground nester, Bel: below-ground nester, large-sized: bees with body length ≥ 15  mm,  
medium-sized: bees with body length of 9–14 mm, H’: Shannon–Wiener diversity.
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Shannon–Wiener diversity (Figure S1B) and 
the proportion of parasitic species (Table III, 
Figure S1C). In contrast, sample size negatively 
affected the ratio between both the proportions 
of social and solitary species (Table III, Fig-
ure S1D) and the proportions of individuals 
from social and solitary species (Table III, Fig-
ure S1E). Finally, the proportion of individuals 
from both large-sized and small-sized species 
(Table III, Figure S1F) (Table III, Figure S1G) 
showed a wiggling pattern with increasing sam-
pling size. The ratio between the proportions of 
above- and below-ground-nesting individuals 
seemed to be positively affected by the number 
of sampling months (Table III, Figure S1H). 
However, the number of sampling months 
seemed to be especially significant to explain 
part of the variation of body size. Indeed, the 
proportion of individuals from medium- and 
large-sized species, as well as the propor-
tion of medium-sized species, all increased 
with increasing number of sampling months 
(Table III, Figure S1I–K). On the other hand, 
the proportion of individuals from small-sized 
species was negatively affected by the number 
of sampling months (Table III, Figure S1L).

4.  DISCUSSION

Here, studying both taxonomic metrics (indi-
ces based on occurrences or abundances of spe-
cies) and the diverse ecological traits related with 
the bee functional roles (Blondel 2003) allowed 
us to better evaluate how characteristics of cities 
influence the bee communities they host. Over-
all, our results suggest that variations in demo-
graphic, topological, land-use and climatic city 
traits have a variable role in shaping urban wild 
bee communities, as discussed in detail below.

Demographic traits of cities seemed to 
poorly affect their hosted bee communities, 
with only Gini-Simpson dominance being 
influenced by city surface. Instead, either vari-
ation in species richness and Shannon–Wiener 
diversity was affected by sample size or varia-
tion in both taxonomic diversity and taxonomic 
distinctness was not explain by any city trait, 

sample size or sampling effort. This important 
effect of sample size on species richness and 
Shannon–Wiener diversity is not surprising, 
since both are known to be strongly depend-
ent on this factor (Konopiński 2020; Gotelli 
and Colwell 2001). On the other hand, Gini-
Simpson index was greater in cities with an 
intermediate surface. Particularly in the larger 
cities of our dataset, communities tended to 
have a greater degree of dominance (lower 
Gini-Simpson index). This could be explained 
by the increasing presence of urban-adapting 
species (McKinney 2006) which may deplete 
most of the resources, possibly underpinning 
an increase in the homogenization of communi-
ties in larger cities (Ferenc et al. 2018). To less 
extent, the Gini-Simpson dominance decreased 
also in smaller cities. Cities with a reduced area 
could host a limited amount of resources (i.e. 
smaller green patches), hence causing again a 
possible impoverishment and homogenization 
of wild bee communities (Matteson et al. 2013).

Larger cities seemed to host only a few para-
sitic species when compared to smaller ones. 
In general, cuckoo bees seem to be a minor 
group in urban environments (Prendergast et al.  
2022). Because cleptoparasitic species may 
play a stabilizing role in wild bee communities 
(Combes 1996), the lack of a rich and diverse 
cleptoparasitic component may underline a pos-
sible future disturbance of the whole community, 
since this guild is proposed as an indicator guild 
for the health of the entire wild bee assemblage 
(Sheffield et al. 2013). In addition, the largest 
cities seemed to host fewer oligolectic species 
than smaller ones, in accordance with several 
previous studies (e.g. Makinson et al. 2017 or 
Lanner et al. 2020). Oligolectic bees heavily 
rely on the plant taxa they forage on (Praz et al. 
2008) and bigger cities often host more exotic 
and ornamental plants than native ones (Threlfall 
et al. 2016), for example in botanical gardens or 
private properties. These plants could promote 
the abundances of generalist species rather than 
specialist ones. Hence, oligolectic bees could  
be less resilient to urbanization (Prendergast   
et al. 2022), since the narrow pollen prefer-
ence may make these species more vulnerable 
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to possible local extinctions (Buchholz and 
Egerer 2020). In turn, urban areas would favour 
generalist species (Garbuzov et al. 2017) that 
may outcompete oligolectic species for food 
resources. A loss of specialists could be delete-
rious since oligolectic bees are sometimes con-
sidered more effective pollinators than polylectic 
ones (Parker 1981) and could lead to a simpli-
fication of plant-pollinator networks in urban 
landscapes (Martins et al. 2017). Availability and 
distribution of nesting resources play a crucial 
role in shaping wild bee communities (Potts et al. 
2005; Fortel et al. 2016), and we have found that 
largest cities host more above-ground-nesting 
species, perhaps because in large urban envi-
ronments, man-made structures provide numer-
ous cavities that could serve as nesting sites for 
above-ground nesters (Pereira et al. 2021) such 
as cavity renters and mud nesters (Häusler 2014). 
Bee size distribution within urban communities 
seemed also influenced by city surface, with 
richness of large species greater—and richness 
of medium-sized species lower—in larger cit-
ies. Banaszak-Cibicka and Zmihorski (2012) 
conducted a study in Poznań, a rather small city 
compared with bigger metropolis we included in 
our study, and indeed found the opposite pattern. 
Thus, the filter towards small-bodied bees could 
be caused by the property of the city rather than 
the increasing level of urbanization.

We have found urban-driven fragmentation 
to have a greater impact than the ratio between 
green and impervious surfaces on city bee com-
munities. Bees are central place foragers: they 
depart from and return to their nests many times 
during their life (Charnov  1976). Social bee 
species tend to have a broad pollen diet spec-
trum (Danforth et al. 2019), limiting the effects 
of fragmentation since more workers can dis-
perse in the environment to find food resources 
(Kaluza et al. 2017). Moreover, the maximum 
foraging range from their nests (Westrich 1996) 
is often larger for social than for solitary spe-
cies (Gathmann and Tscharntke 2002), thus lim-
iting the impact of fragmentation of foraging. 
Accordingly, we have found communities com-
posed of many social species especially in cit-
ies with greater fragmentation. This hypothesis 

finds support in Banaszak-Cibicka et al. (2018) 
that found social species to be more frequent in 
highly impervious habitats compared to subur-
ban sites.

In our dataset, highly fragmented green areas 
seemed to host fewer oligolectic bees probably 
due to a reduction in the quantity and quality of 
floral resources (Theodorou et al. 2020b). These 
highly fragmented habitats would probably be 
insufficient in hosting the specific plant species on 
which oligolectic species feed. Additionally, oli-
golectic species do not often have high dispersal 
abilities (López‐Uribe et al. 2019). Consequently, 
small green fragments can hardly sustain special-
ist wild bees unless they host the required floral 
resources (Török et al. 2021). This, once again, 
could lead to a functional simplification of the 
communities and of the plant-pollinator networks 
(Martins et al. 2017). However, we cannot exclude 
that the reduction in oligolectic species could 
just be the consequence of the increase in social 
species (which are generally polylectic) in more 
fragmented cities. Cities with highly fragmented 
green areas seemed to host also larger bees. The 
ability of a bee to fly for longer time and farther 
from the nest is directly dependent on its body size  
(Gathmann and Tscharntke 2002; Steffan-Dewenter  
and Tscharntke  1997). Thus, fragmentation 
could favour larger bees due to their better dis-
persal ability, as they can more easily fly across  
patches to feed (Greenleaf et  al. 2007). How-
ever, larger bees require more energy (Müller  
et al. 2006), and thus, there should be a trade-
off between within-patch food sources and flight 
range. Possibly, highly fragmented areas could 
disfavour small bees with a low dispersal ability 
(Wright et al. 2015) even though they have lower 
energy demands. In addition, habitat fragmenta-
tion reduces the possibility to find a mate within 
the green patch, especially for those species, often 
solitary, which mate on flowers (Paxton 2005). 
This may also help explain why social species are 
more abundant than solitary ones in urban highly  
fragmented habitats (Exeler et al. 2010).

More “green” cities seemed to host more 
below-ground-nesting bees compared with more 
impervious cities, in accordance with what was 
highlighted by Buchholz and Egerer (2020). An 
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appropriate nesting substrate is a key factor for 
bees (Potts et al. 2005). Ground-nesting is a fea-
ture shared by more than 60% of non-parasitic 
bees (Cane and Neff 2011) and is probably the 
ancestral state for Apoidea. Cities with low 
levels of urbanization and more green areas 
are expected to host more ground-nesting bees 
(Tonietto et al. 2011) as these bees can find bare 
soil to dig the nest. However, bare soil was not a 
consistent class of land-use across the analysed 
cities, and thus, we cannot draw a specific conclu-
sion about the co-occurrence of ground-nesting 
bees with barer soils. Results showed how an 
increase in impervious surface negatively cor-
related with the proportion of ground-nesting 
bees. Many ground-nesting bee species have been 
shown to prefer sandy soils (Antoine and Forrest  
2021) and such a texture is typical of rural land-
scapes, becoming increasingly rarer in more 
urbanized habitats. However, increasing veg-
etation diversity, as it can be found in “greener 
cities”, did not show an increase in nesting sites 
for ground-nesting bees in an agricultural land-
scape (Sardiñas et al. 2016). These mixed results 
could come from the fact that many aspects of the  
behavioural ecology of ground-nesting bees are 
still widely understudied and further investiga-
tions are certainly needed (Antoine and Forrest  
2021). Additionally, cities with more green than 
impervious surface harbour more small bees. A 
reason could be that large green areas may pro-
vide bare soils for many small-sized bees as well 
as higher abundance of other nesting substrates, 
such as plant stems, typically used by small-sized 
bee species (Danforth et al. 2019).

Temperature, which largely affects several 
life-traits aspects such as the adult activity 
(Woods et al. 2005) and larval development rates 
(Forrest 2017), significantly affected diversity 
of the studied urban bee communities. Warmer 
cities showed a lesser richness and diversity 
than cooler cities, possibly reflecting the limits 
of thermal tolerance of bees (Maia-Silva et al. 
2021). However, the upper thermal tolerance 
limit  (CTMAX) largely covaries with life-history 
traits in bees (Hamblin et al. 2017). Hotter cit-
ies seemed to host more above-ground-nesting 
species. In cities, cemented surfaces are hotter 

than vegetated lands (Herb et al. 2008), and thus, 
the combination of an increasing proportion of 
impervious surface, as we previously discussed, 
with higher temperature might overall reduce the 
abundance of ground-nesting species (as well 
as extreme dry or wet conditions) (Burdine and 
McCluney 2019). Hotter cities seemed also to 
favour large-bodied bees. An increase in body 
mass was shown to be positively correlated with 
higher upper critical temperatures (Oyen et al. 
2016; Heinrich and Heinrich 1983). However, 
whether larger individuals are favoured in hot-
ter climates is still under debate (Eggenberger 
et  al. 2019). On the other hand, sociality in 
wild bees has been shown to be correlated with 
higher  CTMAX (Hamblin et al. 2017). This could 
be the reason why hotter cities (as well as drier 
cities) seemed to host less oligolectic species 
as they are all solitary species (Danforth et al. 
2019). However, we did not find temperature to 
affect the proportion between social and soli-
tary species. Overall, hotter cities seem to host 
less diverse wild bee communities composed of 
large, social, polylectic and/or above-ground-
nesting species. These patterns are relevant from 
a conservation point of view since the mean 
temperature of cities around the world is greater 
than the surrounding areas (the “heat island” 
effect) and could even increase by over 2 °C in 
the near future (Bastin et al. 2019), jeopardizing 
the survival of wild bees in urban environments 
(Ayers and Rehan 2021).

In conclusion, our analysis overall suggests 
that, to some extent, some patterns (e.g. variation 
in lecty, nesting strategy and sociality) previously 
found in urban-natural and urban–rural clines can 
be observed in large-scale clines along gradients of 
city features. Hence, some city traits may amplify 
some patterns of variation in bee community found 
at local scale (from rural/natural to urban). On the 
other hand, the response of some bee functional 
traits (e.g. body size) to urbanization may be 
more variable at local scale depending on char-
acteristics of the considered city. While patterns 
remain, thus, still difficult to generalize, actions to 
improve the colonization of cities by diverse bee 
functional groups are certainly needed, particularly 
in the form of nature-based solutions (Xie and 
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Bulkeley 2020), such as increasing richer flower 
strips (Hofmann and Renner 2020) and green 
spaces (Antoine and Forrest 2021).
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